

1 **JAST (Journal of Animal Science and Technology) TITLE PAGE**
 2 **Upload this completed form to website with submission**
 3

ARTICLE INFORMATION		Fill in information in each box below
Article Type	Review article	
Article Title (within 20 words without abbreviations)	Status and Potential of Buffalo Dairy Production in Asia: A Review	
Running Title (within 10 words)	Buffalo Dairy Production in Asia: A Review	
Author	Fadzlin Afiqah A. Samad1, Md Zuki Abu Bakar2, Mohd Zamri Saad2, Norhariani Mohd Nor1,2, Annas Salleh2, Amirul Faiz Mohd Azmi3, Anuraga Jayanegara4, Dewi Apri Astuti4, and Hasliza Abu Hassim1,2*	
Affiliation	1Institute of Tropical Agriculture and Food Safety (ITAFoS), Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia 2Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia. 3Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, 16100, Kota Bharu, Kelantan, Malaysia. 4Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, Indonesia	
ORCID (for more information, please visit https://orcid.org)		
Competing interests	No potential conflict of interest relevant to this article was reported.	
Funding sources State funding sources (grants, funding sources, equipment, and supplies). Include name and number of grant if available.	This work was financially supported by the Ministry of Higher Education under the Transdisciplinary Research Grant Scheme (TRGS/1/2020/UPM/01/4).	
Acknowledgements	The authors would like to thank the Ministry of Higher Education for the HICoE facilities awarded to the Institute of Tropical Agriculture and Food Security, UPM, and the Faculty of Veterinary Medicine, UPM, for their technical assistance.	
Availability of data and material	Not applicable	
Authors' contributions Please specify the authors' role using this form.	Conceptualization: Fadzlin Afiqah AS, MD Zuki AB, Mohd Zamri Data curation: Annas S, Norhariani MN, Hasliza AH. Validation: Amirul Faiz MA, Anuraga J, Dewi AA. Writing - original draft: Fadzlin Afiqah AS Writing - review & editing: MD Zuki AB, Mohd Zamri, Annas S, Norhariani MN, Hasliza AH, Amirul Faiz MA, Anuraga J, Dewi AA.	
Ethics approval and consent to participate	This article does not require IRB/IACUC approval because there are no human and animal participants (review article)	

4

5 **CORRESPONDING AUTHOR CONTACT INFORMATION**

For the corresponding author (responsible for correspondence, proofreading, and reprints)	Fill in information in each box below
First name, middle initial, last name	Hasliza Abu Hassim
Email address – this is where your proofs will be sent	haslizaabu@upm.edu.my
Secondary Email address	-

Address	Institute of Tropical Agriculture and Food Safety (ITAFOs), Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
Cell phone number	+60126917384
Office phone number	+603-9769 1148
Fax number	+603-9769 4299

6
7

ACCEPTED

8 **Abstract**

9 The dairy buffalo industry in Asia is experiencing contrasting trends, with growth in South Asia yet
10 declining in East and Southeast Asia. Despite global dominance by cattle milk, buffalo milks offer superior
11 nutritional qualities, including lower cholesterol and higher protein content, making it an alternative for health-
12 conscious consumers. This review highlights the current status of dairy buffaloes in Asia, focusing on their role in
13 supplying essential animal protein and the potential for growth in the dairy sector. The key challenges affecting
14 buffalo milk production include breed variability, health challenges, and environmental factors. Thus, to enhance the
15 production, this review proposes several strategies such as targeted breeding initiatives, nutritional improvements,
16 and policy support to enhance market competitiveness. As demand for sustainable livestock products increases,
17 revitalizing the buffalo industry in East and Southeast Asia through innovative farming practices and regional
18 collaboration can ensure food security while promoting climate-resilient agriculture.

19

20 **Keywords (3 to 6):** Dairy buffalo, Asian buffalo, milk composition, dairy production

21

22

23 **Introduction**

24 Currently, the human population in Asia has grown to approximately 47.7 billion people, which is
25 equivalent to 59.22% of the total world population [1]. Meat and milk consumption in developing countries is
26 expected to increase by approximately 37 kg and 21.2 kg per capita by 2030 [2]. The Asian “population explosion”
27 coincided with an unusual economic growth that allowed an increment in purchasing power that changed food
28 preferences and significantly influenced the demand for animal products, specifically milk and meat. Hence, it is
29 crucial to produce sufficient animal protein for the increased population, especially in developing countries.

30 There was an increasing demand for livestock products in the world, with dairy production increasing by
31 1.1% to approximately 887 Mt in 2021. This growth has mainly been supplied by India and Pakistan due to the
32 continuous increase in the dairy population and the availability of fodder following the monsoon rains [2].
33 Meanwhile, milk production by the major dairy exporters, particularly New Zealand, the United States, and the
34 European Union, varied from a modest increase to a slight decline. Furthermore, expansion in the dairy trade market
35 is primarily driven by the strong demand in the People’s Republic of China, the largest global importer of dairy
36 products [2].

37 World dairy production is dominated by cattle, which contributes 81% of milk production, 15% from
38 buffaloes and the remaining 4% from a combination of goats, sheep and camels [2]. Despite global cattle milk
39 domination, the milk industry in South Asian regions like India and Pakistan is dominated by dairy buffaloes, with
40 114.15 million and 38.85 million heads, respectively [3]. Dairy buffaloes are also present in other Asian countries,
41 but are less popular than cattle and goats. Most consumers reject buffalo milk, leading to a smaller market in those
42 countries. Fortunately, recent trends in healthy foods require milk to be low in cholesterol but high in protein. Hence,
43 the non-traditional buffalo milk is becoming an important substitute for cattle milk, due to its low cholesterol level.
44 The cholesterol of buffalo milk was in the range of 4 to 18.0 mg/100 mL milk, while in cattle milk, it was 13.1 to
45 31.4 mg/100 mL milk [38], making the buffalo milk a better choice for heart health. Given the potential of buffalo
46 milk, many researchers have conducted studies to improve its production and quality to meet the targeted demand
47 and requirements.

48 Our review paper focuses on the status of dairy buffalo in the Asia region, the potential of dairy buffalo to
49 keep up with the demand in the dairy industry, and some critical factors limiting its growth and importance. Next,
50 strategies and efforts at various national and international levels to boost buffalo production are highlighted.

52 **Asian Water Buffalo**

53 In Asia, buffalo plays a crucial role in supplying millions of people with essential animal protein. Buffalo
54 supplies milk, meat, leather, bones, pharmaceuticals, dung and manure, in addition to draft power. Water buffaloes
55 consist of two subspecies, the river (*B. bubalis bubalis*) and the swamp buffalo (*B. bubalis kerebau*), with
56 chromosome numbers of 50 and 48, respectively. These subspecies exhibit distinct morphology and physiological
57 characteristics, as well as productive and reproductive performances [3].

58 Morphologically, river buffaloes are larger and have a more elongated body, typically weighing between
59 450 and 1,000 kg [3]. Their tightly curled, compact horns and entirely black fur, along with smoother skin with
60 fewer wrinkles, are common traits among river buffaloes. River buffalo have narrower, more refined heads with a
61 less pronounced forehead. Their eyes are set closer together, giving a more “domesticated” appearance [3]. Their
62 nostrils are smaller, as they are less adapted to prolonged submersion [3,5,39]. River buffalo also have longer, more
63 slender legs with smaller, more compact hooves. They prefer to wallow in clean water and are found distributed in
64 Pakistan, India, several European countries, western Asia, and America [4]. River buffaloes are purposely raised for
65 milk production, particularly in South Asia and Europe, but are also used for draft and as a dual-purpose animal.
66 River buffaloes have recently been used to improve local buffalo milk production in various countries, such as
67 Egypt, Bulgaria and the Philippines [5].

