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Meta-analysis of the effects of organic and inorganic zinc supplementation on performance traits and

diarrhea incidence in suckling calves

Abstract

This meta-analysis aimed to investigate and compare the effects of organic and inorganic zinc supplementation on
performance traits and diarrhea incidence in suckling calves. A comprehensive literature search identified 15 eligible
studies (published between 2019 to 2024), providing data for 44 comparisons on body weight (BW), 70 on average
daily gain (ADG), 66 on total dry matter intake (TDMI), 34 on starter intake, 53 on feed conversion ratio (FCR), and
34 on diarrhea incidence. A multilevel random-effects model was employed to estimate the effect size of zinc
supplementation, with the effect size expressed as the standardized mean difference (SMD). Publication bias was
assessed using funnel plots and Egger's test. Data from the 15 selected studies were analyzed using Stata software
(version 18), and heterogeneity among studies was evaluated using the Q- test and the I-squared (12) statistic. The
results demonstrated that both organic (SMD = 0.64, p <.0.05) and inorganic (SMD = 0.72, p < 0.05) zinc significantly
improved ADG in suckling calves. The highest BW was observed in calves supplemented with organic zinc (SMD =
0.58, p < 0.05). Organic zinc also significantly increased starter intake compared to inorganic zinc (SMD = 0.40, p <
0.05). Both forms of zinc increased TDMI in suckling calves (p < 0.05). A significant reduction in diarrhea incidence
(measured as percentage of diarrheic calves in-each group) was observed with both zinc sources (p < 0.05).
Multivariate meta-regression analysis showed that experimental duration and zinc supplementation method were
significant sources of heterogeneity for starter intake, ADG, and FCR (p < 0.05).

In conclusion, this meta-analysis suggests that organic zinc supplementation has a more profound effect on improving
performance traits in pre-weaning suckling calves compared to inorganic zinc sources. Additionally, zinc
supplementation (regardless of form) effectively reduces diarrhea incidence in suckling calves. These findings
underscore the importance of ensuring adequate zinc levels in the diets of calves to support gastrointestinal health and
overall performance.

Keywords Dairy calves, Diarrhea incidence, Meta-analysis, Performance traits

INTRODUCTION
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Successful dairy cattle farming requires meticulous management of suckling calves, with nutrition playing a pivotal
role during this critical period [1]. The preweaning period is a vulnerable stage during which calves face challenges
due to a nascent immune system and an immature gastrointestinal tract [2], making them susceptible to gut microbial
imbalances and gastrointestinal infections. In the context of suckling calf nutrition, the utilization of minerals,
particularly trace minerals, is highly important. Although trace minerals constitute less than 0.01% of an animal's body
weight, they are crucial for cellular function [3]. Furthermore, deficiencies in these elements are more prevalent in
young ruminants [3]. Deficiencies in trace minerals such as zinc, copper, manganese, and selenium are commonly
observed in young ruminants. Given that animals cannot store substantial amounts of these minerals, daily intake
through the diet is essential [4]. Zinc, a crucial trace element, is involved in various metalloenzymes and activates
more than 300 different enzymes in animals [5]. It is a critical mineral for the health and productivity of young calves,
as it is essential for metabolism, growth, immune function, and antioxidant status [6]. Zinc deficiency can impair the
production and secretion of growth hormone and insulin-like growth factor-1 (IGF-1) [7]. Zinc plays a role in
numerous biological processes and is recognized as an effective anti-inflammatory and antidiarrheal agent [8].
Diarrhea is a leading cause of calf mortality, particularly in the first two weeks of life, resulting in antibiotic use and
economic losses for dairy farms [9]. In recent years, zinc has been used as an anti-diarrheal agent in infants and
children [10]. Moreover, zinc functions as a structural component in enzymes, a proton donor at the active site, and
an atomic bridge between the substrate and enzyme [11]. It also participates in over 200 enzyme functions related to
DNA synthesis, mitosis, cell division, protein synthesis, and carbohydrate metabolism [12]. According to standard
nutritional tables, growing calves require approximately 33 mg of zinc per kg of dietary dry matter [1]. The National
Research Council [13] recommends 70 mg Zn kg™ DM for growing calves aged 30 days. However, given that cow
milk contains only 3-5 mg Zn kg, daily milk consumption may not meet the zinc requirements of suckling calves,
potentially leading to reduced appetite, nutrient intake, and growth [14]. Nevertheless, the most critical determinant
of zinc requirements in living organisms is the concentration of zinc in the soil and plants of a given region [14]. Zinc
levels in surface soils in Iran have been reported to be less than 0.8 mg/kg [15]. Consequently, plants grown in these
soils are zinc-deficient and, when consumed as animal feed, can lead to a wide range of adverse effects in livestock,
including growth abnormalities [16]. To ensure that growing animals achieve their genetic potential for performance
and health, zinc is often supplemented in the diets of animals in zinc-deficient regions. Currently, both inorganic and

organic zinc sources are used in human and animal nutrition. Compared with inorganic sources, organic zinc sources,



56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

particularly zinc-methionine, have been shown to have greater bioavailability and utilization in ruminants [17].
Numerous studies have investigated the positive effects of zinc supplementation in growing calves. Inorganic zinc
sources, such as zinc oxide [18] and zinc sulfate [19], have been shown to increase growth, strengthen the immune
system, and reduce diarrhea symptoms in suckling calves. Seifdavati et al [20] reported that nano zinc oxide
supplementation at 30 and 60 mg/kg of dietary dry matter improved weight gain in suckling calves. In a study by Ma
et al [21], organic zinc (zinc proteinate) supplementation resulted in significantly greater body weights and an
improved feed conversion ratio in preweaning calves than did inorganic zinc (zinc oxide). The percentage of diarrhea
incidence was also lower in calves supplemented with zinc proteinate. Wright and Spears [22] reported that zinc
deficiency in calves led to reduced appetite, feed intake, growth rate, and feed efficiency. Nagalakshmi et al [23]
reported that zinc proteinate supplementation decreased lipid peroxidation and enhanced humoral immunity and
superoxide dismutase activity in lamb red blood cells. Research indicates that supplementing 80 mg of zinc per calf
daily in the first two weeks of life stimulates growth, enhances immune function, and reduces diarrhea symptoms in
suckling calves [19]. The anti-diarrheal effect of zinc has been attributed to improved immune function, reduced
pathogenic bacteria populations, and increased beneficial bacteria in the gastrointestinal tract [24]. Despite these
studies, the results comparing organic and inorganic zinc sources are inconsistent, with some studies showing no
difference in bioavailability [24]. Meta-analysis is a systematic review of quantitative studies based on statistical and
mathematical principles. Combining the results of various studies on a common topic provides a more accurate and
reliable estimate than individual studies do [22]. This study aimed to compare the effects of organic and inorganic

zinc supplementation on performance traits and diarrhea incidence in pre-weaning suckling calves.

MATERIAL AND METHODS

Meta-analysis sources

The data sources for this meta-analysis consisted of published articles related to the utilization of organic and inorganic
zinc sources in the diets of suckling calves, specifically those published from 2019 to 2024. The study population
included articles published in both Iranian domestic databases (Irandoc, Scientific Information Database [SID],
Magiran) and international databases (Scopus, Google Scholar, Web of Science, and PubMed). A systematic literature

search was conducted using Persian keywords and their English equivalents, combined in various permutations. The

key search terms included: “zinc,” “inorganic zinc supplement,” v v

organic zinc supplement,” “minerals,” “suckling
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calves,” “performance,” “growth,” “dairy calves” “dry matter intake,” “average daily gain,” “body weight,” and

“diarrhea incidence”. Google Scholar was searched for up to the first 10 pages of results.

Inclusion and exclusion criteria

Search results from both Persian and English language databases were collected in EndNote software (version 9), and
duplicate articles were subsequently removed. Articles found from the search were then included or excluded from
the study based on the following criteria: Inclusion Criteria: (1) Articles published in peer-reviewed journals in Persian
or English ; (2) Studies that involved the use of organic and inorganic zinc supplementation in suckling calves; (3)
Studies with both a treatment group (zinc supplemented) and a control group (no zinc supplementation); (4) Studies
providing sufficient data (mean, standard deviation [SD], or standard error [SE] for at least one relevant trait (e.qg.,
grow performance, diarrhea incidence. The exclusion criteria included: (1) Studies lacking quantitative data on zinc
supplementation or relevant outcome; (2) Studies with data pertaining to non-suckling calves; (3) Studies in which
zinc supplementation was combined with other elements; (4) Review articles, conference abstract, or studies without

full-text availability.

Data extraction

The following variables were extracted from each study: first author, publication year, zinc dosage, calf sex,
experimental duration, zinc source, and methods of zinc supplementation in milk and starter (Table 1). Additionally,
the mean and SD of the studied traits for both the treatment and control groups were extracted (Table 2). The extracted
parameters included total dry matter intake (TDMI), average daily gain (ADG), final body weight (BW), starter intake,
the feed conversion ratio (FCR), and diarrhea incidence (percentage of diarrheic calves in each group) in suckling
calves. After screening, 15 studies met the eligibility criteria and were included in the meta-analysis. The PRISMA
flow diagram, illustrating the initial search, screening, and final selection of articles for inclusion in the meta-analysis,
is depicted in Fig 1. The number of comparisons made for BW, ADG, starter intake, TDMI, FCR, and diarrhea

incidence in this meta-analysis were 44, 70, 34, 66, 53, and 34, respectively.

Effect size calculation
In the present study, given the continuous nature of the data, Hedges's g index (Equation 1) and SMD (Equation 2)

and were employed to calculate the effect size.
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In this equation, g represents the effect size, Xs is the mean of the experimental group, Xn is the mean of the control

group, Sp is the pooled standard deviation, and J is the bias correction factor for the two groups.

SMD= (Xe-Xc)/S Eq (2)

In this equation, SMD = Effect size, Xe = Mean of the experimental group, Xc = Mean of the control group, S =
Standard deviation.

For studies reporting separate SD for the control and experimental groups, Equation 3 was used. For studies reporting

the Standard Error of the Mean (SEM), Equation 4 was used to calculate the pooled standard deviation.

I 2 122 Eq (3)
S |(ng—1)5DF +(ny —1)50F
I ng+ny —2123

In Equation 3, Sp is the pooled standard deviation, ns represents the number of experimental units in the experimental
group, nN represents the number of experimental units in the control group, SDs represents the standard deviation of

the experimental group, and SDn represents the SD of the control group [26].

Sp = SEM x vnp Edq (4)

In Equation 4, Sp is the pooled standard deviation, SEM represents the SD of the mean for all groups, and n, represents

the total number of experimental units in the control and experimental groups [26].

Weighting of Study Data
Studies were weighted to determine the contribution of each study to the final results basis on study quality, including

higher replication numbers and smaller variances, via Equation 5 [27].

1

vari

Eq (5)

In Equation 5, var; represents the variance of the study, and Wi represents the weight assigned to that study.

