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Abstract 9 
The objective of this study was to investigate the effects of illite (IT) and bentonite (BE) on growth performance and 10 

intestinal health in weaned pigs challenged with Escherichia coli (E. coli). A total of 24 (Duroc × Yorkshire × 11 

Landrace)weaned pigs (initial body weight: 9.61 ± 0.65 kg, 28 ± 3 days old) were assigned to six treatments with 12 

four replicates per treatment. Pigs were housed in individual pens for 17 days, including a 3-day adaptation period 13 

and 14 days after the first E. coli challenge. In the E. coli-challenged groups, all pigs were orally inoculated with a 14 

total of 10 mL of E. coli for three consecutive days. The experiment was conducted in a 2 × 3 factorial arrangement 15 

of treatments consisting of two challenge levels (challenged and non-challenged) and three types of clay mineral 16 

(non-supplemented, IT, and BE). IT and BE were included in the diets at 1% and 1.5%, respectively. E. coli 17 

challenge reduced (p < 0.05) ADG, ADFI, G:F during the entire experimental period and lowered (p < 0.05) serum 18 

interleukin-8, interleukin-10, malondialdehyde (MDA), and interferon-gamma (IFN- γ) levels on D 3. However, in 19 

the E. coli-challenged group, IT supplementation improved (p < 0.05) G:F compared to the non-supplemented group 20 

during the first week. Additionally, IT supplementation increased (p < 0.05) blood IFN- γ and mucin expression 21 

levels compared to the non-supplemented group in the challenged groups. At the end of the experiment, intestinal 22 

morphology and intestinal immunity were evaluated to assess intestinal health. E. coli challenge reduced (p < 0.05) 23 

villus height and tight junction protein expression while increasing (p < 0.05)crypt depth. In the E. coli-challenged 24 

group, BE supplementation increased (p < 0.05) villus height and the expression of tight junction proteins compared 25 

to the non-supplemented group. Additionally, IT supplementation in E. coli challenge increased (p < 0.05) mucin 26 

expression levels in the intestine compared to the non-supplemented group. Inconclusion, dietary supplementation 27 

with IT and BE mitigates the adverse effects of E. coli infection and suggests their potential as effective additives 28 

for managing E. coli challenges. 29 

 30 

Keywords (3 to 6): weaned piglet, E. coli challenge, clay mineral, illite, bentonite 31 
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Introduction 33 

Early weaning techniques are commonly used in modern intensive farming systems to boost sow productivity and 34 

economic benefits [1]. Nonetheless, weaning stress may adversely affect piglets’ intestinal microbiota, physiological 35 

and biochemical functions, digestion, and absorption [2]. As a consequence of weaning stress, piglets' intestinal 36 

environments are susceptible to invasion by pathogenic microorganisms such as Escherichia coli (E. coli) [3].  37 

Natural clay minerals (CMs) are naturally occurring rock or soil materials composed predominantly of fine-grained 38 

minerals, which exhibit high pliability when hydrated. Based on their structures and physico-chemical properties 39 

(particle size, surface charge, and adsorption capability), CMs can be used in a wide range of applications [4]. Illite 40 

(IT) is characterized by a large specific area and two tetrahedral sheets sandwiched between two octahedral sheets 41 

with an ability to absorb large amounts of water and a high capacity to exchange cations (CEC) [5]. Bentonite (BE) 42 

composed predominantly of smectite is characterized by its submicrometer crystal size, sheet-like structure, 43 

significant surface area, negative charge, and CEC [6]. Due to their characteristics, CMs are significant for 44 

gastrointestinal disease medications, anti-infective agents, and nutritional supplements [7]. According to 45 

Muniyappan et al. [8], supplementation of IT can improve feed efficiency and digestibility in pigs. Horky et al. [9] 46 

have also reported that supplementation of BE can reduce oxidative stress and protect jejunal tissue. Therefore, this 47 

study hypothesized that dietary supplementation of IT and BE could mitigate intestinal health and growth 48 

performance of nursery pigs. To test this hypothesis, effects of IT and BE on intestinal health and growth 49 

performance of nursery pigs challenged with E. coli were investigated. 50 

51 



 