68 Swamp buffaloes, on the other hand, weigh between 325 kg and 450 kg and are much smaller than river
69 buffaloes [5]. They appear with ash or dark grey fur and a white chevron line on the neck and feet, giving the
70 appearance of wearing white socks. Their horns are swept widely backwards. Contrary to river buffalo, swamp
71 buffalo have broader, more robust heads with a pronounced forehead. Their eyes are wider apart, making them look
72 wilder than river buffaloes. The legs of the swamp buffalo are shorter and sturdy, with larger and splayed hooves.
73 Swamp buffaloes prefer to wallow in marshland and mud and are found largely concentrated in Southeast Asia and
74 Southern China [5]. Swamp buffaloes in China can adapt to various climates, altitudes, and temperatures, allowing
75 them to thrive in both lowland and highland regions. Swamp buffaloes are traditionally used for draught power,
76 particularly in ploughing paddy fields and transporting oil palm fruits. They are usually raised for meat production.
77 Even today, some oil palm estates continue to use them as draft animals to pull carts carrying oil palm bunches. The
78 milk of swamp buffaloes is sometimes used to make dairy products such as yoghurt and mozzarella cheese [2]

79 Like other ruminants, buffalo can be exposed to microbial infections and parasitic infestations. Generally,
80 buffalo are susceptible to the most common diseases and parasitic infection observed in cattle, with the prevalence

81 and severity of these condition are vary significantly depending on the country, region, and farming practices [40]
82 Diseases like brucellosis, tuberculosis, bovine viral diarrhea, fasciolosis, foot-and-mouth disease, and protozoal
83 infections have crucial effects on the Asian water buffalo industry [3].

84 As mentioned above, the water buffalo comprises two subspecies, the swamp and river buffalo. Compared
85 to river buffalo, swamp buffalo has a consistent phenotype, which is considered one type of subspecies; however,
86 the separation in breeds still occurs, based on the geographic location. Meanwhile, according to data from the Food
87 and Agriculture Organization (FAO), the river buffalo comprises various breeds, with 123 buffalo breeds, 90 local
88 breeds from Asia, and only 15 breeds considered transboundary. Figure 1 illustrates some images of the
89 morphological features and breeds of water buffalo.

90

91 **Current Status of Buffaloes in Asia**

92 **Recent buffalo population and growth rates**

93 Buffaloes are interesting animals referred to differently in various countries, such as *Majjh* or *Bhains* in
94 India, *Karabue* or *Kwai* in Thailand, *Carabao* in the Philippines, *Al-jams* in Arabic countries, and *kerbau* in
95 Malaysia [6]. Buffaloes hold significant importance as ruminant animals in various Asian nations, although for
96 different purposes.

97 The current world population of buffalo is approximately 204 million heads [2], with 98% found in Asia,
98 0.62% in America, 0.22% in Europe, and 2.89% in Africa. In the Asian region, about 74.8% of buffaloes were in
99 South Asia, 12.8% in East Asia, and 2.89% in Southeast Asia (Table 1) [2]. Between 2019 and 2022, the Asian
100 buffalo population registered an average annual population growth rate of 0.56%, while within the Asian countries,
101 South Asia showed the highest annual growth rate of 3.16%. (Table 2). The buffalo population in South Asia was
102 dominated by India and Pakistan. In India alone, the buffalo population is 111.8 million, almost 53.75% of the total
103 world buffalo population, and produces 67.78% of the world buffalo milk [39]. Pakistan is the second country in the
104 world after India, with a buffalo population of 43 million [2], showing a 29.47% increase in the last decade. It can be
105 noted that the buffalo population in Asia has had a constant increasing trend since 1968, in contrast with the buffalo
106 population trend in Europe, which has been decreasing since 1998 till recently. This phenomenon could be attributed
107 to the fact that in Europe, only Italy constantly increased its buffalo population because of its dairy breed, cheese
108 industry, and a market with a strong economy.

109 Despite the positive increase in the buffalo population in South Asia, there was a significant decrease in
110 Eastern Asia. In fact, between 2010 and 2022, buffalo populations in East and Southeast Asia had decreased
111 dramatically, except for Myanmar and Hong Kong [2]. In Myanmar, in 2010, there were 2.97 million buffaloes,
112 showing a 27.08% increase in 2020 [39]. Besides, the buffalo population in most East Asia countries like Japan,
113 Korea, and North Korea is relatively limited compared to other livestock, due to differences in climate, agricultural
114 practices, and economic priorities. At the same time, there are various reasons for the decline in buffalo populations
115 in East and Southeast Asia, observed earlier in Malaysia and Taiwan. The intensive agriculture machines introduced
116 since the 1970s for land tillage and transport have caused most buffaloes to end up in feedlots for fattening and
117 slaughter until now [7]. The same situation was reported in Malaysia, where buffaloes were used as draft animals for
118 land work and were replaced with farm tractors in the 1980s and early 1990s; the trend of buffalo herd keeping
119 decreased [7; 8]. Besides, development and urbanization have reduced farms and paddy areas, ultimately reducing
120 buffalo requirements. Furthermore, buffaloes are believed to have poor reproductive performance and response to
121 current biotechnology techniques such as artificial insemination and embryo transfer technology, which was one of
122 the reasons for the decline in buffalo population in the world, particularly in Asia. Above all factors, the neglect of
123 buffalo industry development has subsequently led to a decrease in the buffalo population. Therefore, various
124 stakeholders should start to focus on the growth of the buffalo industry, because buffalo can be one of the tools for
125 the sustainability of the meat and milk industry.

126
127 **Current trends of buffalo milk production in Asia**
128

129 As reported by FAO, world milk production is estimated to increase by 1.8% p.a. over the next decade. In
130 fact, the growth in the number of milk-producing buffaloes is expected to be strong (1.2% p.a.), particularly in South
131 Asian countries [2]. In 2022, South Asia alone produced approximately 303,282,537.6 tons of milk, 45.7% was
132 buffalo milk. Unlike other countries, buffaloes are an essential source of milk in the South Asia region, particularly
133 Pakistan and India, which have contributed as much as 68.35% of the total milk production in Pakistan and 56.85%
134 of the total milk production in India [2]. As mentioned before, the consistency of buffalo milk production in
135 Pakistan and India is significantly correlated with the growth rate of the buffalo population and the performance of
136 the animals. Meanwhile, the rates of buffalo milk production in other Asian regions like Southeast Asia, West Asia,
137 and East Asia were dramatically declining (Table 3). Unlike South Asia, buffalo milk in other Asian countries has
138 not been produced and consumed traditionally, except in parts of Southeast Asia. Here, farmers kept their animals

139 for work, and only a tiny percentage of crossbred buffaloes were utilized for milk production. In Southeast Asia,
140 Myanmar produces the highest buffalo milk since it has the highest dairy buffalo population [3,5,39]. Buffalo milk
141 productions in other Southeast Asian countries are significantly influenced by the limited population of riverine and
142 crossbred dairy buffaloes.

143 Many factors affect the milk production of dairy buffaloes in Asian countries: breed, genetic background,
144 season and calving period, health status, and environmental factors, like feeding, climate, temperature, and animal
145 welfare. The buffaloes with well-defined breeds in India and Pakistan could produce 4000 litres to 5000 litres and
146 1800 to 2500 litres per animal, respectively, with lactation length ranging between 300 days and 320 days [9, 10]. In
147 contrast, the swamp-type buffalo in China has a very low milk yield, approximately 500 to 700 litres per animal,
148 with a lactation period of 280 days [11]. In Southeast Asia, the native buffalo breed in the Philippines can only
149 produce roughly 300 to 500 litres of milk per animal [12]; concurrently, in Indonesia, the milk yield of the dairy
150 buffalo is only 2.40 litres per animal per day [13]. The production of dairy buffalo in Malaysia varies from 5 litres to
151 8 litres of milk per animal per day [10].

152 Overall, the trends of buffalo milk production in Asia indicate a steady increase, with countries like India
153 and Pakistan leading the region and contributing significantly to the global buffalo milk supply. Concurrently, the
154 continued investment in breeding programs, improved animal welfare, adaptation to climate change, and improved
155 nutrition of the dairy buffalo remain crucial for dairy buffalo production in Asia.