Quality assessment
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Two independent investigators assessed methodological quality using the Cochrane Risk of Bias tool version 2 (RoB2)
[28]. The following potential bias were evaluated: (D1) Bias arising from the randomization process, (D2) Bias due
to deviations from intended interventions, (D3) Bias due to missing outcome data, (D4) Bias in measurement of the
outcome, (D5) Bias in selection of the reported result. Each article was classified as being at low risk of bias indicated
by a plus (+), unclear risk of bias by a minus (—) or high risk of bias by cross (x) according to the assessment details

for risk of bias presented above.

Heterogeneity testing

Heterogeneity (Cochran's Q test) of the effect size variability across studies, attributed to interstudy differences, was
assessed via the Q statistic (Equation 6) at a significance level of a = 0.1. In meta-analyses with limited study
replication, where the Cochran's Q test may exhibit low sensitivity, heterogeneity was further evaluated using the 12
statistic. 12 values of 0 indicate no heterogeneity, values between 25 and 50 indicate moderate heterogeneity, and
values greater than 50 indicate high heterogeneity amongstudies. To identify further sources of heterogeneity, it was

necessary to perform meta-regression or subgroup analysis [29].

2o eten  dsy Eq 6)
? 153

In Equation 6, Q represents the chi-square heterogeneity statistic (Cochran's Q), and K represents the number of studies.

Subgroup analysis
To investigate the overall effect of zinc sources on the performance of suckling calves, as well as the effect size of

organic and inorganic zinc sources on the traits under study, subgroup analysis was employed. To enhance the depth
and precision of the current meta-analysis, comprehensive subgroup analyses were conducted. These analyses were
performed based on several key factors to more accurately differentiate the effects of various variables on the overall
meta-analysis results. Specifically, studies were categorized and examined according to trial duration, classifying them
into two groups: < 28 days and > 28 days. Furthermore, the impact of zinc on performance traits was analyzed
separately based on the sex of the calves, considering three distinct groups: male, female, and mixed (male + female).
The various dosages of zinc supplementation were also meticulously analyzed, with doses grouped into three levels:

< 40, >40 and < 80, and >80 mg Zn kg* DM per day. In addition, a detailed comparison was made regarding the
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efficacy of organic versus inorganic zinc forms. Finally, the method of zinc supplementation, whether via milk or
starter feed, was evaluated for its influence on the performance traits and the incidence of diarrhea in calves. This
subgroup approach allows for a deeper understanding of how zinc impacts the performance of suckling calves and
significantly contributes to identifying the factors that influence its effectiveness, depending on the specific conditions

of each study.

Multivariate meta-regression
To identify heterogeneity sources, multivariate meta-regression ("meta reg" command) was performed for
confounding factors (sex, dose, Zn source, supplementation method, experimental duration). Forest plots were

generated ("meta forest plot" command).

Dose-Response

A dose-response meta-regression was conducted to investigate the relationship between zinc dose and performance
traits and diarrhea incidence in dairy calves. This analysis specifically examined how the response changed across the

20 to 120 mg range of zinc supplementation.

Publication bias

To assess publication bias, a funnel plot was generated. A funnel plot is a method for detecting publication bias, and
is based on the principle that the statistical weight of a study increases with its sample size. Therefore, studies with
small sample sizes are widely dispersed at the bottom of the plot, whereas studies with large sample sizes are located
at the top of the plot, closer to the mean effect. In the presence of bias, the funnel plot becomes asymmetrical. To test

for asymmetry in the funnel plot, Egger's test was used with a significance level of 0.05.

Sensitivity Analyses

To assess the stability and robustness of the primary meta-analysis results, a supplementary sensitivity analysis was
conducted. In this analysis, only the treatment arm containing the highest level of zinc supplementation (mg/kg DM)
from each study was included, and its results were compared with the corresponding control group. This approach

was adopted to evaluate whether the effects observed in the initial meta-analysis were predominantly driven by the
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strongest zinc interventions across studies, and whether the inclusion of lower zinc levels had diluted the overall

findings.

Statistical analysis

The results obtained from this meta-analysis are presented in forest plots, containing key information, such as the
overall effect size, SE, and 95% confidence interval (Cl), as well as the effect size, SE, and 95% CI for each individual
study. The weight of each study was represented by the area of a square centered on the mean effect size of that study,
with the size of the square indicating the weight assigned to that study in the final analysis. For data analysis,
STATA/MP 18.0 software was used, employing a random-effects model to estimate the effect size, 95% CI, and
statistical significance for each trait. This model was chosen because it is‘more conservative than the fixed-effects
model [30-31]. The effect size of zinc supplementation was expressed as the SMD. The SMD values were interpreted
as follows: SMD < 0.2 indicated a small effect, 0.2 < SMD < 0.7 indicated a moderate effect, and SMD > 0.7
represented a large effect [32]. Additionally, an SMD with a p-value < 0.05 was considered statistically significant.
We applied a multilevel random-effects model to the collected data to accounts for multiple effect sizes derived from
individual studies (i.e., when a single control group was compared with several treatment groups within the same
publication). This multilevel random effect modeling approach is the most suitable for such datasets, as it
accommodates dependencies arising from multiple effect sizes within a single study [35]. The multilevel framework
accounts for the hierarchical structure of the data, incorporating variance at different levels, including within-study
and between-study variability. Effect sizes from the same study were treated as nested within a higher-level cluster,
rendering this method particularly effective for addressing substantial between-study heterogeneity. By explicitly
modeling these variance components, the multilevel meta-analysis approach enhances the precision of treatment effect
estimates and facilitates the exploration of potential sources of heterogeneity [34]. Additionally, this model enables
the quantification of variation across studies and levels, the estimation of the pooled effect size, and the examination
of potential moderators or confounding factors that may explain heterogeneity [34]. The analysis employed the
SMD as the effect size metric, which represents a widely used statistical technique in meta-analysis for synthesizing

results from studies with differing measurement scales [33].
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RESULTS
Study selection workflow and risk of bias assessment

The article searches and selection process is detailed in Fig 1. A total of 459 articles were initially identified from the
target databases for screening. After removing 121 duplicate studies and 226 studies that did not meet the inclusion
criteria (including studies on non-dairy calves, review articles, articles with only abstracts available, those involving
zinc supplementation mixed with other additives, and articles lacking relevant production data), we retained 112
articles for full-text review. Following a thorough full-text evaluation based on predefined protocols, we excluded an
additional 97 articles. Thus, 15 eligible articles were included in the final meta-analysis. The extracted data from these
studies, comprising study name, publication year, breed, number of calves per treatment, trial duration, zinc dosage,
calf sex, and supplementation method (milk or starter feed), are summarized in Table 1. Additionally, Table 2 presents
the mean + SD values for all investigated traits in both control and zinc-supplemented groups. The risk of bias

assessment for each included study is shown in Fig 2.

The assessment results indicated that the risk of bias associated with the randomization process and deviations from
intended interventions was low in more than 90% of the studies. This demonstrates the high quality of the design and
execution of these studies in these two domains. Regarding bias due to missing outcome data, 65-70% of studies had
a low risk of bias, while 20-25% raised "some concerns," and about 5-7% showed a "high risk of bias" for this domain.
These results highlight the need for cautious interpretation when working with missing data. Furthermore, over 90%
of studies had a low risk of bias in outcome measurement, and 65% of studies demonstrated a low risk of bias in

reporting result selection.

Effect of Zinc Supplementation on Performance Traits
Forest plots demonstrating the effects of zinc supplementation (organic vs. inorganic forms) on starter intake, TDMI,

ADG, BW, and FCR are presented in Figs 3, 4, 5, 6, and 7, respectively.

Starter Intake

A multilevel random effects model was employed to estimate the SMD for starter intake in dairy calves. The analysis
revealed a moderate SMD of 0.29 (95% CI: 0.11-0.47) (Fig 3, Table 4), indicating a statistically significant difference

in starter intake between control calves and those receiving zinc supplementation (p < 0.05). As shown in Fig 3, the
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inorganic zinc form demonstrated no significant effect on starter intake in dairy calves (SMD = 0.17, p = 0.20,
1°=19.81%). However, the use of the organic form of zinc had a positive and moderate effect on starter intake, leading

to an increase compared to the control group (Fig 3, SMD = 0.40, p < 0.05, 1°=14.39%).

Total Dry Matter Intake

The mean SMD for TDMI, estimated using the multilevel random effects model, was 0.27 (95% CI: 0.14-0.41; p <
0.05; Table 4). Both organic (Fig 4, SMD = 0.24, p < 0.05, 1>=33.30%) and inorganic zinc (Fig 4, SMD = 0.32, p <

0.05, 12=32.33%) supplementation significantly enhanced TDMI in dairy calves.

Average Daily Gain

Seventy comparisons were used to evaluate the effect of zinc supplementation on ADG in dairy calves. The multilevel
random effects model results indicated a positive effect of zinc supplementation on ADG (SMD = 0.67, 95% CI: 0.53-
0.82, p < 0.05) (Fig 5). Both inorganic (Fig 5, SMD = 0.72, p'< 0.05, 12=11.18%) and organic zinc (Fig 5, SMD =

0.64, p < 0.05, 12=50.69%) significantly improved ADG in dairy calves.

Body Weight

The forest plot illustrating the effect of organic and inorganic zinc sources on BW in dairy calves is shown in Fig 6.
The multilevel random effects model results indicated a positive and moderate effect of zinc supplementation on BW
(SMD = 0.42, 95% CI: 0.25-0.59) (Fig 6, Table 4), with a statistically significantly between control calves and zinc
supplemented calves (p < 0.05). As shown in Fig 6, both organic and inorganic zinc supplementation significantly

enhanced BW, with effect sizes of +0.58 (95 % ClI: 0.32-0.84) and +0.27 (0.07-0.46), respectively (p < 0.05).

Feed Conversion Ratio

Figure 7 presents the results of 53 statistical comparisons between treated and control groups regarding the effect of
zinc supplementation on FCR. Based on the multilevel random effects model, the SMD for FCR was negative and
moderate (SMD = -0.63, 95% ClI: -0.80, -0.47) between control calves and those receiving zinc supplementation,
indicating that zinc supplementation reduced FCR in dairy calves (Table 4, p < 0.05). Compared to the inorganic zinc
form (Fig 7, SMD = -0.50, p < 0.05, 12=28.66%), the use of organic zinc supplementation (Fig 7, SMD = -0.79, p <

0.05, 12=31.63%) had a significantly greater effect on reducing the feed conversion ratio.
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Heterogeneity and Publication Bias

12 values below 25% for starter intake (Fig 3) and between 25-50% for TDMI (Fig 4) indicate low and moderate
heterogeneity, respectively. The symmetric distribution of all studies around the effect size in the funnel plot suggests
an absence of publication bias for the studies included in the meta-analysis for starter intake (Fig 9.A) and TDMI (Fig
9.B). Additionally, Egger's test confirmed the symmetry in the funnel plot for both starter intake and TDMI (Table 6).
For ADG, 12 values ranged between 25-50%, indicating moderate heterogeneity. The asymmetrical distribution of all
studies around the effect size in the funnel plot (Fig 9.C) suggests potential publication bias for the ADG data extracted
from the included studies. This finding was further supported by a statistically significant (p < 0.05) Egger's test for
publication bias (Table 6). The 12 test revealed moderate heterogeneity in the results for BW (12=35.51%, Q=42.58, p
< 0.05). The symmetric distribution of all studies around the effect size for BW indicated no publication bias, and
Egger's test results also supported this conclusion (Table 6, p = 0.37).. For FCR, the 12 value was 32.67%, indicating
moderate heterogeneity (Fig 7). The asymmetrical distribution of all studies around the effect size for FCR in the
funnel plot (Fig 9.E) suggests possible publication bias in the included studies. This was further confirmed by a

significant (p < 0.05) Egger's test for asymmetry (Table 6).