Materials and Methods 52 

Ethics approval and consent to participate 53 

The protocol for this study was reviewed and approved by the Institutional Animal Care and Use Committee of 54 

Chungbuk National University, Cheongju, Korea (approval no. CBNUA-24-0013-02). 55 

Bacterial strains, culture and challenge 56 

E. coli KCTC 2571 was supplied from Korean Collection for Type Cultures (KCTC, Jeongeup, Korea) in a 57 

lyophilized state and suspended in sterile distilled water. The 10 μl of the suspended E. coli was added to luria-58 

bertani broth (LB broth; KisanBio, Seoul, Korea) and cultured at 37℃ for 18 hours with shaking. Thereafter, the 59 

subcultured E. coli was smeared on MacConkey agar to confirm the bacterial enumeration. A final concentration of 60 

1.2 × 1010 CFU/mL was used in this study. 61 

Animals, experimental design and diets 62 

A total of 24 (Duroc × Yorkshire × Landrace) weaned pigs (initial body weight of 9.61 ± 0.65 kg and 28 ± 3 d old), 63 

were assigned to 6 treatments with 4 replicates per treatment. Pigs were housed in individual pens for 17 days, 64 

including 3 days adaption period and 14 days after the  first E. coli challenge (d 0). The experiment was conducted 65 

in a 2 × 3 factorial arrangement of treatments consisting of two levels of challenge (challenge and non-challenge) 66 

and three levels of CM (non-supplementation, IT and BE). Corn and soybean meal basal diets were formulated to 67 

meet or exceed the nutrient requirements for the weaned piglets as recommended by NRC (Table 1) [10]. The pigs 68 

were fed daily at 8:30 and 17:00 h and had ad libitum access to water. Feed residues were removed before the next 69 

meal and considered in the calculations. In the E. coli challenge treatments, all pigs were orally inoculated by 70 

dividing a total of 10 mL of E. coli for 3 consecutive days. Challenged piglets and non-challenged piglets were 71 

housed in a separate room. Strict biosecurity procedures were followed to avoid E. coli contamination of the non-72 

challenged piglets. 73 

 Growth performance 74 

All piglets were weighed every week during the experiment period and feed consumption was recorded to calculate 75 

average daily gain (ADG), average daily feed intake (ADFI), and gain to feed ratio (G:F). 76 

Nutrient digestibility 77 



 
To estimate digestibility, 0.2% chromium oxide (Cr2O3) was supplemented with diets as an indigestible marker. 78 

Pigs were fed diets mixed with chromium oxide for 4 consecutive days from D 4 and 11, fresh excreta samples were 79 

collected in that period. At the end of the experiment, fecal samples were stored at -20℃ and dried at 70℃ for 72 h, 80 

and then, ground to pass through a 1 mm screen. All analysis items (feed and fecal) were analyzed for DM and CP. 81 

The procedures utilized for the determination of dry matter (DM) and crude protein (CP) digestibility were 82 

conducted with the methods by AOAC [11]. Chromium was analyzed with an ultraviolet absorption 83 

spectrophotometer (UV-1201, Shimadzu, Kyoto, Japan). The digestibility was calculated using the following 84 

formula: digestibility (%) = [1–(Nf × Cd)/ (Nd × Cf)] × 100, where Nf is the nutrient concentration in feces (% DM), 85 

Nd is the nutrient concentration in diet (% DM), Cd is the chromium concentration in diet (% DM), and Cf is the 86 

chromium concentration in feces (% DM). 87 

Morphological analysis of small intestine 88 

At the end of the experiment (D 14), pigs were anesthetized with carbon dioxide gas after blood sampling and 89 

euthanized by exsanguination. Intestinal tissues of about 10 cm from the ileum (close to the ileocecal junction) were 90 

collected and fixed in 10% neutral buffered formalin (NBF; Sigma-Aldrich, St. Louis, MO, USA). After cutting the 91 

intestine sample, it was dehydrated and dealcoholized. The samples were then installed on slides, treated with 92 

paraffin, and stained with hematoxylin and eosin. Villus height (VH) and crypt depth (CD) were measured under the 93 

light microscope (OLYMPUS DP71, BX50F-3, Olympus Optical Co. Ltd., Tokyo, Japan). VH was determined by 94 

measuring the distance between the tip of the villi to the villus crypt junction, and CD was determined by measuring 95 

the distance between adjacent villi.  96 

Blood profile 97 

Blood samples were obtained from jugular vein of 6 pigs each treatment at d 0, d 3 and d 14. The samples were 98 

collected in K3EDTA tube for complete blood count analysis and nonheparinized tubes for serum analysis, 99 

respectively. White blood cells (WBC) were analyzed using an automatic hematology analyzer (XE2100D, Sysmex, 100 