156

157 **Potentials of Dairy Buffalo in Asia**

158

159 **Buffalo milk quality and benefits**

160

161 Buffalo milk consumption significantly impacts human nutrition, specifically the growth and development
162 of human health. Buffalo milk contains less water but is high in total protein, medium-chain fatty acids, and
163 conjugated linoleic acid (CLA). In fact, certain components, such as specific classes of gangliosides, may only be
164 present in buffalo milk [14]. Therefore, buffalo milk appears thicker because it contains over 16% of total solids
165 compared with between 11% and 14% of cow's milk. Moreover, the fat content in buffalo milk is usually higher,
166 between 50% and 60% [15]. The comparative compositions between buffalo and cow milk are summarized in Table
167 4.

168 Buffalo milk contains more casein fractions, known as alpha-s and Kappa caseins, than cattle milk [16].
169 The high concentration of Kappa casein acts as a catalyst in enzymatic reactions in cheese manufacturing. Hence, it
170 is more suitable for producing mozzarella cheese [17]. In terms of amino acid content, the breeds of buffalo can
171 influence the concentration of amino acids. Generally, buffalo milk contains high concentrations of glutamic acid,
172 ranging between 19.41 and 20.18 g/100g protein in the Nilli Ravi breed and 18.83 and 19.69 g/ 100 g protein in the
173 Murrah breed. Glutamic acid is important in human nutrition, as it helps nerve cells in the brain send and receive
174 information from other cells [18]. Buffalo milk also has a high proline value, followed by leucine and lysine [16].
175 The detailed amino acid contents of buffalo milk are summarised in Table 5.

176 The fatty acid profile of buffalo milk is displayed in Table 6. [16] reported that the primary fatty acids in
177 buffalo milk are palmitic acid (C16:0; 31.7 - 34.4 %), oleic acid (C18:1; 24.59 - 27.22%), stearic acid (C18:0; 14.23
178 - 10.97%) and myristic acid (C14:0; 10.4 - 11%). In fact, [17] also reported that buffalo milk contains higher total
179 saturated fatty acids, C16:0 and C12:0, compared to cow's milk. Interestingly, conjugated linoleic acid (CLA) of
180 buffalo milk fat is more significant (15.5 mg/g fat) than cow milk fat (9.2 - 13.1 mg/g), and conjugated linoleic acid
181 has potential health benefits, particularly for bone health, and acts as insulin resistance and diabetes [19]. Besides,
182 buffalo milk fat contains the lowest (270.82 mg/100g fat) cholesterol level compared to cow (293.89 mg/100g fat),
183 camel (315.62 mg/100g fat), and goat milk (325.18 mg/100g fat) [20]. Hence, the lower cholesterol content in
184 buffalo milk should make it more popular with the health-conscious public.

185 Buffalo milk was found to contain more minerals. Studies by [17] and [14] revealed that buffalo milk has a
186 high calcium content. [14] stated that most of the calcium found in buffalo milk is insoluble, which ranges between
187 67.6 and 82.6%, probably due to the high casein content in buffalo milk. Besides calcium, buffalo milk is also rich
188 in phosphorus, magnesium, and citrate [14]. Moreover, there are essential trace elements in buffalo milk, especially
189 zinc and iron. Compared to cow's milk, buffalo milk has only traces of carotene but is higher in vitamin A [20].
190 Nevertheless, there are variations in the level of vitamin A in buffalo milk based on the physiological status of the
191 buffalo, environmental factors, and sensitivity of the analysis methods. According to Medhammar et al. (2012), the
192 value of vitamin A in buffalo's milk is 69 mg/100g milk compared to 46 mg/100g of cow's milk [21]. Similarly,
193 studies have shown that buffalo milk contains higher vitamin C when [17] reported approximately 20.3 ±
194 0.07µg/mL, while [21] reported 2.5mg/100g milk.

195 Like cow's milk, buffalo milk can be used in most dairy products. In India, ghee production accounts for
196 approximately 45% of total buffalo milk [22]. Ghee, also known as butterfat, contains approximately 99% milk fat.

197 Unlike ghee from cattle, ghee from buffalo milk has no colour [10]. A previous study mentioned that the buffalo
198 ghee scored significantly higher in all evaluated preferences. Buffalo ghee was tastier and had a finer and more
199 uniform texture than cow ghee [50,51]. For cheese production, Mozzarella, paneer cheese (traditional cheese in
200 India), and pickled cheese (traditional cheese in the Middle East) are best made from buffalo milk. Besides cheeses
201 and ghee, buffalo milk can also be used for skimmed milk powder, ice cream, butter, and infant milk powder [10].

202

203 **The socio-economic impact of dairy buffaloes in Asia**

204

205 Milk is one of the essential proteins in the daily diet of many Asian countries, particularly among
206 populations with high vegetarian diets, such as in India and Nepal. The buffalo population in India is approximately
207 100 million, representing 50% of the world's buffalo population. It is known as the top country in the world in terms
208 of the number of buffalo and milk production. The Indian dairy sector has two most important roles: 1) addressing
209 public health through milk, 2) developing wealth generation for rural areas. Among the livestock products in India,
210 milk accounted for 67.2% of the livestock sector, which is the highest share compared to other sectors. Annually, 8.4
211 million farmers depend on the dairy sector for their livelihoods, out of which 71% are women. In recent years, the
212 market size for the Indian dairy market has expanded to USD 124. 93 billion and is projected to grow to USD
213 227.53 billion by 2030, with a CAGR of 8.94% [23], which is around 49% of the total market supported by dairy
214 buffalo production. In India, buffalo milk is used to make various products like ghee, butter, paneer, yoghurt, and
215 traditional desserts and sweets [24]. Besides milk, India is also known as a major exporter of buffalo meat. India
216 produces 1.63 million tonnes of meat, accounting for 21.1% of total meat production in the country [41]. It was
217 recorded that India's proportion of worldwide buffalo meat exports has increased from 3.34% in 2000 to 11.23% in
218 2020 [2,41]. At the same time, buffalo demonstrate significant work efficiency, especially in load pulling and
219 ploughing activity during land cultivation. Notably, their milk yield remains stable even after 1 to 2 hours of
220 continuous moderate labour [39]

221 According to statistical data from [2], China has the third-largest buffalo population in the world. However,
222 most buffaloes in China are swamp buffaloes mainly used for draught power and as a source of meat, because their
223 milk production is quite low, only 500 to 700 kg milk yield for lactation on average) [39]. Hence, China imported
224 Murrah from India and Nili-Ravi buffaloes from Pakistan to improve buffalo milk production through crossbreeding
225 and upgrading two breeds, Murrah F1, F2, and Nili-Ravi F1, F2 [8]. The crossbred buffaloes were used to supply

226 milk and milk products to poor people in villages. In fact, few factories were established specifically to process
227 buffalo milk to produce pasteurized milk, yoghurt, condensed milk, and crème. In 2020, the buffalo milk
228 manufacturers Baifei Dairy and Huangshi Dairy from Guangxi produced buffalo milk products like buffalo yoghurt,
229 buffalo fresh milk with high calcium, and buffalo fresh milk rich in selenium. From that product only, the sales of
230 buffalo milk in that area and the company grew more than 400% yearly [25]. Besides the improvement in the dairy
231 sector, China is also listed as one of the buffalo meat producing countries, contributing 15.7% of global buffalo meat
232 production [41]. The buffalo meat production in China reaches 0.66 million tons, and mostly the primary part of the
233 meat is sold directly to consumers, and the rest is processed as dried beef, sausages, and hams (Minervino et al.,
234 2020).