Multivariate Meta-Regression

The selected moderators, such as zinc dosage, sex, and zinc source, did not significantly affect the starter intake of
calves receiving zinc supplementation (Table 3). However, both trial duration and the method of zinc supplementation
(added to milk or starter) significantly influenced starter intake in dairy calves (p < 0.05) (Table 3). Meta-regression
analysis revealed that the method of zinc supplementation marginally improved. TDMI in dairy calves (Table 3, p =
0.07). In contrast, other investigated moderators, including zinc dosage (p = 0.45, 95% CI: -0.003, 0.007), calf sex (p
=0.46, 95% ClI: -0.44-0.20), and zinc source (p = 0.37, 95% CI: -0.13-0.43), did not significantly influence the TDMI
of dairy calves (Table 3).

Meta-regression results showed that zinc dosage (p = 0.63) and zinc source (p = 0.35) as moderators did not
significantly affect the ADG of dairy calves (Table 3). Conversely, the method of zinc supplementation was identified
as a significant moderator (p < 0.05), and while calf sex showed a trend toward significance (p = 0.08). Meta-regression
analysis revealed that moderators such as zinc source, dosage, sex, and trial duration were not significant sources of

heterogeneity for the BW of dairy calves (Table 3). However, the method of zinc supplementation was identified as a
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source of heterogeneity for calf body weight (Table 3). Meta-regression results indicated that, among the moderators,
the method of zinc supplementation significantly affected the FCR (p < 0.05), while other moderators had no

significant effect on FCR (Table 3).

Subgroup Analysis

Subgroup analyses were performed by classifying studies based on dosage, sex, trial duration, and zinc
supplementation method (added to milk or starter) (Table 4). The SMDs for starter intake, TDMI, ADG, BW, and
FCR across different subgroups are presented in Table 4. The subgroup analysis revealed several notable findings.
Specifically, zinc supplementation added to milk at a dose exceeding 80 mg Zn kg DM significantly improved starter
intake (p < 0.05). Moreover, this effect was more pronounced in female calves when zinc was administered in milk.
Furthermore, adding zinc supplementation at a dose exceeding 80 mg Zn kg* DM had a positive and moderate effect
size on the TDMI of calves (p < 0.05). This effect was higher in_male calves that received zinc supplementation in
milk compared to the control group (p < 0.05). The results of the subgroup analysis for ADG and BW indicated that
including zinc supplementation at a dose of 40-80 mgZn kg2 DM in milk had the greatest impact on the ADG of
female calves (p < 0.05). Consistent with ADG, zinc supplementation at a dose > 40 and < 80 mg Zn kg DM in milk
also had the greatest effect on the body weight of female calves during trial periods > 28 days (p < 0.05). The subgroup
analysis for FCR showed that zinc supplementation in milk at a dose greater than 80 mg Zn kg™ DM significantly

reduced FCR in female calves.

Interaction Effect of Zinc Source x Dosage and Sensitivity Analysis

The results regarding the interaction effect of dosage x zinc source on the performance traits of dairy calves are
presented in Table 5. According to Table 5, the interaction effect of dosage and zinc source did not significantly affect
performance traits. To evaluate the impact of each study individually and the stability of the study results, a sensitivity
analysis was performed by sequentially removing each study and considering the highest level of zinc supplementation,
then estimating the overall effect of the remaining studies (Table 7). The findings from the sensitivity analysis
provided strong evidence for the stability and reliability of the meta-analytical results regarding the efficacy of organic
and inorganic zinc supplements in improving performance traits in dairy calves. As a result, all pooled estimates fell
within the range of the overall effect (Table 7), indicating both low sensitivity and high stability in the results of this

meta-analysis.
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Relationship Between Performance Traits and Zinc Supplementation

In examining the relationship between performance traits and zinc dose, zinc supplementation was considered the
independent variable, and calf performance indicators (including starter intake, TDMI, ADG, BW, and FCR) were
investigated as dependent variables. The results showed a quadratic relationship between the adjusted performance
indicators (starter intake, ADG, BW, and FCR) and zinc supplementation level (Fig 10). Maximum starter intake (Fig
10.A) and TDMI (Fig 10.B) were achieved at zinc level exceeding 80 mg Zn kg™ DM. In contrast, maximum ADG
and BW were observed at zinc level between > 40 and < 80 mg Zn kg™ DM (Figs 10.C and 10.D, respectively).
Notably, with increasing zinc dose (> 80 mg Zn kg™ DM), ADG exhibited a decreasing trend. With increasing zinc

dose (> 80 mg Zn kg DM), the FCR of dairy calves showed an increasing trend (Fig 10.E).

Effect of Zinc Supplementation on Diarrhea Incidence

In this meta-analysis, the incidence of diarrhea was defined as the percentage of calves affected by diarrhea in both
control and zinc-supplemented groups. Based on the multilevel random effects model, the SMD for the incidence of
diarrhea in dairy calves was estimated to be -0.95 (95% ClI:-1.17, -0.74), indicating a substantial effect of zinc
supplementation in reducing the occurrence of diarrhea in dairy calves. An 12 value of 32.67% suggests moderate
heterogeneity (p = 0.01). The asymmetry of studies around the effect size for the incidence of diarrhea in the funnel
plot (Fig 9.F) indicates the presence of publication bias among the studies included in the meta-analysis. Egger's test
also confirmed significant publication bias for diarrhea incidence (p < 0.05) (Table 6). Meta-regression analysis
showed that the method of zinc supplementation significantly influenced on the incidence of diarrhea in dairy calves
(p <0.05). However, no significant relationship was observed between the moderators (including trial duration, dosage,
zinc source, and sex) and zinc supplementation (Table 5).

The results from subgroup analyses (summarized in Table 4) revealed several significant differences in diarrhea
incidence across various categories. Regarding dose subgroup categorization zinc levels between > 40 and < 80 mg
Zn kgt DM showed the greatest effect on reducing diarrhea incidence in dairy calves (p < 0.05). In trials duration
exceeding, >28 days, zinc supplementation had a strong negative effect on diarrhea incidence (p < 0.05). Additionally,
our subgroup analysis indicated that adding zinc supplementation to milk (compared to starter feed) significantly
reduced the incidence of diarrhea in studies that included a combination of male and female calves (p < 0.05). The

zinc source x dosage interaction did not significantly affect diarrhea incidence in dairy calves. When individual studies
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were removed sequentially, and the highest level of zinc consumption was considered, all remaining studies fell within
the range of the overall effect. This indicates that the results of the meta-analysis have low sensitivity and high stability
(Table 7). The relationship between the dose of zinc supplementation in dairy calf diets and the SMD for diarrhea
incidence in dairy calves is shown in Fig 10.F. The meta-regression analysis revealed a quadratic relationship between
the dose and the effect size of diarrhea incidence. This relationship suggests that at lower doses, increasing dietary
zinc leads to a reduction in diarrhea incidence, but after an optimal point (a dose of 80 mg Zn kg™ DM), further

increases in zinc may have a less significant reducing effect or could even lead to an increase in diarrhea incidence.

DISCUSSION

Performance Traits
The present meta-analysis aimed to systematically evaluate how zinc sources affect calves during the critical pre-

weaning stage, which is essential for their subsequent growth and productivity. For example, an increase in starter

intake can reshape the rumen fermentation profile, leading to changes in the proportions of volatile fatty acid (VFA)
proportion and increased butyrate concentration [36]. Notably, butyrate is more efficiently produced from concentrate
fermentation than from compared to roughage, and its key role in stimulating the development of the rumen mucosa
[37]. Once the starter is consumed and fermented in the rumen, butyrate is absorbed and transformed into beta-
hydroxybutyrate (BHBA) before entering the bloodstream [36]. In addition to meeting the physiological needs of the
animal, zinc supplementation provides benefits for feed efficiency and gastrointestinal health at specific life stages.
Consistent with the results of the present study, Wright and Spears [22] reported that male calves receiving 20 mg Zn
kg? DM had significantly higher ADG than those in the control group. Other studies have shown that zinc
supplementation in preweaning dairy calves improves growth performance [18]. In contrast to our findings, Wo et al
[38] found no significant difference in starter intake between calves fed different levels of zinc proteinate. One of the
earliest signs of zinc deficiency in the is appetite reducing, followed by decreased feed intake [39]. In the present
study, zinc supplementation enhanced appetite and increased starter and TDMI compared with the control diet. The
primary mechanism through which zinc affects appetite may involve its direct influence on the expression of appetite-
regulating genes. This is supported by evidence that zinc deficiency alters the production and secretion of appetite-
controlling hormones and enzymes [39].

One such enzyme is pyruvate kinase, whose gene expression is regulated by insulin. Zinc deficiency reduces the

insulin sensitivity of this enzyme, leading to decreased carbohydrate catabolism and loss of appetite [40]. Furthermore,
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zinc deficiency reduces also the production and secretion of growth hormone and insulin-like growth factor-1, both
of which play crucial roles in growth and weight gain [41]. The present meta-analysis demonstrated that zinc
supplementation in suckling calves significantly increased ADG and BW. This beneficial effect was particularly noted
with organic zinc sources in our meta-analysis. The observed benefits of zinc supplementation on performance in
specific species may be related to its dual effects on host intestinal tissue and the gut microbiome [42]. Within the
host, zinc appears to enhance intestinal villi and intestinal cell health [43], reduce intestinal permeability [44], and
induce antioxidant effects in the intestinal mucosa [45]. Building upon this, zinc also positively influences the gut
microbiome, which in turn plays a crucial role in animal health and performance by influencing nutrient absorption,
metabolism, and immune function [46]. Specifically, bacteria in the microbiome produce beneficial metabolites such
as short-chain fatty acids [47]. These metabolites reduce inflammatory markers and lower the pH of the intestinal
lumen, thereby limiting the proliferation of potentially pathogenic bacteria [48]. Zinc is an essential element for the
bacteria that constitute the microbiome, with zinc-binding proteins accounting for 5% of the bacterial proteome [49],
and the microbiota utilizes up to 20% of the dietary zinc consumed by the host [50]. Rajaei-Sharifabadi et al [51] in a
study on milk supplemented with various zinc sources (zinc sulfate, zinc-methionine, and Benza® Zn) in suckling
calves, reported that Benza® Zn supplementation improved ADG. In an investigation of different levels of zinc-
proteinate supplementation (0, 40, 80, and 120 mg Zn kg* DM), Wo et al [38] reported that high levels of zinc
supplementation (120 mg Zn kg'* DM) significantly increased ADG and BW in suckling calves, which is consistent
with the results of the present study. In contrast to the results of the present study, previous studies reported that zinc
supplementation in whole milk [52] or milk replacer above NRC recommendations [53] did not significantly affect
growth performance. Chang et al [18], in a study on the effects of zinc oxide (80 mg/day) and zinc-methionine (80
mg/day), reported that organic and inorganic zinc supplementation did not significantly affect starter and TDMI, but
zinc-methionine supplementation significantly increased ADG in newborn calves. 12 values (25-50%) for performance
traits indicated moderate heterogeneity. This heterogeneity may be attributed to differences in zinc supplement form,
dosage, initial weight, animal age, experimental duration, and the form of zinc supplementation (in milk or starter).