Kobe, Japan). Interleukin-10 (IL-10; P8000, R&D systems, Minneapolis, MN, USA) and interferon-γ (IFN-γ; 101 

DY985, R&D systems) were measured using commercially available ELISA kits. 102 

 103 

Real-time quantitative RT-PCR (qRT-PCR) analysis 104 

The Total RNA extraction kit (iNtRON Biotechnology, Seongnam, Korea) was used to extract the RNA from the 105 

intestinal mucosa. The mRNA was converted to cDNA using High-Capacity cDNA Reverse Transcription Kit 106 



 
(Applied Biosystems, Waltham, MA, USA). For cDNA synthesis, the mixed solution was heat treated at 25°C for 10 107 

min, at 37°C for 2 h, and at 85°C for 5 min. Gene amplification was performed using Fast qPCR 2×SYBR Green 108 

Master Mix (Applied Biosystems). RT-qPCR was performed in two steps. The first step was an enzyme activation 109 

step, which was performed at 95°C for 2 min for 1 cycle. The second step was a denaturation step at 95°C for 15 110 

seconds and an annealing/extend step at 56°C for 1 min, repeating a total of 40 cycles to perform gene amplification. 111 

The target genes were zonula occludens-1 (ZO-1), claudin-1 (CLDN-1), mucin-2 (MUC2) and Glyceraldehyde-3-112 

phosphate dehydrogenase 2 (GAPDH). Primers used in the amplification are shown in Table 2. Normalization was 113 

performed using the reference gene GAPDH. Relative gene expression was analyzed using the 2−ΔΔCt method [12]. 114 

 115 

Statistical analysis 116 

JMP Pro 16 (SAS Institute Inc., Cary, NC, United States) and GraphPad Prism (Version 9.1.0; GraphPad Software, 117 

San Diego, CA) were used for statistical analyses and graph visualization, respectively. All data were analyzed via 118 

two-way analysis of variance (ANOVA) using the Standard Least Squares model, with each pen as the experimental 119 

unit. The statistical model included the effect of E. coli challenge (C -, C +), the effect of CM supplementation  (non, 120 

IT and BE) and the interaction between E. coli and CM. 121 

 122 

123 



 

Results 124 

Growth performance 125 

Effects of dietary supplementing IT and BE on growth performance in weaned piglets challenged with E.coli are 126 

presented in Table 3. E. coli challenge decreased (p < 0.05) final BW compared with non-challenged group. Also, E. 127 

coli challenge decreased (p < 0.05) ADG and ADFI compared with non-challenged group in whole experiment 128 

period. There was an interaction between E. coli challenge and CM in G:F. pigs supplemented with IT with E. coli 129 

challenge improved (p < 0.05) G:F compared to non-supplemented group with E. coli on 1w.  130 

 131 

Nutrient digestibility 132 

Effects of dietary supplementing IT and BE on nutrient digestibility in weaned piglets challenged with E.coli are 133 

presented in Table 4. Pigs supplemented with BE showed higher (p < 0.05) CP digestibility than non-supplemented 134 

group. 135 

 136 

Intestinal morphology 137 

Effects of dietary supplementing IT and BE on intestinal morphology in weaned piglets challenged with E.coli are 138 

presented in Table 5. There was an interaction between E. coli challenge and CM in VH. Pigs supplemented with 139 

BE with E. coli challenge showed higher (p < 0.05) VH compared to non-supplemented group with E. coli. Also, E. 140 

coli challenge decreased (p < 0.05) VH:CD compared with non-challenged group. 141 