235 Dairy buffalo production is also necessary in the Near East Asian countries like Turkey, Iran, and Iraq.
236 Various buffalo-derived products, including fat skimmed from milk, are being produced in Iraq, which is utilized in
237 producing butter, ghee, sweets, and cakes [42]. This skimmed milk can be consumed directly or used to make curd,
238 fresh cheese, and sweets. Besides, Iraq also contributed to global buffalo meat production and produced at least 5.46
239 million kilograms of buffalo meat in 2022, an increase of 8% from the previous year [43]. The meat is also used for
240 direct consumption or to produce meat products like salami and ham, as these products cannot come from pork,
241 which is forbidden by the Islamic religion. In Iran, the price of buffalo milk was twice that of the cow [42]. Iranians
242 develop highly valued products from buffalo milk, like yoghurt, fresh cream, cheese, butter, ice cream, rice pudding,
243 churned yoghurt, dried whey, and ghee [42]. Besides, buffalo skin was used in the leather industry, while buffalo
244 manure served as fuel in rural areas. In Turkey, the milk production of dairy buffalo is widespread, particularly for
245 producing famous Turkish desserts [42]. The buffalo meat production is relatively low compared to milk. In 2023,
246 buffalo meat accounted for only 0.6% of total red meat production compared to another ruminant [44]. A common
247 strategy across these Asian countries to enhance milk production and product availability is the crossbreeding
248 programs using semen from the Mediterranean Italian breed.

249 In Southeast Asia, buffaloes are usually raised by smallholder farmers and are focused only on draught
250 power and partly on meat. The Philippines recorded a total of 28,49,006 buffaloes, of which 99% are managed by
251 small farmers with few resources, low income, and less access to other economic opportunities. According to [6],
252 the Philippines produces buffalo milk worth 300 million Philippine pesos (5,223,000.00 USD) and provides dairy
253 products like pastillas de leche and white cheese or 'kesong puti'. Recently, the Carabao Development Program
254 aimed to explore the halal market and invested in halal carabao meat products (Borghese, n.d.). Meanwhile, in

255 Indonesia, the milk was sold for 20,000-rupiah (1.25 USD)/1.25 litres of milk during the dry season; on the other
256 hand, 15,000 rupiah (0.94 USD) in the rainy season when the water buffalo produces high milk yield [12,13].
257 Mainly, buffalo milk produces Indonesian desserts and candies like *dadih*, *sagon puan*, and *gulo puan* [12, 13]. Thai
258 buffaloes are genetically the Swamp type and were raised by small farm holders as a multipurpose animal in
259 agricultural production. Unfortunately, the local swamp buffalo have low production in both milk and meat; hence,
260 these productions were not the main focus for the farmers.

261 **Strategies for Dairy Buffalo Development in Asia**

262

263 Development initiatives regarding buffalo production should be addressed by local agencies and
264 international stakeholders, other than in cattle-related projects. It has been recognized that some Asian countries
265 have experienced suboptimal growth in buffalo production, while others have seen noticeable declines. Substantial
266 efforts are required to promote buffalo development in Asia, particularly in Southeast Asia. Persistent economic
267 challenges in most Eastern Asian countries emphasize the crucial need for development in the agricultural sector,
268 which cannot be achieved without including buffalo development and management. Realizing this need, various
269 nations and international agencies have strategically enhanced buffalo production.

270

271 **Government efforts to improve buffalo development**

272

273 In India, the government initiated a research project that focused on buffalo breeding to improve the
274 performance and quality of buffalo bulls. The project was started in 1972 [6]. Subsequently, a National Buffalo
275 Research Centre, together with 27 State Agricultural Universities, started to perform research activities on various
276 aspects of buffalo to improve buffalo productivity in India [6]. Meanwhile, research on the Nili-Ravi buffalo in
277 Pakistan was initiated in 1981. Under this initiative, buffaloes were placed in five Government Livestock Farms,
278 three military Dairy Farms, and some registered private farms for research and further improvements. Furthermore,
279 the Pakistan Agricultural Council also started the National Coordinated Buffalo Research Program in 1992 to
280 improve the productivity of the buffaloes in Pakistan via science and research [8].

281

282 In Thailand, a National Buffalo Breeding and Research Program was created to increase buffalo fertility
283 and production, particularly in developing superior buffalo herds [6]. Various initiatives were introduced to attract
284 the community towards buffalo rearing, including (1) a program called 'Buffalo Banks' that aimed at inducing self-
sufficiency for small farmers; (2) the development of 'Model Buffalo Raising Villages' to promote best buffalo

285 husbandry practices and (3) providing incentives to best-performing buffalo farmers. The authorities in Thailand
286 also decided to celebrate National Thai Buffalo Conservation Day on May 14 each year to raise awareness about the
287 importance of conserving native buffalo breeds [45]. The efforts are being made to encourage farmers to keep these
288 animals, even if not for agricultural purposes. The Thai government also agreed to establish the International
289 Buffalo Information Centre, which collects and keeps information on buffalo production and related issues. To
290 improve dairy buffalo production, the Ministry for Agriculture and Cooperatives and Buriram Livestock Research in
291 Thailand collaborated to develop dairy buffalo breeding in this country [46]. Besides, the Thai Department of
292 Livestock Development has created initiatives to conserve the Thai swamp buffalo breed using full genome
293 sequencing, and established a national genomic database center to identify important genomic markers and enhance
294 the quality of the buffalo products like meat and milk [45,46]

295 Similarly, the government of the Philippines has established the Philippine Dairy Industry Roadmap for
296 2020 to 2025. The program aimed to improve the dairy value chain by covering efficiency, effectiveness, and
297 inclusiveness in milk production and, subsequently, processing and marketing buffalo milk [26]. At the same time,
298 the roadmap addresses systemic issues like herd build-up, promotion of interventions, and support for innovations in
299 practical skills, feed and fodder supply, milk quality, and development of policy and regulatory environment. This
300 program's key strategies and policies include: i) Enhancing the buffalo breeding system to improve the productivity
301 of buffaloes, ii) Formulating proper and quality feed for dairy buffaloes, and iii) Providing incentives to the farmers
302 to improve their knowledge and skills. Besides this program, the government of the Philippines also started the
303 Carabao-based Business Improvement Network (CBIN) Project. This project focuses on expanding the population
304 of buffalo between regions around the country through processing and marketing facilities.

305

306 **Improvement in the genetics and breeding of dairy buffaloes**

307 Across the world, the genetic improvement in buffaloes is tailored to specific purposes, focusing on
308 enhancing traits like milk and meat production, draft capabilities, or a combination of these, depending on the
309 regional needs and utility of the products. As mentioned previously, most of the local buffalo breeds in Asia produce
310 low milk and meat yield; hence, the crossbreeding between the local breed and imported breeds was one initiative to
311 enhance the production of the local buffaloes. Generally, the crossbreeding occurs between River buffalo (50
312 chromosomes) and Swamp buffalo (48 chromosomes), producing fertile F1 and F2 with 49 chromosomes [27].
313 Generally, crossbreds show better growth and larger body sizes, which produce higher milk yields. The previous

314 study stated that the crossbred buffaloes were significantly heavier in body weight compared to the pure breed from
315 birth until 24 months [47]. Another study reported that the crossbred buffaloes' growth rate was advantageous,
316 ranging from 10-31.1% compared to the swamp buffaloes [48]. Indeed, crossing swamp and river buffaloes
317 improves all reproduction traits, including birthweight, age of maturity, age of first calving, and calving period.

318 To improve the genetics of local buffalo breeds in India, animal recording and selection systems are used to
319 ensure the genetic quality of animals used for breeding [8]. Thus, India has the best dairy buffalo breeds in Asia,
320 which include Murrah, Nili-Ravi, Surti, and Jaffarabadi. Besides being used for work and meat production, these
321 breeds also have the potential to produce milk and fat. Similarly, Pakistan improves the genetics of Nili-Ravi and
322 Kundhi buffalo breeds through animal recording, selection, and progeny testing trials [8]. Buffalo's performance was
323 recorded in the seven institutional herds, specifically in the Livestock Research Institute and a few military farms.
324 Meanwhile, buffaloes that the farmers raised were recorded under the progeny testing program.