Regression analysis indicated that at least two covariates (trial duration and method of zinc supplementation) out of
the five significantly influenced the five performance outcome variables. These covariates explained 18.44%, 32.13%,
38.39%, 35.51%, and 32.67% of the heterogeneity in starter intake, TDMI, ADG, BW, and FCR, respectively (I?

values in Figs 3-7). Other modulating factors did not significantly affect performance traits. This suggests that other
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unknown dietary and management-associated factors may influence the effect of zinc sources on pre-weaning dairy
calves. Zinc sources in the studies included in this meta-analysis were supplied at recommended dosages (20-120 mg
Zn kg'DM), which were hypothesized to have a beneficial effect on calves. Although zinc sources significantly
impacted the five performance outcomes, the heterogeneity for these outcomes was observed to be moderate. Our
subgroup analysis further confirmed that lower doses of zinc (< 40 mg Zn kg DM) did not affect the performance
traits of pre-weaning calves, whereas higher doses (>40 and < 80 mg Zn kg* DM) significantly improved ADG and
body weight in pre-weaning calves. Researchers have reported that dietary zinc supplementation positively affects
calf performance, antioxidant status, and the immune system [54]. However, using high levels of dietary zinc may
negatively impact the digestion, absorption, and utilization of other nutrients, potentially leading to environmental
contamination due to excess zinc excretion in feces [55]. Subgroup analysis revealed that zinc supplementation in the
starter feed had no beneficial effect on performance traits, whereas supplementation in liquid form (milk) significantly
and positively influenced performance traits. The notable impact of various supplementation methods on the five
measured outcomes likely stems from the route of delivery (solid vs. liquid) [56]. In young calves, solid feed enters
the rumen, whereas liquid feed bypasses the rumen_.and goes directly to the abomasum [57]. Beyond the delivery
method, the divergent protein and fiber content of the starter feed may also contribute to these differential effects [58].
Furthermore, the gradual dietary transition calves undergo during weaning- shifting from predominantly liquid diets
(milk or milk replacer) to a solid starter diet rich in fermentable carbohydrates [59], is a significant factor. This
transition can alter the composition of the ruminal microbiome, potentially leading to an increase in Proteobacteria

and Firmicutes and a decrease in Bacteroidetes phylum [60].

Effect of Zinc Supplementation on Diarrhea Incidence

The results of the present study demonstrated that both organic (SMD = -0.93, p< 0.05) and inorganic (SMD = -0.98,
p< 0.05) zinc sources significantly reduced diarrhea incidence in suckling calves compared with the control group,
with an overall effect size of SMD =-0.95 (p< 0.05). Diarrhea is the most common disease in calves, and often occurs
in the first month of life [61]. Several factors contribute to diarrhea in calves, including incomplete intestinal
development, inadequate nutrient absorption, impaired immune function, and stress from cold and heat [62]. For
decades, zinc has been used as an antidiarrheal agent for the prevention and treatment of diarrhea in infants, children,

and animals. Consistent with the results of the present study, Ma et al [63] reported that, compared with the control
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diet, zinc-methionine supplementation reduced the incidence of diarrhea from days 8-14 and throughout the study. In
that study, zinc oxide had a similar effect to that of zinc-methionine, but the effect was not statistically significant.
According to Chang et al [18], the first two weeks of life represent the peak period for diarrhea prevalence in suckling
calves. Therefore, zinc-methionine supplementation in the diet of dairy calves early in life is recommended, as it can
reduce diarrhea incidence. Feldmann et al [19] also reported that calves fed Zn-Met-enriched feed had 14.7% less
diarrhea than unsupplemented calves did, which aligns with the results of the present study. In a study by Liu et al
[64], the percentages of diarrhea occurrence in calves receiving zinc-proteinate and zinc oxide were reported to be
10.7% and 16.1%, respectively, which were significantly lower than those in the control group. Zinc-proteinate and
zinc oxide reduced diarrhea incidence from 1 to 28 days of age, but zinc oxide had no effect on reducing diarrhea
incidence in calves from 1 to 14 days after birth, and zinc supplementation had an antidiarrheal effect after 28 days of
age [64]. Recent studies, which have focused primarily on the preventive effect of short-term zinc supplementation in
milk on diarrhea in dairy calves, have shown that adding 80 mg Zn kg to milk can reduce diarrhea incidence and
improve ADG in dairy calves [51]. The multivariate meta-regression results revealed that diarrhea incidence difference
between the experimental and control groups was a source of heterogeneity in the SMD for both the form of zinc
supplementation (in milk and starter) and calf sex. Previous reports indicate that whole milk contains 3 to 5 mg of zinc
per liter [65]. Given that starter intake is low during the first two weeks of life, it usually results in negligible zinc
intake from starter feed. Therefore, the minimal contribution of zinc from starter feed during this period highlights the
importance of milk as the primary zinc source for suckling calves and demonstrates the potential efficacy of zinc
supplementation strategies in milk. Feldmann et al [19] examined the effects of milk containing 80 mg zinc/L (as zinc-
methionine or zinc sulfate) in suckling calves up to 14 days of age. They reported a significant interaction effect
between zinc supplementation and growth rate, with male calves in the zinc-methionine group showing increased
growth rates. This positive impact of zinc, particularly its ability to support overall health and resilience (acting as a
preventive measure against potential issues like diarrhea or impaired immunity), is attributed primarily to enhanced
immune responses and increased blood immunoglobulins [66]. Furthermore, Ma et al [63] reported that zinc-
methionine supplementation specifically helps maintain the integrity of the intestinal epithelial barrier in dairy calves,
further elucidating its anti-diarrheal mechanism. Publication bias is a common challenge in meta-analyses, as it can
alter the overall estimated effect of an intervention (such as zinc supplementation) on the outcome being studied

(diarrhea incidence). In this meta-analysis, publication bias was assessed through visual inspection of funnel plots and
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Egger's test. The obtained funnel plot (Fig 9.F) in this meta-analysis was slightly asymmetrical. This asymmetry
indicates possible publication bias. Publication bias can stem from the tendency for studies with negative results not
to be published, either due to editorial bias in journals or authors' disinclination to publish papers with unfavorable
findings [67]. Evidence of moderate heterogeneity was observed in this meta-analysis, as indicated by the 12 values

[68]. This heterogeneity issue was resolved through subgroup analysis. Subgroup analysis revealed that zinc

supplementation within the 40-80 mg Zn kg* DM range significantly reduced the incidence of diarrhea in trials lasting
over 28 days. Although significant publication bias was detected and sensitivity analysis also showed significant
results, it's important to note that the interaction effect between zinc dosage and zinc source was not statistically
significant. Collectively, these findings emphasize the critical role of both the supplementation method and optimal
dosage in mitigating calf diarrhea. Furthermore, these results highlight the importance of considering potential

reporting biases and their influence on the overall effect size in meta-analytic studies.

CONCLUSION

This meta-analysis revealed that zinc supplementation (particularly organic sources) can enhance growth performance
and feed efficiency in calves. This improvement was evidenced by an increase in BW and ADG, and a reduction in
the FCR, primarily due to increased starter intake and TDMI. Furthermore, the method of supplementation
(specifically adding to milk) significantly influenced performance traits and reduced the incidence of diarrhea in
suckling calves. Significant heterogeneity was observed for traits such as ADG, FCR, and diarrhea incidence,
indicating that the effect of zinc supplementation on these traits was not consistent across different studies. In contrast,
no significant heterogeneity was found for TDMI, BW, and starter intake, suggesting that the effect of zinc
supplementation on these traits was relatively stable across the studies. The results of Egger's test for FCR, ADG, and
diarrhea incidence revealed significant publication bias. This means that studies with positive and significant results
for these traits were more likely to be published, while studies with negative or non-significant findings were less
likely to be published. Consequently, due to the presence of heterogeneity and publication bias in traits such as FCR,
ADG, and diarrhea incidence, the results should be interpreted with caution. Furthermore, subgroup analysis and
multivariate meta-regression showed that the effectiveness of zinc intervention significantly increases with longer
supplementation duration. Subgroup analysis, along with the correlation between zinc dosage and performance traits,

indicated that doses below 40 mg Zn kg* DM had no impact on calf performance. Conversely, using doses exceeding
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80 mg Zn kg* DM could negatively affect the digestion, absorption, and utilization of other nutrients in the diet. This
higher dosage also increases the risk of environmental pollution through excessive zinc excretion in feces. Therefore,
it's recommended to supply zinc in the diet of suckling calves at level up to 80 mg Zn kgt DM. These findings suggest
that both zinc sources can serve as effective interventions for managing and reducing gastrointestinal issues during
the suckling period. Thus, the use of zinc in both organic and inorganic forms can be recommended as a beneficial

strategy for improving calf health and reducing treatment costs in the livestock industry.
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Table 1. Characteristic of all selected studies in meta-analysis

No. of dair Duration Dosage Supplementation
Author (year) Breed caI.ve/ rouy length Zinc source (mg Zn Sex p?’nethods
group (day) kg! DM)
Zn sulfate, Zn
Cheraghi Mashoof et al . hydroxy Male &
(2024)%6 Holstein 10 77 chloride, 20 Female Starter
Chelated Zn
. . . Zn sulfate,
Rajae—glharlfabadl etal Holstein 10 70 Chelated Zn, 80 Female Milk
(2024) del
Zn methionine
Liu et al (2023a)% Holstein 8 g 40 proteinate, 80 Male & Milk
Zn oxide Female
Liu et al (2023b)™ Holstein 12 70 Zn proteinate, = 1, g5 190 Female Milk
Zn oxide
\1/\3/5 etal (2022) Exp Holstein 10 14 Zn proteinate 40, 80, 120 Female Milk
Wo etal (2022) Exp Holstein 12 28 Znproteinate, 80 Female Milk
2 Zn methionine
Dabaghian et al . . Male & .
(2023)% Holstein 10 74 Zn oxide 80 Female Milk
Karam;wlejad etal Holstein 7 49 Zn methionine 120 Female Starter
(2022)
Zaboli et al (2021)7 Holstein 6 70 Zn sulfate 30 Female Milk
Ma et al (2020a)® Holstein 6 14 Zn oxide, Zn 80 Male Milk
methionine
Zn
Ma et al (2020b)% Holstein 8 14 methionine, 80 Male Milk
Zn oxide
Chang et al (2020)*8 Holstein 10 14 Zn oxide, Zn 80 Female Milk
methionine
Abdollahi et al (2020)¢ Holstein 10 70 Zn oxide 50 Female Starter
Wei et al (2019)% Holstein 8 14 Zn oxide 20,40, 80, Male & Starter
120 Female
Adab et al (2019)7 Holstein 24 80 Zn glycine 100 Female Milk