 142 

Blood profile 143 

Effects of dietary supplementing IT and BE on blood profile in weaned piglets challenged with E.coli are presented 144 

in Table 6.  On D3, E. coli challenged group showed lower (p < 0.05) WBC, IL-8, IL10, MDA, IFN-γ and IgG than 145 

non-challenged group. Also, there was an interaction between E. coli challenge and CM. pigs supplemented with IT 146 

with E. coli challenge showed higher (p < 0.05) IFN-γ than pigs challenged with E. coli on D3. 147 

 148 

Tight junction protein 149 

Effects of dietary supplementing IT and BE on TJ protein in weaned piglets challenged with E.coli are presented in 150 

Table 7. There was an interaction between E. coli challenge and CM in MUC-1, CLDN-1 and ZO-1. Pigs 151 

supplemented IT with E. coli challenge showed higher (p < 0.05) MUC-1 than pigs challenged with E. coli. Also, 152 



 
Pigs supplemented BE with E. coli challenge showed higher (p < 0.05) CLDN-1 and ZO-1 than pigs challenged with 153 

E. coli. 154 

 155 

156 



 

Discussion 157 

The objective of this study was to investigate effects of natural IT and BE on growth performance and intestinal 158 

health of weaned piglets challenged with E. coli. In the current study, E. coli infection significantly decreased BW, 159 

ADG, and ADFI of piglets. This result is consistent with previous studies showing that weaning stress and 160 

pathogenic challenges can severely impact growth performance [13, 14]. Reductions of growth parameters can be 161 

due to intestinal epithelial damage, decreased nutrient absorption, and increased energy expenditure for immune 162 

response [15, 16]. IT supplementation improved the G:F ratio during the first week of infection. The zinc content in 163 

IT might enhance intestinal barrier function by regulating TJ protein expression [17, 18]. Additionally, layered 164 

silicate structure of IT can adsorb toxins in the gastrointestinal tract, potentially reducing negative impacts of E. coli 165 

infection [19, 20]. These mechanisms may contribute to improved nutrient utilization efficiency and growth 166 

performance. BE supplementation increased CP digestibility. This could be attributed to high CEC and swelling 167 

properties [21, 22]. These characteristics may increase intestinal retention time, enhance enzyme-substrate 168 

interactions, and improve nutrient digestibility [21]. Improved protein digestion can support intestinal health and 169 

immune function, leading to enhanced growth performance [23, 24]. 170 

E. coli infection decreased the VH:CD, indicating intestinal mucosal damage. This result is consistent with 171 

previous studies showing that reduction in VH can lead to decreased nutrient absorption capacity and contribute to 172 

growth retardation [25]. BE supplementation increased VH in piglets challenged with E. coli. Water retention 173 

capacity of BE might protect and promote regeneration of intestinal mucosa [26].  174 

Three days post-infection, E. coli challenged groups showed decreased white blood cell (WBC) counts and levels 175 

of cytokines (IL-8, IL-10, IFN-γ, IgG). These results are similar to immune suppression caused by weaning stress 176 

[27], suggesting that E. coli toxins might have impaired immune cell function. IT supplementation increased IFN-γ 177 

levels in piglets challenged with E. coli. The copper content in IT might enhance macrophage function and improve 178 

defense against pathogens [28, 29]. This indicates that IT's immunomodulatory effects may lead to improved 179 

resistance to infections.  180 

E. coli infection is known to increase oxidative stress in the intestine. E. coli infection decreased TJ protein 181 

expression, consistent with previous studies showing that weaning stress and pathogenic challenges could 182 

compromise intestinal barrier function [30, 31]. Reduced TJ protein expression can increase intestinal permeability, 183 

promoting pathogen invasion and inflammation [32, 33]. IT supplementation increased MUC-1 expression, while 184 

BE supplementation increased CLDN-1 and ZO-1 expression. The manganese in IT might act as a cofactor for 185 



 
enzymes to protect against DNA oxidative damage, contributing to cell [34, 35]. BE may form a protective layer on 186 

the intestinal mucosa, shielding epithelial cells from E. coli toxins [36, 37]. These increases in TJ protein expression 187 

can strengthen the intestinal barrier function, thus preventing pathogen invasion and reducing inflammation [30, 38].  188 