325 The Carabao Development Program in the Philippines is a program that improves the local swamp buffalo,
326 particularly in producing meat and milk. As a result, crossbreds between Bulgarian Murrah and local Swamp buffalo
327 produced F1 with 1,100 kg and F2 with 1,350 kg of milk [8]. In addition, research in the Nueva Hecija area focuses
328 on milk collection, organizing the smallholder dairy industry, and marketing buffalo products. The main purpose of
329 this project was to detect and select the parents for future generations of buffalo [26]. Hence, evaluating the
330 livestock performance and breeding management in that area is necessary. Similarly, buffalo play a crucial role in
331 agriculture and the life of Vietnamese farmers. Buffaloes in Vietnam are mostly swamp buffaloes, and they are
332 raised under traditional production systems. Therefore, the local buffaloes of Vietnam are small in size and show a
333 slow growth rate and late maturity with long calving intervals and low milk yield. In the 1970s, Vietnam decided to
334 import the dairy Murrah buffaloes from China, Bulgaria, and India to enhance the productivity of the local buffaloes
335 [8]. The crossbreds have bigger body sizes and show better growth rates, draft power, and reproductive performance.

336 The Italian buffalo semen was introduced into Ilikpinar Village, Turkey, to improve the quality of genetic
337 and milk productivity of the Anatolian buffalo in Turkey [8]. In the first trial, approximately a 45% pregnancy rate
338 was achieved. This outcome suggests that the introduction of Italian semen was successful in terms of reproductive
339 efficiency. This project was supported by the FAO Inter-Regional Cooperative Research Network and the Scientific
340 and Technical Research Council of Turkey. Since 2011, the Republic of Turkey Ministry of Agriculture and
341 Forestry has implemented the National Anatolian Water Buffalo Breeding Project, with the cooperation of different
342 universities, research institutes, and water-buffalo-breeder associations. The result from that project is that the

343 buffalo population in Turkey has increased by approximately 60,000 heads compared to the last decade [49]. Recent
344 research has assessed the genetic diversity of the Turkish water buffalo population using microsatellite markers. The
345 findings from this study can be implemented in formulating future strategies for conservation and breeding programs
346 for water buffalo in Turkey [49].

347 Although artificial insemination and embryo transfer techniques for buffaloes have been developed
348 successfully, the applications are limited. Consequently, buffalo performances have been poor in recent years.
349 Hence, there is a need for international financial and technical support cooperation to improve this situation. More
350 attention is needed to select breeds for dairy purposes and create a market for the buffalo dairy industry. In the future,
351 buffalo development should focus on enhancing animal production to meet the growing population's demand for
352 animal-derived food, which is currently inadequate in many countries.

353

354 **Enhancing feeding management to improve the performance of dairy buffaloes**

355 Feed and feeding directly influence buffalo production. In contrast to the common belief that buffalo can
356 thrive on poor quality feed, dairy buffaloes require a balanced diet based on their physiological status, and an
357 imbalanced diet affects their productivity. Lack of quality feeds, inadequate fodder or pasture land for grazing, and
358 lack of feed supplements lead to poor buffalo production and reproduction. In Southeast Asia, buffaloes are fed rice
359 straws that are highly lignified and contain low protein and energy [15]. However, various efforts have been made to
360 improve the nutrient quality and utilization of rice straws in buffalo, including fermentation modifiers, rumen-
361 protected dietary protein and fat, and industrial and agricultural by-products and vitamins. In fact, manipulating
362 rumen microorganisms using metabolic and fermentation modifiers has significantly improved buffalo productivity
363 [28]. Gaafar et al. (2009) [29], in their study, reported that the dairy buffaloes fed with 40% concentrate, 60%
364 roughage, and 15g baker's yeast supplementation/head/day showed the best results in milk yield, feed conversion,
365 and economic efficiency. In another study, [30] explained that supplementation of concentrate on the existing feed
366 of lactating buffaloes can increase the milk yield and reduce the postpartum heat period, while metabolic alteration
367 in the rumen can improve the buffalo's performance. This is in line with [28], who stated that the supplementation of
368 bypass fat in the animal's diets could improve the growth performance of cows without any adverse effect on the
369 rumen fermentation. Including 25% forage reap silage could improve microbial protein synthesis due to the dietary
370 balance between carbon and ammonia, increasing the microbial protein content [31]. Therefore, modifications of

371 feed and feeding regimens for dairy buffalo can enhance and improve their performance, leading to an increase in
372 milk yield and milk composition.

373
374 **Increasing farm economic efficiency**
375

376 Identifying factors that optimize the production efficiency of dairy farms is essential to improve the
377 productivity and profitability of the farms while protecting animal welfare and the environment. Good management
378 practices, whether for individual or the whole herd, can improve the milk production per cow, raise the average milk
379 yield per herd, enhance the dairy farm efficiency, reduce maintenance costs, and minimize environmental impact
380 both at the level of a small-scale farm or at the commercial level [32].

381 In dairy farms, including dairy buffalo, the efficiency of the farms is evaluated through animal performance
382 indicators such as calving rate, calving interval, and milk production [33]. Recently, some Asia countries have
383 focused their evaluation on the profitability of the farms as an indicator by benchmarking specific indicators that
384 measure the amount, cost, or marginal profit of a particular input per unit of output [32]. These indicators are also
385 used as a benchmark of dairy farm performance for short-term farmers' decisions, even when complete economic
386 balances are not calculated.

387 In the previous study in the Philippines, the researchers determined the performance efficiencies of the
388 dairy buffalo using data envelopment analysis (DEA) [33]. DEA system considered three measures of efficiency: 1)
389 technical efficiency (TE) or the ability of the decision-making unit (DMU); 2) allocative efficiency (AE); 3)
390 Economic efficiency (EE), which measures the overall performance and is calculated as $EE = TE \times AE$ [34]. The
391 study was done at Nueva Ecija in 2021 and involved 58 farms of smallholders (3-5 buffaloes), 12 family modules
392 (6-10 buffaloes), and 5 semi-commercial farms (11-20 buffaloes). This study concluded that the dairy farms in
393 Nueva Ecija were still not at their optimum value of AE, which is their potential to reduce the cost of inputs in the
394 farm without affecting the output (liters of milk produced) [33]. Another study by [27] stated that the total factor
395 productivity (TFP) of dairy buffalo milk production in Nueva Ecija has the potential to improve, particularly
396 through technological progress. Besides that, the Philippine Carabao Center (PCC) should continue investing in its
397 Genetic Improvement and Research for Development Programs, consequently increasing the number of animals
398 held per farmer and maximising the efficiency of their operation [27, 33].

399 Similar to the study in the Philippines, the study in Idgir Province, Turkey, also used DEA to analyse the
400 efficiency of dairy buffalo farms. According to [34], the average technical efficiency of dairy buffalo farms in that
401 area was 0.84, which shows that improving the inefficient farms by decreasing their input use by 16% is possible. In
402 order to improve the efficiency of the farms, the farmers should manage their inputs efficiently by providing
403 efficient extension services. Besides, they should manage to plant more quality roughage to improve the feed
404 efficiency of the animals.

405 Precision livestock farming (PLF) is an artificial intelligence technology that monitors and manages animal
406 production automatically. This technology can also be used to solve problems that may arise on the farm. At the
407 same time, PLF also functions well in predicting reproductive outcomes at the individual animal or herd levels,
408 optimizing resources and informing breeding strategies, which can lead to increased reproductive performance. This
409 technology has been explored and implemented in various European countries, despite not focusing on buffalo
410 farming. Accordingly, PLF should be applied to buffalo farming in the Asia region to upgrade the management
411 system and increase buffalo production. In China and Japan, PLF technologies have been developed using artificial
412 intelligence (AI) for smart livestock management. While these technologies are primarily used for other livestock,
413 there is potential for adapting them to buffalo farming in the Asia region.

414

415 **Conclusions**

416 It is concluded that dairy buffalo has been and will remain an integral part of the agricultural economy,
417 particularly for smallholder farmers in several developing Asian countries. While buffalo is known as a major milk
418 contributor in South Asian countries, its role in Eastern Asian countries may shift from being primarily a draft
419 animal to becoming primarily an important source of milk and meat. Therefore, it is necessary for most Asian
420 countries to re-focus their buffalo industry from draft-related rearing to meat or dairy-related rearing. Enhancing the
421 development of the buffalo population and production, several agencies should adopt an integrated approach
422 combining breeding selection, nutritional optimization, sustainable management practices, providing training for the
423 farmers, and collaboration with the universities and research institutions to always upgrade the system of the farms.