714

715

716
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717

718
Table 2. Data description (means and SD between studies)
Parameters Unit NC Mean SD

Control Treatment Control  Treatment
Starter intake g/d 34 189.55 206.86 34.23 38.72
TDMI g/d 66 1079.81 1118.15 343.42 382.30
ADG g/d 70 554.75 630.38 181.26 208.22
BW Kg 44 70.21 74.15 42.98 55.05
FCR gFlOA g 2.11 1.94 0.38 0.40
DG

Diarrhea % 34 26.86 15.60 7.67 7.83
incidence
BW= body weight, ADG=average daily gain, TDMI, total'dry matter intake= FCR, feed conversion ratio,
NC=number of comparisons, SD= standard division

719

720

Table 3. A summary of the statistical model and moderators for meta-analysis of performance traits and
diarrhea incidence

Item Estimate SE Z-value p-value 95% Cl
Lower Upper

Starter intake

Multilevel random effect model 0.29 0.15 -0.41 0.001 0.11 0.47

Moderators

Duration 0.02 0.003 5.09 0.001 0.01 0.02

Dose 0.003 0.002 1.08 0.28 -0.002 0.008

Supplementation methods -0.55 0.33 -1.14 0.03 -1.02 -0.04

Sex -0.04 0.14 -0.28 0.77 -0.31 0.23

Zn source -0.16 0.17 -0.98 0.32 -0.50 0.16

TDMI

Multilevel random effect model 0.27 0.19 -0.43 0.01 0.14 0.43

Moderators

Duration 0.01 0.002 3.71 0.001 0.005 0.02

Dose 0.002 0.003 0.74 0.45 -0.003 0.007

Supplementation methods -0.27 0.21 -1.75 0.07 -0.78 0.03

Sex -0.12 0.16 -0.73 0.46 -0.44 0.20

Zn source 0.15 0.14 0.99 0.37 -0.13 0.43

ADG

Multilevel random effect model 0.68 0.18 1.15 0.01 0.53 0.82
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Moderators

Duration 0.006 0.002 2.29 0.02 0.009 0.01
Dose -0.001 0.002 -0.48 0.63 -0.007 0.004
Supplementation methods -0.41 0.23 -1.60 0.02 -1.17 -0.17
Sex -0.38 0.22 -1.74 0.08 -0.82 0.05
Zn source 0.15 0.14 0.93 0.35 -0.15 0.42
BW
Multilevel random effect model 0.42 0.23 1.01 0.001 0.25 0.59
Moderators
Duration 0.005 0.003 1.48 0.14 -0.001 0.01
Dose 0.007 0.003 0.24 0.80 -0.005 0.006
Supplementation methods -0.27 0.14 0.11 0.04 -0.67 -0.09
Sex -0.14 0.31 -0.45 0.65 -0.75 -0.47
Zn source -0.21 0.22 -0.93 0.35 -0.66 0.23
FCR
Multilevel random effect model -0.63 0.2 -1.17 0.001 -0.08 -0.47
Moderators
Duration -0.006 0.004 -1.64 0.01 -0.08 -0.47
Dose -0.001 0.003 -0.57 0.56 -0.007 0.004
Supplementation methods 0.55 0.13 2.40 0.006 0.19 1.13
Sex 0.26 0.22 1.21 0.22 -0.16 0.69
Zn source 0.07 0.15 0.43 0.66 -0.23 0.36
Diarrhea incidence
Multilevel random effect model -0.95 0.62 -0.73 0.001 -1.17 -0.74
Moderators
Duration -0.002 0.008 -0.33 0.74 -0.02 0.01
Dose 0.005 0.003 0.17 0.86 -0.006 0.007
Supplementation methods 0.96 0.28 3.45 0.002 0.39 1.53
Sex -0.19 0.24 -0.82 0.41 -0.65 0.27
Zn source -0.04 0.22 -0.19 0.84 -0.46 0.38
BW=body weight, ADG=average daily gain, TDMI=total dry matter intake, FCR=feed conversion ratio, SE=standard error
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722

723

724

725

726

727

Table 4. Subgroup analysis of the effect of zinc supplementation on performance traits diarrhea incidence of
suckling calves

(o)
Variable Covariates Subgroup SMD 95% Cl p-value
Lower Upper
Starter Dosage (mg Zn kg
intake DM) <40 0.12 -0.61 0.85 0.75
>40<80 0.24 0.05 0.44 0.01
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>80 0.68 0.09 1.27 0.001
Duration (day) <8 0.05 -0.15 0.26 0.60
>28 0.78 0.41 115 0.001
Sex Male 0.06 -0.41 0.52 0.82
Female 0.49 0.20 0.78 0.001
Male & Female 0.02 -0.29 0.33 0.89
S”pmgggsa“o” Milk 0.35 0.14 0.55 0.001
Starter 0.12 -0.30 0.54 0.58
1
DosageéTAg) anket 20 0.18 0.14 0.50 0.27
>40<80 0.31 0.13 0.48 0.001
>80 0.36 0.09 0.64 0.01
Duration (day) <8 0.09 -0.09 0.27 0.30
TDMI >28 0.41 0.21 0.61 0.001
(kg) Sex Male 0.47 0.25 0.67 0.001
Female 0.04 -0.27 0.34 0.81
Male & Female 0.13 -0.10 0.37 0.27
S”pmgggsa“o” Milk 0.29 -0.13 0.44 0.001
Starter 0.26 0.001 0.52 0.05
1
DosageéTAg) ke 0.48 0.25 0.70 0.001
>40<80 0.98 0.82 1.17 0.001
>80 0.35 0.03 0.67 0.01
Duration (day) <8 0.81 0.61 1.01 0.001
>28 0.57 0.38 0.76 0.001
ADG
Sex Male 0.73 0.50 0.95 0.001
Female 1.04 0.70 1.37 0.001
Male & Female 0.50 0.30 0.69 0.001
S”pm':r'ggst'o” il 0.85 0.65 1.04 0.001
Starter 0.46 0.28 0.65 0.001
-1
DosageéTAg) v 0.22 0.02 0.43 0.03
>40<80 0.72 0.45 0.99 0.001
>80 0.43 0.04 0.81 0.03
Duration (day) <8 0.41 0.06 0.77 0.02
>28 0.42 0.23 0.61 0.001
BW
Sex Male 071 0.45 0.96 0.02
Female 0.01 -1.95 1.95 0.97
Male & Female 0.13 -0.07 0.33 0.20
S”pmgggsa“o” Milk 0.73 0.44 1.03 0.001
Starter 0.18 0.001 0.37 0.05
-1
FCR Dosageg;‘/lg) ke 0.36 057 0.14 0.001
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728
729
730
731
732

733
734
735
736
737
738
739

~40<80 -0.86 -1.09 -0.63 0.001
>80 -0.93 -1.52 -0.34 0.001
Duration (day) <28 -0.73 -0.95 -0.5 0.001
>28 -0.52 -0.75 -0.28 0.001
Sex Male 0.9 -1.37 -0.42 0.001
Fema|e -0.97 -1.23 -0.72 0.001
Male & Female -0.39 -0.58 -0.2 0.001
S”pﬂzﬂﬁgt'o” ik -0.96 -1.16 075 0.001
Starter -0.27 -0.46 -0.08 0.01
-1
Dosagegp/lg) ai -0.97 -1.44 -0.49 0.001
>40<80 -0.98 -1.28 -0.69 0.001
>80 -0.95 -1.32 -0.48 0.001
Duration (day) <28 -0.93 -1.18 -0.68 0.001
Diarrhea >28 -1.15 -1.58 -0.72 0.001
incidence Sex Male -0.83 -1.24 0.43 0.001
Female -0.79 -1.11 -0.47 0.001
Male & Female -1.28 -1.63 -0.93 0.001
S”pﬂzﬂﬁgt'o” Vil -1.02 127 077 0.01
Starter <0.61 -1.07 -0.15 0.01

BW=body weight, ADG=average daily gain, TDMI=total dry matter intake, FCR=feed conversion ratio, SMD=

standardized mean difference

Table 5. Regression coefficients for the interaction between zinc source and dosage on performance traits and
diarrhea incidence in suckling calves

. 95% CI

Item Coefficient SE p-value

Lower Upper
BW 0.001 0.004 0.77 -0.007 0.009
ADG 0.004 0.002 0.30 -0.004 0.01
TDMI -0.005 0.004 0.19 -0.01 0.002
Starter intake -0.001 0.007 0.88 -0.01 0.01
FCR 0.005 0.004 0.29 -0.004 0.01
Diarrhea incidence -0.006 0.008 0.47 -0.02 0.01

BW=body weight, ADG=average daily gain, TDMI=total dry matter intake, FCR=feed conversion ratio, SE=standard error
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Table 6. Results of Egger’s test for studied traits

Measured outcome p-value
BW 0.37
ADG 0.001
TDMI 0.34
Starter intake 0.78
FCR 0.01
Diarrhea incidence 0.01

BW=body weight, ADG=average daily gain, TDMI=total dry matter intake,
FCR=feed conversion ratio

Table 7. Sensitivity analysis for performance traits diarrhea incidence in suckling calves

Item Estimate 95% Cl p-value
Lower Upper
Starter intake 0.29 0.11 0.48 0.001
TDMI 0.30 0.15 0.46 0.001
ADG 0.67 0.51 0.83 0.001
BW 0.43 0.24 0.61 0.001
FCR -0.61 -0.80 -0.42 0.001
Diarrhea incidence -1.05 -1.26 -0.84 0.001

BW=body weight, ADG=average daily gain, TDMI=total dry matter intake, FCR=feed conversion ratio

32



767

Identification

Screening

Eligibility

Included

768

Records identified
through database
searching (432)

Articles identified via
manual search (n=27)

Total studies (n=459)

Records after excluded duplicate article

(n=338)

121 studies excluded
for being duplicates

Full text articles
assessed for
eligibility
(n=112)

Full-text articles excluded, with reasons:

-Studies lacking data on zinc supplementation or
relevant trait data

-Studies with data pertaining to non-suckling calves
-Studies in which zinc supplementation was combined
with other elements
-Review article
-Avrticles that only had abstract

(n=226)

Studies without crucial data
excluded for meta-analysis

(n=97)

Studies included
in meta-analysis
(n=15)

33




769
770
771
772
773

774
775

776

777

778

779

780

781

782

783

784

Fig 1. Flowchart of the systematic review (PRISMA) from the initial search to the selection of articles included in this meta-analysis
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788
789