Immune modulation mechanisms of IT and BE are not completely understood yet. For IT, its trace minerals may 189 

directly regulate immune cell functions. For example, zinc can promote T lymphocyte activation and proliferation, 190 

while copper can enhance macrophage function. For BE, its immune modulation effects are likely to be mainly 191 

indirect. BE can prevent excessive activation of the immune system by adsorbing intestinal toxins. Additionally, 192 

protective effect of BE on the intestinal mucosa may help maintain the function of gut-associated lymphoid tissues.  193 

In conclusion, this study demonstrates that IT and BE supplementation has the potential to improve intestinal health 194 

and growth performance of E. coli-challenged weaned piglets. IT and BE appear to support piglet health through 195 

distinct mechanisms. IT primarily acts through trace mineral supply to enhance immune function and toxin 196 

adsorption, while BE can improve nutrient digestibility and intestinal mucosal protection. 197 

198 
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Tables and Figures 316 

Table 1. Compositions of basal diets (as-fed-basis) 

Items content 

Ingredients, %  

corn 34.43 

extruded corn 15.00 
lactose 10.00 

Dehulled soybean meal, 51% CPa 13.50 
Soy protein concentrate, 65% CPa 10.00 

Plasma powder 6.00 
Whey 5.00 

Soy oil 2.20 
Monocalcium phosphate 1.26 

Limestone 1.40 
L-Lysine-HCl, 78% 0.06 

DL-Methionine, 50% 0.15 
Choline chloride, 25% 0.10 

Vitamin premixb 0.25 
Trace mineral premixc 0.25 

Salt 0.40 
Total 100 

Calculated value 
ME, Kcal/kg 3433 

CP, % 20.76 
Lysine, % 1.35 

Methionine, % 0.39 
Ca 0.82 

P 0.65 
Analyzed value 

ME, kcal/kg 3512 
CP, % 20.92 
a Crude protein 
bProvided per kg of complete diet: vitamin A, 11,025 IU; vitamin D3, 1103 IU; vitamin E, 44 IU; vitamin K, 4.4 
mg; ribofavin, 8.3 mg; niacin, 50 mg; thiamine, 4 mg; d-pantothenic, 29 mg; choline, 166 mg; and vitamin B12, 
33 mg 
cProvided per kg of complete diet without Zinc: Cu (as CuSO4•5H2O), 12mg; Mn (as MnO2), 8mg; I (as KI), 
0.28mg; and Se (as Na2SeO3•5H2O), 0.15mg 
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Table 2. Primer sequences used for the RT-qPCR analysis with the Muc1, ZO-1, CLDN1, and GAPDH genes  

Gene Primers Sequence (5’-3’) 

GAPDH 
Forward TCGGAGTGAACGGATTTGGC 

Reverse TGACAAGCTTCCCGTTCTCC 

Muc1 
Forward CCACAACCTGAAGACACAGT 

Reverse GACCAGAATACAGACCAGCA 

ZO-1 
Forward CTCTGTCCATGCAGATAAGC 

Reverse AATAGCTCCCTGTGGGATAA 

CLDN1 
Forward GCTGGGACTAATAGCCATCT 

Reverse AAGAGAGCCTGACCAAATTC 



 

Table 3. Effect of dietary supplementing illite and bentonite on growth performance in weaned piglets challenged with E. coli 

Items 
C+ C- 

SE 
Mi C p-value 

- IT BE - IT BE - IT BE + - Mi C Mi×C 

BW, kg                

D-3 9.62 9.61 9.62 9.60 9.61 9.60 0.365 9.67 9.61 9.61   1.000   

D0 10.13 10.11 10.14 10.14 10.15 10.13 0.370 10.13 10.13 10.13   0.999   

D7 11.22 11.56 11.49 11.82 12.05 11.77 0.383 11.52 11.80 11.63 11.42 11.88 0.756 0.160 0.915 
D14 12.93 13.32 13.17 13.86 14.05 13.70 0.385 13.40 13.69 13.43 13.14 13.87 0.718 0.032 0.873 
ADG, g                

D-3 to 0 126.88 123.75 130.00 133.75 135.63 131.25 10.485 130.31 129.69 130.63   0.996   