424 By prioritizing the breeding selection to improve productivity and resilience, optimizing nutrition with
425 localized feed formulations, and implementing sustainable farming systems, stakeholders can significantly improve
426 the growth rates and milk yield while reducing environmental impacts. Regional collaboration and policy support

427 are crucial for scaling these innovations, ensuring that smallholders and large-scale producers alike benefit from
428 precision farming technologies and premium market opportunities. As the global demand for sustainable livestock
429 products grows, the strategic development of buffalo agriculture should focus on food security and position these
430 animals as a model for climate-resilient livestock production in tropical regions.

431

432 **Acknowledgements**

433 The authors would like to thank the Ministry of Higher Education for the HICoE facilities awarded to the
434 Institute of Tropical Agriculture and Food Security, UPM, and the Faculty of Veterinary Medicine, UPM, for their
435 technical assistance.

436

437 **Funding**

438 This work was financially supported by the Ministry of Higher Education under the Transdisciplinary
439 Research Grant Scheme (TRGS/1/2020/UPM/01/4).

440

441

442 **References**

443

444 1. Worldbank. Population in Asia. 2024 [2024 June 22] [Population, total - Asia | Data \(worldbank.org\)](https://www.worldbank.org/en/data/population-total-asia)

445 2. FAO. Food and Agriculture Organization. 2022. [cited 2024 June 27]. <https://www.fao.org/faostat/en/data/buffered/>

446 3. Minervino AHH, Zava M, Vecchio D, Borghese A. *Bubalus bubalis: A Short Story*. *Front. vet. sci.* 2020; 7: Suppl 12: 1–15. <https://doi.org/10.3389/fvets.2020.570413>

447 4. Mohd Azmi AF, Ahmad H, Mohd Nor N, Goh YM, Zamri-Saad M, Abu Bakar MZ, Salleh A, Abdullah P, Jayanegara A, Abu Hassim H. The impact of feed supplementations on asian buffaloes: A review. *Animals*. 2021; 11 Suppl 7; 2033. <https://doi.org/10.3390/ani11072033>

448 5. Zhang Y. Asian water buffalo: domestication, history and genetics. *Anim Genet*. 2020; 51 Suppl 2: 177–191. <https://doi.org/10.1111/age.12911>

449 6. Nanda AS, Nakao T. Role of buffalo in the socioeconomic development of rural Asia: Current status and future prospectus. *Anim. Sci. J.* 2003; 74 Suppl 6: 443–455. <https://doi.org/10.1046/j.1344-3941.2003.00138.x>

450 7. Cruz LC. Trends in buffalo production in Asia. *Ital. J. Anim. Sci.* 2007; 6 Suppl 2: 9–24. <https://doi.org/10.4081/ijas.2007.s2.9>

451 8. Borghese A. Development and perspective of buffalo and buffalo market in Europe and Near East. *Revista Veterinaria*. 2010; 21 Suppl 1: 20–31.

452 9. Siddiky M, Faruque M. Buffaloes for dairying in South Asia: potential, challenges and way forward. *SAARC J. Agric.* 2018; 15 Suppl 2: 227–239. <https://doi.org/10.3329/sja.v15i2.35167>

453 10. Wahid H, Rosnina, Y. Buffalo. *Encyclopedia of Dairy Science*. Amsterdam, Netherlands: Elsevier. 2011; pp. 772-779. <https://doi.org/10.1016/B978-0-12-374407-4.0022>

454 11. Bodnar K, Konyves T, Privoczki ZI, Jerney Z. Globalization in buffalo milk production. *Lucrari Stiintifice*. 2017; 3: 5–10.

455 12. Tsuji T. Traditional Water Buffalo Milk Production and Consumption in Southeast Asia. The Proceeding of the 9th Asian Food Study Conference (AFSC2019) 2019; 2019 Nov 28-30; University of Malaya, Kuala Lumpur, Malaysia.

456 13. Herlina VT, Setiarto RHB. From tradition to innovation: dadih, the Minangkabau tribe's traditional fermented buffalo milk from Indonesia. *J. Ethn. Foods*. 2024; 11:1. <https://doi.org/10.1186/s42779-024-00234-6>

471 14. Ahmad S, Anjum FM, Huma N, Sameen A, Zahoor T. Composition and physico-chemical characteristics of
472 buffalo milk with particular emphasis on lipids, proteins, minerals, enzymes and vitamins. *J Anim Plant Sci.*
473 2013; 23: 62-74.

474 15. Hamid M, Siddiky M, Rahman M, Hossain K. Scopes and opportunities of buffalo farming in Bangladesh: A
475 review. *SAARC J. Agric.* 2017; 14 Suppl 2: 63–77. <https://doi.org/10.3329/sja.v14i2.31246>

476 16. Abdel-Hamid M, Huang L, Huang Z, Romeih E, Yang P, Zeng Q, Li L, et al. Effect of Buffalo Breed on the
477 Detailed milk composition in Guangxi, China. *Foods.* 2023; 12:1–10. <https://doi.org/10.3390/foods12081603>

478 17. Abd El-Salam MH, El-Shibiny S. A comprehensive review on the composition and properties of buffalo milk.
479 *Dairy Sci Technol.* 2011;91:663–699. <https://doi.org/10.1007/s13594-011-0029-2>

480 18. Newsholme P, Procopio J, Ramos Lima MM, Pithon-Curi TC, Curi R. Glutamine and glutamate - Their central
481 role in cell metabolism and function. *Cell Biochem Funct.* 2003; 21 Suppl 1; 1–9.
482 <https://doi.org/10.1002/cbf.1003>

483 19. McCrorie TA, Keaveney EM, Wallace JMW, Binns N, Livingstone MBE. Human health effects of conjugated
484 linoleic acid from milk and supplements. *Nut Res Rev.* 2011; 24 Suppl 2: 206–227.
485 <https://doi.org/10.1017/S0954422411000114>

486 20. Dhankhar J, Sharma R, Indumathi KP. A comparative study of sterols in milk fat of different Indian
487 dairy animals based on chemometric analysis. *J. Food Meas. Charact.* 2020; 14 Suppl 5: 2538–2548.
488 <https://doi.org/10.1007/s11694-020-00500-6>

489 21. Medhammar E, Wijesinha-Bettoni R, Stadlmayr B, Nilsson E, Charrondier UR, Burlingame B. Composition of
490 milk from minor dairy animals and buffalo breeds: A biodiversity perspective. *J. Sci. Food Agric.* 2012; 92
491 Suppl 3: 445–474. <https://doi.org/10.1002/jsfa.4690>

492 22. Adhikari P, Sharma P, Bhatta SS. A Comprehensive review on milk yield, lactation efficiency, milk
493 composition and mastitis incidence at different parity in Murrah buffaloes. *RFNA.* 2021;2: 88–91.
494 <https://doi.org/10.26480/rfna.02.2021.88.91>

495 23. Fortune Business Insight. 2024. India dairy market size, share & COVID-19 impact analysis, by type (milk
496 (loose milk and packaged milk), cheese, butter, dairy deserts, milk powder, curd & yogurt, cream, and others)
497 and by distribution channel (supermarkets/hypermarkets, specialty retailers, online retail stores, and others),
498 2023-2030. [Cited 2024 July 15]. <https://www.fortunebusinessinsights.com/india-dairy-market-107416>

499 24. Balhara AK, Balhara S, Yadav PS. Buffaloes for nutritional secure and economically empowered rural India. In

500 Advances in Animal Experimentation and Modeling: Understanding Life Phenomena. INC. 2021.
501 <https://doi.org/10.1016/B978-0-323-90583-1.00002-7>

502 25. Chemlinked. 2020. Buffalo milk emerging as force in China's dairy market. [Cited 2024 July 20].
503 <https://food.chemlinked.com/news/food-news/buffalo-milk-emerging-as-force-in-chinas-dairy-market>

504 26. Philippine Council for Agriculture and Fisheries (PCAF). Module and Policy Dairy Industry in Philippine. 2022
505 [cited 2024 June 22] <https://pcaf.da.gov.ph/> Module and Policy Dairy Industry in Philippine

506 27. Sanchez ZG, Quilloy AJA, Carambas NDM, Arboleda MDM. Total factor productivity in dairy buffalo milk
507 production in Nueva Ecija , Philippines. JEMAD. 2020; 8(1).