Weight

Study SMD 95% CI (%)
Inorganic
Rajaet-Sharifabadi et al 3 (2024) = 0.85[-0.44, 2.14] 1.80
Liu et al 2 (2023) a 0.08 [ -0.90, 1.06] 2.89
Liu et al 4 (2023) a 0.18[-0.80, 1.16] 2.88
Liu et al 6 (2023) a 0.15[-0.83, 1.13] 2.89
Liu et al 4 (2023) b - m—— 1.15[ 0.29, 2.01] 3.54
Ma et al 2 (2020) = -0.23[-1.36, 0.91] 2.26
Ma et al 4 (2020) 0.04 [-1.09, 1.17] 2.27
Ma et al 6 (2020) 0.13[-1.00, 1.26] 2.27
Chang et al (2020) il -0.30[-1.18, 0.58] 3.43
Abdollahi et al (2020) = -0.30[-1.18, 0.58] 3.43
Abdollahi et al 2 (2020) = -0.30[-1.18, 0.58] 3.43
Abdollahi et al 3 (2020) L @ 1.08[ 0.14, 2.01] 3.11
Abdollahi et al 4 (2020) - m——— 1.08[ 0.14, 2.01] 3.11
Wei et al (2019) » <0.15[-1.13, 0.83] 2.89
Wei et al 2 (2019) » -0.15[-1.18, 0.83] 2.89
Wei et al 3 (2019) » -0.15[-1.18, 0.83] 2.89
Wei et al 4 (2019) » -0.15[-1.13, 0.83] 2.89
Heterogeneity: T = 0.06, I = 19.81%, H* = 1.25 . 0.17 [ -0.09, 0.44]
Testof 8 = 6;: Q(16) = 18.67, p = 0.29
Testof 8=0:z=1.28, p =0.20
Organic
Rajaet-Sharifabadi et al (2024) = 0.85[-0.44, 2.14] 1.80
Rajaet-Sharifabadi et al 2 (2024) = 0.85[-0.44, 2.14] 1.80
Liu et al (2023) a 0.08 [ -0.90, 1.06] 2.89
Liu et al 3 (2023) a 0.18[-0.80, 1.16] 2.88
Liu et al 5 (2023) a 0.15[-0.83, 1.13] 2.89
Liu et al (2023) b - m—— 1.15[ 0.29, 2.01] 3.54
Liu et al 2 (2023) b - m—— 1.15[ 0.29, 2.01] 3.54
Liu et al 3 (2023) b - m—— 1.15[ 0.29, 2.01] 3.54
Wo et al (2023) Expl il -0.45[-1.34, 0.44] 3.39
Wo et al 2 (2023) Expl — 0.45[-0.44, 1.34] 3.39
Wo et al 3 (2023) Exp1l — 0.45[-0.44, 1.34] 3.39
Wo et al 4 (2023) Exp2 — 0.34[-0.46, 1.15] 3.94
Wo et al 5 (2023) Exp2 — 0.34[-0.46, 1.15] 3.94
Ma et al (2020) 0.23[-0.91, 1.36] 2.26
Ma et al 3 (2020) 0.04 [-1.09, 1.17] 2.27
Ma et al 5 (2020) 0.13[-1.00, 1.26] 2.27
Chang et al 2 (2020) il -0.30[-1.18, 0.58] 3.43
Heterogeneity: T~ = 0.04, I = 14.39%, H® = 1.17 ‘ 0.40[ 0.15, 0.65]
Test of § = 6;: Q(16) = 17.19, p = 0.37
Testof 8 =0: z=3.15, p = 0.00
Overall ‘ 0.29[ 0.11, 0.47]
Heterogeneity: T~ = 0.05, I = 18.44%, H® = 1.23
Testof 8 = 6, Q(33) =37.69, p = 0.26
Testof 8 =0: z=3.09, p = 0.00
Test of group differences: (1) = 1.49, p = 0.22
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Fig 3. Means and forest plot of SMD with 95% CI for the random effect of zinc supplementation on starter intake of suckling calves



o Weight
Study sSMD 9596 CI (%)

Inorganic

Cheraghi Mashoof et al 2 (2024) —- -0.72[-1.63, 0.18] 1.55
Cheraghi Mashoof et al 3 (2024) - 0.72[-0.18, 1.63] 1.55
Cheraghi Mashoof et al 5 (2024) - 0.48 [-0.41, 1.37] 1.59
Cheraghi Mashoof et al 6 (2024) - 0.48 [-0.41, 1.37] 1.59
Cheraghi Mashoof et al 8 (2024) - -0.27 [-1.15, 0.61] 1.61
Cheraghi Mashoof et al 9 (2024) 0.27[-0.61, 1.15] 1.61
Cheraghi Mashoof et al 11 (2024) - -0.46 [-1.34, 0.43] 1.59
Cheraghi Mashoof et al 12 (2024) 0.46 [-0.43, 1.34] 1.59
Cheraghi Mashoof et al 14 (2024) ——-— 1.29[ 0.33, 2.26] 1.42
Cheraghi Mashoof et al 15 (2024) ——-— 1.29[ 0.33, 2.26] 1.42
Cheraghi Mashoof et al 17 (2024) - -0.56 [-1.46, 0.33] 1.58
Cheraghi Mashoof et al 18 (2024) - 0.56 [-0.33, 1.46] 1.58
Liu et al 2 (2023) a 0.08 [ -0.90, 1.06] 1.39
Liu et al 4 (2023) a 0.18 [-0.80, 1.16] 1.38
Liu et al 6 (2023) a 0.15[-0.83, 1.13] 1.38
Liu et al 4 (2023) b - 1.15[ 0.29, 2.01] 1.65
Dabaghian et al (2023) - 0.50[-0.39, 1.39] 1.59
Zaboli and Elyasi (2021) 1.33[ 0.08, 2.58] 0.96
Zaboli and Elyasi 2 (2021) 1.33[ 0.08, 2.58] 0.96
Ma et al 2 (2020) a -0.17 [-1.30, 0.96] 1.12
Ma et al 4 (2020) a 0.05[-1.08, 1.18] 1.12
Ma et al 6 (2020) a 0.18 [ -0.95, 1.32] 1.12
Chang et al (2020) - -0.30[-1.18, 0.58] 1.61
Ma et al 2 (2020) b - -0.33[-1.32, 0.66] 1.37
Ma et al 4 (2020) b 0.01 [-0.97, 0.99] 1.39
Ma et al 6 (2020) b 0.01 [-0.97, 0.99] 1.39
Abdollahi et al (2019) — - 0.13[-0.74, 1.01] 1.62
Abdollahi et al 2 (2019) 0.13[-0.74, 1.01] 1.62
Abdollahi et al 3 (2019) —- 1.11[ 0.17, 2.05] 1.47
Abdollahi et al 4 (2019) - 1.11[ 0.17, 2.05] 1.47
Heterogeneity: T~ = 0.11, I = 32.33%, H> = 1.48 0 0.32 [ 0.11, 0.53]
Testof 6 = 6;: Q(29) = 43.01, p = 0.05

Testof © = 0: z = 2.97, p = 0.00

Organic

Cheraghi Mashoof et al (2024) ——- -0.72[-1.63, 0.18] 1.55
Cheraghi Mashoof et al 4 (2024) - -0.48 [-1.37, 0.41] 1.59
Cheraghi Mashoof et al 7 (2024) - -0.27 [-1.15, 0.61] 1.61
Cheraghi Mashoof et al 10 (2024) - -0.46 [-1.34, 0.43] 1.59
Cheraghi Mashoof et al 13 (2024) ——-— 1.29[ 0.33, 2.26] 1.42
Cheraghi Mashoof et al 16 (2024) - -0.56[-1.46, 0.33] 1.58
Liu et al (2023) a 0.08 [ -0.90, 1.06] 1.39
Liu et al 3 (2023) a 0.15[-0.83, 1.13] 1.38
Liu et al 5 (2023) a 0.18 [-0.80, 1.16] 1.38
Liu et al (2023) b - 1.15[ 0.29, 2.01] 1.65
Liu et al 2 (2023) b e 1.15[ 0.29, 2.01] 1.65
Liu et al 3 (2023) b - 1.15[ 0.29, 2.01] 1.65
Wo et al (2023) Expl - -0.56 [-1.45, 0.34] 1.58
Wo et al 2 (2023) Exp1l - 0.56 [ -0.34, 1.45] 1.58
Wo et al 3 (2023) Exp1l - 0.56 [-0.34, 1.45] 1.58
Wo et al 4 (2023) Exp2 - 0.85[ 0.01, 1.68] 1.72
Wo et al 5 (2023) Exp2 - 0.85[ 0.01, 1.68] 1.72
Karamnejad et al (2022) 0.23[-0.82, 1.28] 1.25
Karamnejad et al 2 (2022) 0.06 [-0.99, 1.11] 1.26
Karamnejad et al 3 (2022) 0.13[-0.92, 1.18] 1.26
Ma et al (2020) a 0.17 [-0.96, 1.30] 1.12
Ma et al 3 (2020) a 0.05[-1.08, 1.18] 1.12
Ma et al 5 (2020) a 0.18 [ -0.95, 1.32] 1.12
Chang et al 2 (2020) - -0.30[-1.18, 0.58] 1.61
Ma et al (2020) b 0.33[-0.66, 1.32] 1.37
Ma et al 3 (2020) b 0.01 [-0.97, 0.99] 1.39
Ma et al 5 (2020) b 0.01 [-0.97, 0.99] 1.39
Adab et al (2019) - 0.38 [-0.19, 0.95] 2.63
Adab et al 2 (2019) - -0.38 [-0.95, 0.19] 2.63
Adab et al 3 (2019) 0.10 [ -0.46, 0.67] 2.65
Adab et al 4 (2019) 0.10 [ -0.46, 0.67] 2.65
Adab et al 5 (2019) 0.56 [ -0.02, 1.13] 2.61
Adab et al 6 (2019) - 1.02 [-0.02, 2.07] 1.27
Rajaet-Sharifabadi et al (2024) 0.48 [-0.78, 1.74] 0.95
Rajaet-Sharifabadi et al 2 (2024) 0.48 [-0.78, 1.74] 0.95
Rajaet-Sharifabadi et al 3 (2024) 0.48 [-0.78, 1.74] 0.95
Heterogeneity: T~ = 0.10, I = 33.30%, H” = 1.50 0.24 [ 0.06, 0.42]

Test of 6 = 6;: (35) = 50.45, p = 0.04

Testof ® = 0: z=2.61, p = 0.01

Overall 0.27 [ 0.14, 0.41]
Heterogeneity: 12 =0.10, 17 = 32.13%, H® = 1.47

Test of © = 6;: Q(65) = 93.98, p = 0.01

Test of 8 = 0: z = 3.94, p = 0.00

Test of group differences: (1) = 0.33, p = 0.57 ) : )
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791 Fig 4. Means and forest plot of SMD with 95% CI for the random effect of zinc supplementation on the TDMI of suckling calves
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Study