D0 to 7 155.71 207.14 192.86 240.00 271.43 234.29 8.367 197.86b 239.29a 213.57b 185.24 238.57 <0.001 <0.001 0.061 
D7 to 14 244.64 251.79 240.00 292.14 286.07 275.36 16.032 268.39 268.93 257.68 245.48 284.52 0.735 0.008 0.901 
D0 to 14 200.18 229.46 216.43 266.07 278.75 254.82 9.671 233.13 254.11 235.63 215.36 266.55 0.087 <0.001 0.379 
ADFI, g                

D-3 to 0 194.19 198.00 193.00 193.88 197.00 193.00 6.466 194.03 197.50 193.00   0.770   

D0 to 7 299.00 317.00 313.00 352.07 383.00 366.00 5.603 325.54b 350.00a 339.50ab 309.67 367.02 0.002 <0.001 0.427 
D7 to 14 414.00 406.00 389.00 409.00 346.00 414.00 33.719 411.50 376.00 40.50 403.00 389.67 0.565 0.634 0.457 
D0 to 14 356.00 361.00 351.00 380.25 402.00 390.00 7.398 368.13 381.50 370.50 356.00 390.75 0.184 <0.001 0.480 
G:F, g/g                

D-3 to 0 0.65 0.62 0.68 0.69 0.69 0.68 0.053 0.67 0.66 0.68   0.924   

D0 to 7 0.52b 0.65a 0.62ab 0.68a 0.71a 0.64a 0.026 0.60b 0.68a 0.63ab 0.60 0.68 0.018 0.001 0.040 
D7 to 14 0.59 0.62 0.62 0.71 0.68 0.67 0.039 0.68 0.65 0.64 0.61 0.69 0.958 0.027 0.596 

D0 to 14 0.56 0.64 0.62 0.70 0.69 0.65 0.027 0.63 0.66 0.64 0.60 0.68 0.402 0.002 0.168 
C, challenge; Mi, clay mineral; IT, illite; BE, bentonite; BW, body weight; ADG, average daily gain; ADFI, average daily feed intake G:F, feed efficiency; SE, standard 
error. 
a,b Values within a row with different superscripts are significantly different. 

320 



 

 321 
Table 4. Effect of dietary supplementing illite and bentonite on nutrient digestibility in weaned piglets challenged with E. coli 

Items 
C+ C- 

SE 
Mi C p-value 

- IT BE - IT BE - IT BE + - Mi C Mi×C 

1w                

DM 79.75 80.28 80.48 80.53 80.70 80.65 0.647 80.14 80.49 80.56 80.17 80.63 0.786 0.394 0.893 

CP 70.33 71.94 72.57 72.89 73.84 74.78 0.807 71.61b 72.89ab 73.67a 71.61 73.84 0.049 0.002 0.919 

GE 81.12 81.41 81.14 81.81 82.40 81.91 0.564 81.47 81.91 81.53 81.23 82.04 0.695 0.087 0.967 

2w                

DM 79.36 79.64 79.53 79.58 79.90 79.83 0.774 79.47 79.77 79.68 79.51 79.77 0.923 0.691 0.998 

CP 71.40 72.15 71.81 73.68 72.89 72.85 0.124 72.54 72.52 72.33 71.79 73.14 0.983 0.189 0.806 

GE 80.99 82.17 81.61 81.06 82.27 81.57 0.850 81.03 82.22 81.59 81.59 81.64 0.386 0.944 0.997 
C, challenge; Mi, clay mineral; IT, illite; BE, bentonite; DM, dry matter; CP, crude protein; GE, gross energy; SE, standard error. 
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Table 5. Effect of dietary supplementing illite and bentonite on intestinal morphology in weaned piglets challenged with E. coli 

Items 
C+ C- 

SE 
Mi C p-value 

- IT BE - IT BE - IT BE + - Mi C Mi×C 

VH 318.02c 362.00bc 366.00ab 394.34ab 408.75a 385.34ab 10.856 356.18b 385.37a 375.6ab 348.67 396.14 0.035 <0.001 0.045 