508 28. Mohd Azmi AF, Ahmad H, Mohd Nor N, Goh YM, Zamri-Saad M, Abu Bakar MZ, Salleh A, Abdullah P,
509 Jayanegara A, Abu Hassim H. The impact of feed supplementations on asian buffaloes: A review. Animals.
510 2021; 11 Suppl 7; 2033. <https://doi.org/10.3390/ani11072033>

511 29. Gaafar HMA, Mohi El-din AMA, Basiuoni MI, El-Riedy KFA. Effect of concentrate to roughage ratio and
512 baker's yeast supplementation during hot season on performance of lactating buffaloes. Slovak J. Anim. Sci.
513 2009; 42 Suppl 4; 188-195.

514 30. Habib M, Islam M, Bari M, Islam M, Sarker M, Rashid, Islam M. Effect of concentrate supplementation during
515 transition period on production and reproduction of indigenous buffalo. Bangladesh J. Vet. Anim. Sci. 2020; 49
516 suppl 1: 83–90. <https://doi.org/10.3329/bjas.v49i1.49385>

517 31. Zhou D, Abdelrahman M, Zhang X, Yang S, Yuan J, An Z, Niu K, Gao Y, Li J, Wang B, Zhou G, Yang L, Hua
518 G. Milk production responses and digestibility of dairy buffaloes (*Bubalus bubalis*) partially supplemented with
519 forage rape (*Brassica napus*) silage replacing corn silage. Animals. 2021; 11(10).
520 <https://doi.org/10.3390/ani11102931>

521 32. Atzori AS, Valsecchi C, Manca E, Masoero F, Cannas A, Gallo A. Assessment of feed and economic efficiency
522 of dairy farms based on multivariate aggregation of partial indicators measured on field. J. dairy sci. 2021; 104:
523 12679–12692. <https://doi.org/10.3168/jds.2020-19764>

524 33. Palacpac EP, Valiente EM. Measuring efficiencies of dairy buffalo farms in the Philippines using data
525 envelopment analysis. J. Buffalo Sci. 2023; 12 Suppl 1: 1–15. <https://doi.org/10.6000/1927-520X.2023.12.01>

526 34. Topuz BK, Karabulut K. Technical efficiency of dairy buffalo farms: a case of Igdir Province, Turkey. Cust
527 Agronegocio. 2022; 18 Suppl 1: 229–249.

528 35. Yang TX, Wang F, Li H, Liu QS, Li QY. The nutrition of buffalo milk: A comparison with cow milk Adv Mat

529 Res. 2013; 781–784. <https://doi.org/10.4028/www.scientific.net/AMR.781-784.1460>

530 36. Habib MR, Haque MN, Rahman A, Aftabuzzaman M, Ali MM, Shahjahan M. Dairy buffalo production
531 scenario in Bangladesh: a review. *Asian J. Med. Biol. Res.* 2017; 3 Suppl 3: 305–316.
532 <https://doi.org/10.3329/ajmbr.v3i3.34518>

533 37. Sun Q, Lv JP, Liu L, Zhang SW, Liang X, Lu J. Comparison of milk samples collected from some buffalo
534 breeds and crossbreeds in China. *Dairy Sci. and Technol.* 2014; 94 Suppl 4: 387–395.
535 <https://doi.org/10.1007/s13594-013-0159-9>

536 38. Roy D, Ye A, Moughan, PJ, Singh H. Composition, Structure, and Digestive Dynamics of Milk From Different
537 Species—A Review. *Front. Nutr.* 2020; 7 Suppl 10: 1–17. <https://doi.org/10.3389/fnut.2020.577759>

538 39. Borghese A, Boselli C, Terzano GM. (n.d.). Planetary Impacts of Dairy Buffalo. 1–5.

539 40. Deb GK, Nahar TN, Duran PG, Presicce, GA. Safe and Sustainable Traditional Production . The Water Buffalo
540 in Asia. *Front. Env. Sci-Switz.* 2016; 4 Suppl 5: 1–7. <https://doi.org/10.3389/fenvs.2016.00038>

541 41. Sharma I, Arora K, Kumar S, Bhoi P, Vatta K. Global Trade Competitiveness of Indian Buffalo Meat: Trends
542 and Determinants. *Buffalo Bull.* 2023; 42 Suppl 1:105–124. <https://doi.org/10.56825/bufbu.2023.4214974>

543 42. Borghese A. Buffalo Production and Development. *Reu Technical Series* 67. 2005.

544 43. Buffalo meat production in Iran. 2025 [2025 February 16]. <https://www.tridge.com/intelligences/buffalo-meat/IQ>

545 44. Buffalo meat production in Turkey. 2025 [2025 February 20]. <https://data.tuik.gov.tr/Bulten/Index?p=Red-Meat-Production-Statistics-2022-49696&dil=2>

546 45. Buffalo Industry in Thailand. 2025. [2025 February 26]. <https://www.nationthailand.com/in-focus/30314907>

547 46. Kanloung T, Taemchuay D, Hengtrakunsin R, Tavitchasri P. The reproductive performances of murrah and
548 swamp buffaloes in Thailand. *Buffalo Bull.* 2021. 40 Suppl 3: 495–498.

549 47. Faiz A, Azmi M, Hassim HA, Nor NM, Ahmad H, Meng GY, Abdullah P, Bakar ZA., Vera J, Syahida N, Deli
550 M, Salleh A, Zamri-saad M. Comparative Growth and Economic Performances between Indigenous Swamp and
551 Murrah Crossbred Buffaloes in Malaysia. *Animals.* 2021; 11: 57.

552 48. Yore K, Gohain C, Tolenkhomba T, Singh N, Sarma K, Mayengbam P. (2018). Genetic Improvement of
553 Swamp Buffalo through Cross Breeding and Backcrossing with Riverine Buffalo. *Int. J. Livest.* 2018; 8 Suppl
554 5: 30. <https://doi.org/10.5455/ijlr.20180308100838>

555 49. Ünal EÖ, Işık R, Şen A, Kuş EG, Soysal Mİ. Evaluation of genetic diversity and structure of Turkish water
556 buffaloes. *Int. J. Livest.* 2018; 8 Suppl 5: 30. <https://doi.org/10.5455/ijlr.20180308100838>

558 buffalo population by using 20 microsatellite markers. Animals. 2021; 11 Suppl 4.
559 <https://doi.org/10.3390/ani11041067>

560 50. Nezhad R, Akhgar R, Shaviklo AR. Comparative study on physicochemical and sensory characteristics of two
561 traditional ghee made from buffalo and cow milk. Food. Tech. 2023; 47 Suppl 2:124-139.