Weight

Inorganic

Cheraghi Mashoof et al 2 (2024)
Cheraghi Mashoof et al 3 (2024)
Cheraghi Mashoof et al 5 (2024)
Cheraghi Mashoof et al 6 (2024)
Cheraghi Mashoof et al 8 (2024)
Cheraghi Mashoof et al 9 (2024)
Cheraghi Mashoof et al 11 (2024)
Cheraghi Mashoof et al 12 (2024)
Cheraghi Mashoof et al 14 (2024)
Cheraghi Mashoof et al 15 (2024)
Cheraghi Mashoof et al 17 (2024)
Cheraghi Mashoof et al 18 (2024)
Rajaet-Sharifabadi et al 3 (2024)
Liu et al 2 (2023) a

Liu et al 4 (2023) a

Liu et al 6 (2023) a

Liu etal 4 (2023) b

Dabaghian et al (2023)

Ma et al 2 (2020) a

Ma et al 4 (2020) a

Ma et al 6 (2020) a

Chang et al (2020)

Ma et al 2 (2020) b

Ma et al 4 (2020) b

Ma et al 6 (2020) b

Abdollahi et al (2019)

Abdollahi et al 2 (2019)

Abdollahi et al 3 (2019)

Abdollahi et al 4 (2019)

Wei et al (2019)

Wei et al 2 (2019)

Wei et al 3 (2019)

Wei et al 4 (2019)

Zaboli and Elyasi (2021)

Zaboli and Elyasi 2 (2021)

2

Heterogeneity: T~ = 0.03, I = 11.18%, H* = 1.13
Test of 8 = 6;: Q(34) = 40.69, p = 0.20
Testof ® = 0: z=7.95, p = 0.00

Organic

Cheraghi Mashoof et al (2024)
Cheraghi Mashoof et al 4 (2024)
Cheraghi Mashoof et al 7 (2024)
Cheraghi Mashoof et al 10 (2024)
Cheraghi Mashoof et al 13 (2024)
Cheraghi Mashoof et al 16 (2024)
Rajaet-Sharifabadi et al (2024)
Rajaet-Sharifabadi et al 2 (2024)
Liu et al (2023) a

Liu et al 3 (2023) a

Liu et al 5 (2023) a

Liu et al (2023) b

Liu et al 2 (2023) b

Liu et al 3 (2023) b

Wo et al (2023) Exp1l

Wo et al 2 (2023) Exp1l

Wo et al 3 (2023) Expl1

Wo et al 4 (2023) Exp2

Wo et al 5 (2023) Exp2
Karamnejad et al (2022)
Karamnejad et al 2 (2022)
Karamnejad et al 3 (2022)

Ma et al (2020) a

Ma et al 3 (2020) a

Ma et al 5 (2020) a

Chang et al 2 (2020)

Ma et al (2020) b

Ma et al 3 (2020) b

Ma et al 5 (2020) b

Adab et al (2019)

Adab et al 2 (2019)

Adab et al 3 (2019)

Adab et al 4 (2019)

Adab et al 3 (2019)

Adab et al 4 (2019)
Heterogeneity: 7~ = 0.20, I = 50.69%, H” = 2.03
Testof 8 = 6;: Q(34) = 69.62, p = 0.00
Testof ® = 0: z = 5.86, p = 0.00

2

Overall

Heterogeneity: 7 = 0.13, I = 38.39%, H” = 1.62
Testof 6 = 6;: Q(69) = 112.52, p = 0.00
Test of 8 = 0: z = 9.30, p = 0.00

Test of group differences: (1) = 0.32, p = 0.57

Multilevel RE meta-analysis

sSMD 959%0 CI (@6)
0.60[-0.29, 1.50] 1.53
0.60[-0.29, 1.50] 1.53
0.05[-0.82, 0.93] 1.57
0.05[-0.82, 0.93] 1.57
0.02 [-0.85, 0.90] 1.57
-0.02 [-0.90, 0.85] 1.57
- 0.37[-0.52, 1.25] 1.55
- 0.37[-0.52, 1.25] 1.55
4 - 1.40[ 0.42, 2.37] 1.37
4 - 1.40[ 0.42, 2.37] 1.37
0.54 [-0.35, 1.44] 1.53
0.54 [-0.35, 1.44] 1.53
1.06 [-0.27, 2.38] 0.89
| - 1.35[ 0.27, 2.44] 1.19
- 0.89 [-0.14, 1.92] 1.28
- 1.35[ 0.27, 2.44] 1.19
— - 1.145[ 0.29, 2.01] 1.60
0.59 [-0.31, 1.48] 1.53
0.78 [-0.40, 1.95] 1.06
= 225[ 0.80, 3.69] 0.77
B 1.72[ 0.39, 3.04] 0.89
- 0.99[ 0.06, 1.92] 1.46
- 0.30[-0.69, 1.28] 1.35
N S — 1.21[ 0.14, 2.27] 1.22
0.83[-0.19, 1.85] 1.29
— - 1.07[ 013, 2.01] 1.45
— - 1.07[ 0.13, 2.01] 1.45
— - 1.03[ 0.09, 1.96] 1.45
— - 1.03[ 0.09, 1.96] 1.45
0.09[-0.89, 1.07] 1.36
_0.09[-1.07, 0.89] 1.36
0.09 [-0.89, 1.07] 1.36
0.09[-0.89, 1.07] 1.36
4 - 1.68[ 0.37, 3.00] 0.90
4 - 1.68[ 0.37, 3.00] 0.90
0 0.72[ 0.54, 0.89]
— - -0.60[-1.50, 0.29] 1.53
0.05[-0.82, 0.93] 1.57
0.02 [-0.85, 0.90] 1.57
- 0.37[-0.52, 1.25] 1.55
4 - 1.40[ 0.42, 2.37] 1.37
0.54[-0.35, 1.44] 1.53
1.06 [-0.27, 2.38] 0.89
1.06 [-0.27, 2.38] 0.89
- 1.35[ 0.27, 2.44] 1.19
- 0.89[-0.14, 1.92] 1.28
- 1.35[ 0.27, 2.44] 1.19
B S — 1.15[ 0.29, 2.01] 1.60
B M — 1.15[ 0.29, 2.01] 1.60
- — 1.15[ 0.29, 2.01] 1.60
- 1.29[ 0.32, 2.25] 1.40
- 1.29[ 0.32, 2.25] 1.40
- 1.29[ 0.32, 2.25] 1.40
4 - 0.63[-0.19, 1.44] 1.70
0.63[-0.19, 1.44] 1.70
0.14[-0.91, 1.19] 1.25
0.01[-1.03, 1.06] 1.25
0.10[-0.95, 1.14] 1.25
0.78 [-0.40, 1.95] 1.06
e = 225[ 0.80, 3.69] 0.77
B 1.72[ 0.39, 3.04] O0.89
- 0.99[ 0.06, 1.92] 1.46
- 0.30[-0.69, 1.28] 1.35
— - 1.21[ 0.14, 2.27] 1.22
0.83[-0.19, 1.85] 1.29
o 0.37 [-0.20, 0.94] 2.39
—a- -0.37 [-0.94, 0.20] 2.39
0.61[ 0.03, 1.19] 2.36
—-— -0.61[-1.19, -0.03] 2.36
1 0.48 [-0.09, 1.06] 2.38
1 0.48 [-0.09, 1.06] 2.38
0.64[ 0.42, 0.85]
0.67 [ 0.53, 0.82]
‘ [¢) 2 a




794 Fig 5. Means and forest plot of SMD with 95% CI for the random effect of zinc supplementation on the ADG of suckling calves
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95% CI

Weight

Study SMD (%)
Inorganic
Cheraghi Mashoof et al (2024) — -0.13[-1.01, 0.75] 2.33
Cheraghi Mashoof et al (2024) — -0.13[-1.01, 0.75] 2.33
Cheraghi Mashoof et al (2024) — 0.05[-0.83, 0.92] 2.34
Cheraghi Mashoof et al (2024) — 0.05[-0.83, 0.92] 2.34
Cheraghi Mashoof et al (2024) — 0.00[-0.87, 0.88] 2.34
Cheraghi Mashoof et al (2024) — 0.00[-0.87, 0.88] 2.34
Cheraghi Mashoof et al (2024) — 0.06 [-0.82, 0.93] 2.34
Cheraghi Mashoof et al (2024) — 0.06 [-0.82, 0.93] 2.34
Cheraghi Mashoof et al (2024) - 0.70[-0.21, 1.60] 2.25
Cheraghi Mashoof et al (2024) - 0.70[-0.21, 1.60] 2.25
Rajaet-Sharifabadi et al 3 (2024) = 0.80[-0.49, 2.09] 1.34
Liu et al 4 (2023) +—m— 1.15[ 0.29, 2.01] 2.38
Dabaghian et al (2023) — 0.59[-0.31, 1.48] 2.27
Ma et al 6 (2020) — . -1.00[-2.20, 0.20] 1.49
Abdollahi et al (2019) —_— 0.26 [-0.62, 1.14] 2.32
Abdollahi et al 2 (2019) — 0.26[-0.62, 1.14] 2.32
Abdollahi et al 3 (2019) ——m—— 1.00[ 0.07, 1.92] 2.16
Abdollahi et al 4 (2019) ——m—— 1.00[ 0.07, 1.92] 2.16
Wei et al (2019) — 0.07[-0.91, 1.05] 2.01
Wei et al 2 (2019) — -0.07 [-1.05, 0.91] 2.01
Wei et al 3 (2019) — 0.07[-0.91, 1.05] 2.01
Wei et al 4 (2019) b 0.07[-0.91, 1.05] 2.01
Heterogeneity: 1~ = 0.00, I” = 0.00%, H’ = 1.00 ¢ 0.27 [ 0.07, 0.46]
Test of = 6: @(21) = 20.01, p = 0.52
Testof 8 =0:z=2.64, p=0.01
Organic
Cheraghi Mashoof et al (2024) — -0.13[-1.01, 0.75] 2.33
Cheraghi Mashoof et al (2024) — -0.05[-0.92, 0.83] 2.34
Cheraghi Mashoof et al (2024) — 0.00[-0.87, 0.88] 2.34
Cheraghi Mashoof et al (2024) — 0.06 [-0.82, 0.93] 2.34
Cheraghi Mashoof et al (2024) - 0.70[-0.21, 1.60] 2.25
Rajaet-Sharifabadi et al (2024) = 0.80[-0.49, 2.09] 1.34
Rajaet-Sharifabadi et al 2 (2024) = 0.80[-0.49, 2.09] 1.34
Liu et al (2023) +—m—— 1.15[ 0.29, 2.01] 2.38
Liu et al 2 (2023) +—m— 1.15[ 0.29, 2.01] 2.38
Liu et al 3 (2023) +—m— 1.15[ 0.29, 2.01] 2.38
Wo et al (2023) Expl +—m—— 1.29[ 0.32, 2.25] 2.06
Wo et al 2 (2023) Expl +—m— 1.29[ 0.32, 2.25] 2.06
Wo et al 3 (2023) Expl +—m—— 1.29[ 0.32, 2.25] 2.06
Wo et al 4 (2023) Exp2 +—m— 1.15[ 0.29, 2.01] 2.38
Wo et al 5 (2023) Exp2 +—m— 1.15[ 0.29, 2.01] 2.38
Karamnejad et al (2022) :If 0.05[-0.99, 1.10] 1.83
Karamnejad et al 2 (2022) — 0.05[-1.00, 1.10] 1.83
Ma et al 5 (2020) - 1.00 [-0.20, 2.20] 1.49
Adab et al (2019) — 0.37[-0.20, 0.94] 3.73
Adab et al 2 (2019) - 0.37[-0.20, 0.94] 3.73
Adab et al 3 (2019) 0.65[ 0.07, 1.23] 3.67
Adab et al 4 (2019) . -0.65[-1.23, -0.07] 3.67
Heterogeneity: T~ = 0.19, I” = 50.79%, H” = 2.03 0.58 [ 0.32, 0.84]
Test of 8 = 6;: Q(21) = 42.58, p = 0.00
Testof 6 =0:z=4.36, p =0.00
Overall ¢ 0.42[ 0.25, 0.59]
Heterogeneity: 1- = 0.11, F = 35.51%, H® = 1.55
Test of 8 = 6;: Q(43) = 66.04, p = 0.01
Testof ® =0:z=4.94, p=0.00
Test of group differences: (1) = 3.54, p = 0.06 ‘ ‘ ‘ ‘
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796 Fig 6. Means and forest plot of SMD with 95% CI for the random effect of zinc supplementation on the BW of suckling calves
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Weight
Study SMD 95% CI (%)