CD 183.74 187.35 198.47 172.80 179.48 179.32 6.112 178.27 183.41 188.90 189.85 177.20 0.237 0.017 0.639 

VH:CD 1.74 1.94 1.85 2.31 2.29 2.16 0.092 2.02 2.12 2.00 1.84 2.25 0.444 <0.001 0.315 

C, challenge; Mi, clay mineral; IT, illite; BE, bentonite; VH, villus height; CD, crypt depth; VH:CD, villus height to crypt depth ratio 
a-c Values within a row with different superscripts are significantly different. 
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Table 6. Effect of dietary supplementing illite and bentonite on blood profile in weaned piglets challenged with E. coli 

Item 
C+ C- 

SE 
Mi C p-value 

- IT BE - IT BE - IT BE + - Mi C Mi×C 

D0                

IL-8 2044.29 2061.94 2062.17 2057.01 2077.15 2071.31 203.862 2050.65 2069.55 2066.74 2056.13 2068.49 0.995 0.941 1.000 

IL-10 43.68 44.61 43.49 45.43 44.85 42.98 2.912 44.56 44.73 43.23 43.93 44.42 0.855 0.837 0.925 

MDA 70.77 84.89 63.31 72.89 71.94 83.49 11.091 71.83 78.42 73.40 72.99 76.11 0.826 0.732 0.336 

IFN-γ 190.57 164.99 192.10 187.51 189.35 175.70 21.662 189.04 177.17 183.90 182.56 184.19 0.860 0.927 0.634 

D3                

IL-8 2231.93 3021.26 2706.83 1885.84 1800.97 1827.35 222.309 2058.89 2411.11 2267.09 2653.34 1838.05 0.292 <.0001 0.153 

IL-10 49.90 64.81 54.59 46.33 44.60 48.25 4.226 48.11 54.71 51.42 56.44 46.39 0.306 0.006 0.121 

MDA 123.71 130.34 117.87 74.60 82.82 85.95 10.029 99.15 106.58 101.91 123.97 81.12 0.757 <.0001 0.642 

IFN-γ 242.16b 341.81a 283.42b 177.17c 175.40c 175.27c 13.443 209.66b 258.61a 229.35ab 289.13 175.95 0.003 <.0001 0.002 

D14                

IL-8 1915.27 2005.14 2261.69 2090.19 1953.23 1995.16 170.927 2002.73 1979.19 2128.43 2060.70 2012.86 0.647 0.734 0.441 

IL-10 51.67 49.61 48.39 48.63 52.80 52.79 2.522 50.15 51.21 50.59 49.89 51.41 0.916 0.465 0.296 

MDA 84.19 95.62 88.91 77.37 75.92 73.07 11.557 80.78 85.77 80.99 89.58 75.46 0.888 0.142 0.850 

IFN-γ 183.84 174.37 161.38 155.29 139.03 154.77 20.934 169.57 156.70 158.08 173.20 149.70 0.797 0.176 0.774 
C, challenge; Mi, clay mineral; IT, illite; BE, bentonite; WBC, white blood cell; IgG, immunoglobulin G; IL-8, interleukin-8; IL-10, Interleukin-10; MDA, 
malondialdehyde; IFN-γ, interferon γ; SE, standard error.  
a-c Values within a row with different superscripts are significantly different. 
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Table 7. Effect of dietary supplementing illite and bentonite on tight junction in weaned piglets challenged with E. coli 

Item 
C+ C- 

SE 
Mi C p-value 

- IT BE - IT BE - IT BE + - Mi C Mi×C 

MUC 0.82b 1.25a 1.17ab 1.00ab 0.90ab 0.85b 0.075 0.91 1.07 1.01 1.08 0.92 0.140 0.020 0.007 

CLDN-1 0.82b 1.18ab 1.23a 1.00ab 0.87ab 0.83b 0.081 0.91 1.03 1.03 1.08 0.90 0.270 0.021 0.008 

ZO-1 0.84b 1.15ab 1.24a 1.00ab 0.90ab 0.86b 0.075 0.92 1.02 1.05 1.08 0.92 0.232 0.023 0.008 

C, challenge; Mi, clay mineral; IT, illite; BE, bentonite; MUC, mucin-1; CLDN-1, claudin-1; ZO-1, zonula occludens-1; SE, standard error. 
a,b Values within a row with different superscripts are significantly different.  
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