562 51. Pena-Serna C, Restrepo-Betancur LF. Chemical, physicochemical, microbiological and sensory characterization
563 of cow and buffalo ghee. Food Sci. Technol. 2020; 40 Suppl 12: 444–450. <https://doi.org/10.1590/fst.32219>

564 52. Menard O, Ahmed S, Rousseau F, Briard-Bion V, Gaucheron F, Lopez C. Buffalo vs.cow milk fat globule: size
565 distribution, zeta-potential, compositions in total fatty acids and in polar lipids from the milk fat membrane.
566 Food Chem. 2010; 120:544–551. <https://doi.org/10.1016/j.foodchem.2009.10.053>

567
568
569
570
571
572
573
574
575
576
577
578

579 **Tables**

580

581 **Table 1. Buffalo populations in Asian countries in 2023**

583 Country	584 Buffalo population
585 Jordan	586 94
586 China Hong Kong	587 334
587 Armenia	588 727
588 Brunei Darussalam	589 1,209
589 Syria	590 6,564
590 Kazakhstan	591 9,452
591 Tajikistan	592 15,620
592 Georgia	593 19,384
593 Bhutan	594 55,413
594 Malaysia	595 64,733
595 Azerbaijan	596 119,900
596 Timor-Leste	597 127,352
597 Iran	598 132,644
598 Turkiye	599 171,835
599 Iraq	600 251,194
600 Sri Lanka	601 324,870
601 Cambodia	602 674,681
602 Thailand	603 735,248
603 Laos	604 1,208,634
604 Bangladesh	605 1,508,000
605 Myanmar	606 2,000,000
606 Vietnam	607 2,231,600
607 Philippines	608 2,774,471
608 Nepal	609 5,132,931
609 China Mainland	610 26,872,877
610 Pakistan	611 43,676,000
611 India	612 111,856,246

613 **Table 2. Buffalo distributions and growth rates across Asian regions in 2022**

617 Region	618 Population	619 Growth Rate (%)
620 Southeast Asia	621 10,988,136	622 0.8
621 Eastern Asia	622 26,875,125	623 -2.27
622 South Asia	623 162,686,104	624 3.16
623 Whole Asia	624 201,144,135	625 0.57
624 World	625 205,141,830	626 0.57

626

627

628 **Table 3. Buffalo milk production between 2019 and 2022**

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 Region	630 Milk Production (Thousand Tonne)			631 Average Annual 632 2022	633 Growth Rate (%)
	634 2019	635 2020	636 2021		
Southeast Asia	223.23	222.16	221.25	222.50	-0.08
South Asia	132,140.44	132,642.38	144,504.06	138,690.57	1.21
West Asia	121.70	108.37	109.71	88.86	-7.56
East Asia	3,027.92	3,002.19	2,980.75	3,010.43	-0.14
Whole Asia	135,513.29	135,975.10	147,815.76	142,012.35	1.18
World	137,019.25	137,530.06	149,445.81	143,573.18	1.18

647 **Table 4. Comparative milk compositions of buffalo and cow milk**

648 649 Constituent	648 Buffalo milk	649 Cow milk
Total solids (%)	18.44 ± 0.71	11.81 ± 0.33
Lactose (%)	4.82 ± 0.15	4.28 ± 0.14
Protein (%)	4.91 ± 0.10	3.06 ± 0.06
Fat (%)	7.76 ± 0.48	3.35 ± 0.31
Solid Non-Fat (%)	10.52 ± 0.25	8.41 ± 0.42

650 Reproduced from [35, 36]

651

652 **Table 5. Amino acid content (g/100 g protein) of milk from different buffalo breeds**

Amino Acids	Buffalo Breeds	
	(Abdel-Hamid et al., 2023)	(Sun Q et al., 2014)
Aspartic acid	6.17 ± 0.22 - 7.0 ± 0.7	5.71 ± 0.17 - 7.2 ± 0.1
Methionine	2.30 ± 0.13 - 2.51 ± 0.2	2.15 ± 0.11 - 2.58 ± 0.1
Threonine	3.66 ± 0.19 - 4.19 ± 0.3	3.37 ± 0.17 - 4.21 ± 0.31
Serine	4.34 ± 0.21 - 4.65 ± 0.3	3.98 ± 0.18 - 4.76 ± 0.2
Valine	4.98 ± 0.22 - 5.84 ± 0.5	4.59 ± 0.20 - 5.84 ± 0.6
Phenylalanine	4.24 ± 0.29 - 4.34 ± 0.2	3.66 ± 0.12 - 4.41 ± 0.1
Leucine	3.72 ± 0.58 - 9.52 ± 0.6	3.52 ± 0.33 - 9.51 ± 0.6
Tyrosine	4.34 ± 0.22 - 4.87 ± 0.3	3.92 ± 0.16 - 5.03 ± 0.1
Lysine	5.78 ± 0.14 - 7.61 ± 0.5	5.73 ± 0.21 - 7.67 ± 0.1
Proline	8.66 ± 0.42 - 9.74 ± 0.5	8.29 ± 0.24 - 9.64 ± 0.2
Arginine	2.26 ± 0.09 - 2.74 ± 0.2	2.06 ± 0.02 - 2.78 ± 0.1
Histidine	2.02 ± 0.11 - 2.51 ± 0.2	1.83 ± 0.19 - 2.51 ± 0.1
Glycine	1.58 ± 0.14 - 1.74 ± 0.1	1.45 ± 0.09 - 1.8 ± 0.1
Alanine	2.65 ± 0.16 - 2.97 ± 0.2	2.40 ± 0.10 - 2.99 ± 0.1
Isoleucine	4.28 ± 0.21 - 5.33 ± 0.3	4.08 ± 0.18 - 5.43 ± 0.1
Glutamic acid	19.41 ± 0.6 - 20.18 ± 0.79	18.53 ± 0.57 - 19.69 ± 0.6

653 The data was adapted from [16, 37]
654

655 **Table 6. Fatty acid (%) profile of buffalo milk**

656

Fatty Acids	Dairy Buffalo		
	(Menard et al., 2010)	(Abdel-Hamid et al., 2023)	
C4:0	2.8 ± 0.5	1.83 ± 0.2	
C6:0	1.9 ± 0.3	0.92 ± 0.3	
C8:0	1.1 ± 0.2	0.64 ± 0.1	
C10:0	1.8 ± 0.3	1.5 ± 0.2	
C11:0	-	0.05 ± 0.0	
C12:0	2.3 ± 0.2	2.16 ± 0.2	
C13:0	-	0.08 ± 0.0	
C14:0	11.8 ± 0.2	10.4 ± 1.3	
C14:1	0.7 ± 0.01	0.79 ± 0.1	
C15:0	1.74 ± 0.08	1.08 ± 0.1	
C15:1	-	0.26 ± 0.0	
C16:0	36.0 ± 1.2	31.7 ± 1.8	
C16:1	1.9 ± 0.02	2.07 ± 0.2	
C17:0	0.8 ± 0.02	0.54 ± 0.0	
C17:1	-	0.26 ± 0.0	
C18:0	9.9 ± 0.2	14.23 ± 1.0	
C18:1	20.3 ± 0.7	27.22 ± 1.7	
C18:2T	-	0.87 ± 0.1	
C18:2C	0.9 ± 0.1	1.70 ± 0.1	
C18:3N6	-	0.14 ± 0.0	
C20:1	-	1.59 ± 0.1	
C18:3N3	0.7 ± 0.2	0.28 ± 0.0	
C20:2	-	0.06 ± 0.0	
C20:3	-	0.07 ± 0.0	
C20:4	-	0.06 ± 0.0	
C22:0	-	0.1 ± 0.0	
C20:5	-	0.03 ± 0.0	
C22:2	-	0.05 ± 0.0	
C24:0	-	0.08 ± 0.0	
C24:1	-	0.03 ± 0.0	
C22:5N3	-	0.03 ± 0.0	
USFA	-	36.155 ± 1.8	
SFA	69.6 ± 1.7	64.561 ± 2.3	

657 The data was resources from [37,52]

658

659

660

661
662

Figures 1 Certain types of buffaloes in Asia

663
664

665
666

667
668
669
670
671
672
673
674

Figure 1: Variation of morphological and breeds in Asian water buffalo. (A) Shanghai swamp type of buffalo (China); (B) Toraja Spotted swamp type of buffalo (Indonesia); Caraboa swamp type of buffalo (Philippines); (D) Nili-Ravi riverine type of buffalo (Pakistan); (E) Murrah riverine type of buffalo (Malaysia); (F) Murrah riverine type of buffalo (India). Images credits- (A) Zhang, (B) Sam Clark, (C) Boghese, (D) Md Omar Faruque, (E) Fadzlin Afiqah, (F) Yi Zhang