Inorganic

Cheraghi Mashoof et al 2 (2024)
Cheraghi Mashoof et al 3 (2024)
Cheraghi Mashoof et al 5 (2024)
Cheraghi Mashoof et al 6 (2024)
Cheraghi Mashoof et al 8 (2024)
Cheraghi Mashoof et al 9 (2024)
Cheraghi Mashoof et al 11 (2024)
Cheraghi Mashoof et al 12 (2024)
Cheraghi Mashoof et al 14 (2024)
Cheraghi Mashoof et al 15 (2024)
Cheraghi Mashoof et al 17 (2024)

Cheraghi Mashoof et al 18 (2024)
Liu et al 2 (2023) a

Liu et al 4 (2023) a

Liu et al 6 (2023) a

Liu et al 4 (2023) b
Zaboli and Elyasi (2021)
Zaboli and Elyasi 2 (2021)
Ma et al 2 (2020)

Ma et al 4 (2020)

Ma et al 6 (2020)
Chang et al (2020)

Ma et al 2 (2020)

Ma et al 4 (2020)

-0.53[-1.42, 0.36] 2.12
-0.53 [-1.42, 0.36] 2.12
-0.02[-0.89, 0.86] 2.16
-0.02[-0.89, 0.86] 2.16
-0.32[-1.20, 0.56] 2.15
0.32[-0.56, 1.20] 2.15
-0.71[-1.62, 0.19] 2.08
-0.71[-1.62, 0.19] 2.08
-0.73[-1.63, 0.18] 2.08
-0.73[-1.63, 0.18] 2.08
0.56 [-0.34, 1.45] 2.11
-0.56 [-1.45, 0.34] 2.11
-1.34 [-2.42, -0.25] 1.62
-0.79[-1.81, 0.23] 1.78
-1.28 [-2.35, -0.20] 1.64
-1.19 [-2.06, -0.32] 2.19
-0.86[-2.04, 0.32] 1.43
-0.86 [-2.04, 0.32] 1.43
-0.70[-1.86, 0.47] 1.46
-2.00[-3.39, -0.62] 1.11
-1.67 [-2.99, -0.36] 1.21
-:0.90 [-1.82, 0.02] 2.04
-0.28 [-1.26, 0.71] 1.86
-1.24[-2.27, -0.14] 1.66

Ma et al 6 (2020) - m—— 0.85[-0.17, 1.88] 1.76
Wei et al (2019) — -0.04 [-1.02, 0.94] 1.87
Wei et al 2 (2019) - 0.04 [-0.94, 1.02] 1.87
Wei et al 3 (2019) — -0.04 [-1.02, 0.94] 1.87
Wei et al 4 (2019) - 0.04 [-0.94, 1.02] 1.87
Heterogeneity: T~ = 0.10, I = 28.66%, H” = 1.40 ’ -0.50 [-0.72, -0.29]

Test of 8 = 6;: Q(28) = 40.94, p = 0.05

Testof ® = 0: z=-4.55, p =0.00

Organic

Cheraghi Mashoof et al (2024) —m— 0.53[-0.36, 1.42] 2.12
Cheraghi Mashoof et al 4 (2024) - -0.02[-0.89, 0.86] 2.16
Cheraghi Mashoof et al 7 (2024) —.— 0.32[-0.56, 1.20] 2.15
Cheraghi Mashoof et al 10 (2024) - -0.71[-1.62, 0.19] 2.08
Cheraghi Mashoof et al 13 (2024) - -0.73[-1.63, 0.18] 2.08
Cheraghi Mashoof et al 16 (2024) — -0.56 [-1.45, 0.34] 2.11
Liu et al (2023) a -1.34 [-2.42, -0.25] 1.62
Liu et al 3 (2023) a L -0.79[-1.81, 0.23] 1.78
Liu et al 5 (2023) a — . -1.28 [ -2.35, -0.20] 1.64
Liu et al (2023) b — - -1.19 [-2.06, -0.32] 2.19
Liu et al 2 (2023) b — - -1.19 [-2.06, -0.32] 2.19
Liu et al 3 (2023) b — - -1.19 [-2.06, -0.32] 2.19
Wo et al (2023) Expl —,— -1.29 [-2.25, -0.32] 1.91
Wo et al 2 (2023) Exp1l — - -1.29[-2.25, -0.32] 1.91
Wo et al 3 (2023) Expl — - -1.29[-2.25, -0.32] 1.91
Wo et al 4 (2023) Exp2 [ -0.37 [-1.17, 0.44] 2.39
Wo et al 5 (2023) Exp2 Ef -0.37 [-1.17, 0.44] 2.39
Ma et al (2020) - -0.70[-1.86, 0.47] 1.46
Ma et al 3 (2020) — - -2.00[-3.39, -0.62] 1.11
Ma et al 5 (2020) — - -1.67 [-2.99, -0.36] 1.21
Chang et al 2 (2020) — -0.90[-1.82, 0.02] 2.04
Ma et al (2020) — - -0.28 [-1.26, 0.71] 1.86
Ma et al 3 (2020) — -1.21 [-2.27, -0.14] 1.66
Ma et al 5 (2020) L -0.85[-1.88, 0.17] 1.76
Heterogeneity: T~ = 0.11, I’ = 31.63%, H® = 1.46 -0.79 [-1.02, -0.55]

Test of 8 = 6;: Q(23) = 33.58, p = 0.07

Test of 6 = 0: z=-6.50, p = 0.00

Overall -0.63 [-0.80, -0.47]
Heterogeneity: T~ = 0.12, I = 32.67%, H” = 1.49

Testof 8 = 6;: Q(52) = 78.76, p = 0.01

Testof 8 =0: z=-7.64, p = 0.00

Test of group differences: Q (1) = 3.06, p = 0.08 ‘ ‘ ‘
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798 Fig 7. Means and forest plot of SMD with 95% CI for the random effect of zinc supplementation on the FCR of suckling calves
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801

Weight

Study SMD 95% ClI (%)
Inorganic

Liu et al 2 (2023) a -1.44[-254, -0.34] 2.68
Liu et al 4 (2023) a -1.79[-2.95, -0.63] 2.49
Liu et al 6 (2023) a -2.07[-3.28, -0.86] 2.34
Liu et al 4 (2023) b -1.15[-2.01, -0.29] 3.63
Ma et al 2 (2020) a -0.56[-1.72, 0.59] 2.51
Ma et al 4 (2020) a -1.40[-2.66, -0.14] 2.21
Ma et al 6 (2020) a -1.43[-2.69, -0.16] 2.19
Chang et al (2020) -0.94[-1.86, -0.02] 3.36
Ma et al 2 (2020) b -0.06 [-1.04, 0.92] 3.12
Ma et al 4 (2020) b -1.13[-2.19, -0.08] 2.84
Ma et al 6 (2020) b -0.63[-1.63, 0.38] 3.03
Wei et al (2019) -0.74[-1.76, 0.27] 2.99
Wei et al 2 (2019) -0.74[-1.76, 0.27] 2.99
Wei et al 3 (2019) -0.74[-1.76, 0.27] 2.99
Wei et al 4 (2019) -0.74[-1.76, 0.27] 2.99
Heterogeneity: 1~ = 0.00, I = 0.00%, H* = 1.00 -0.98[ -1.25, -0.71]
Testof 8 =6: Q(14) = 11.97, p = 0.61

Testof 6 =0:z=-7.10, p = 0.00

Organic

Liu et al (2023) a —im -1.44[-254, -0.34] 2.68
Liu et al 3 (2023) a gy | -1.79[-2.95, -0.63] 2.49
Liu et al 5 (2023) a L -2.07[-3.28, -0.86] 2.34
Liu et al (2023) b -1.15[-2.01, -0.29] 3.63
Liu et al 2 (2023) b -1.15[-2.01, -0.29] 3.63
Liu et al 3 (2023) b -1.15[-2.01, -0.29] 3.63
Wo et al (2023) -1.14[-2.09, -0.20] 3.27
Wo et al 2 (2023) -1.14[-2.09, -0.20] 3.27
Wo et al 3 (2023) -1.14[-2.09, -0.20] 3.27
Wo et al 4 (2023) -1.15[-2.01, -0.29] 3.63
Wo et al 5 (2023) —J— 1.15[ 0.29, 2.01] 3.63
Karamnejad et al (2022) —— -0.05[-1.10, 1.00] 2.87
Ma et al (2020) a - -056[-1.72, 059] 2.51
Ma et al 3 (2020) a — -1.40[-2.66, -0.14] 2.21
Ma et al 5 (2020) a N -1.43[-2.69, -0.16] 2.19
Chang et al 2 (2020) -0.94[-1.86, -0.02] 3.36
Ma et al (2020) b -0.06[-1.04, 0.92] 3.12
Ma et al 3 (2020) b -1.13[-2.19, -0.08] 2.84
Ma et al 5 (2020) b L -0.63[-1.63, 0.38] 3.03
Heterogeneity: 1~ = 0.28, I = 52.18%, H” = 2.09 -0.93[ -1.26, -0.60]
Testof 8 = 6: Q(18) = 37.87, p = 0.00

Testof 6 =0:z=-5.50, p =0.00

Overall -0.95[-1.17, -0.74]
Heterogeneity: 1~ = 0.15, I” = 35.28%, H* = 1.55

Test of 8 = 6: (33) = 50.04, p = 0.03

Testof 8 =0:z=-8.58, p = 0.00

Test of group differences: (1) = 0.05, p = 0.82 r Y ‘
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802 Fig 8. Means and forest plot of SMD with 95% CI for the random effects of zinc supplementation on diarrhea incidence in
803 suckling calves
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Fig 9. Funnel plots of the effects of zinc supplementation on performance traits and diarrhea incidence in suckling calves: (A)
starter intake; (B) TDMI; (C) ADG; (D) BW; (E) FCR and (F) diarrhea incidence
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