ARTICLE INFORMATION	Fill in information in each box below
Article Type	Research article
Article Title (within 20 words without abbreviations)	Identification of the optimal monosodium glutamate-condense molasses soluble inclusion level replacing molasses in growing finishing pigs
Running Title (within 10 words)	Replacing molasses with MSG-CMS in growing-finishing pig
Author	Jinm Yang ^{1, #} , Jihwan Lee ^{2, #} , Minho Song ^{3, #} , Jihong Jung ⁴ , Sooyour Park ⁴ , Won Yun ⁵ , Seyoen Chang ¹ , Dongcheol Song ¹ , Kyeongh Jeon ¹ , Hyuck Kim ¹ , Hyeunbum Kim ^{6, *} , Jinho Cho ^{1, *}
Affiliation	 Department of Animal Science, Chungbuk National Universit Cheongju 28644, Republic of Korea Swine Science Division, National Institute of Animal Science, Rur Development Administration, Cheonan 31000, Republic of Korea Division of Animal and Dairy Science, Chungnam Nation University, Daejeon 34134, Republic of Korea NongHyup Feed Inc, Seoul 05398, Republic of Korea Central Research Institute, Woosung Feed Co., Ltd, Daejeon 3437 Republic of Korea Department of Animal Biotechnology, Dankook University, Cheona 31116, Republic of Korea
ORCID (for more information, please visit https://orcid.org)	Jinmo Yang / mike000315@gmail.com (https://orcid.org/0009-000 4272-3441) Jihwan Lee / junenet123@naver.com (https://orcid.org/0000-000 8161-4853)
	Minho Song / mhsong@cnu.ac.kr (https://orcid.org/0000-0002-451 5212) Jihong Jung / jjihong0309@hanmail.net (https://orcid.org/0009-000 1646-3124)
	Sooyoung Park / parksy0228@naver.com (https://oricd.org/000 0009-6777-8646) Won Yun / wyoun@woosung.kr (https://orcid.org/0000-0002-183
	2640) Seyeon Chang / angella2425@naver.com (https://orcid.org/00000002-5238-2982) Dongcheol Song / paul741@daum.net (https://orcid.org/0000-0005704-603X)
	Kyeongho Jeon / jeonkh1222@gmail.com (https://orcid.org/000 0003-2321-3319) Hyuck Kim / harrck85@naver.com (https://orcid.org/0000-0002-528
	0734) Hyeunbum Kim / hbkim@dankook.ac.kr (https://orcid.org/0000-000 1366-6090)
	Jinho Cho / jinhcho@cbnu.ac.kr (http://orcid.org/0000-0001-715 0778)
*	No potential conflict of interest relevant to this article was reported.
Funding sources State funding sources (grants, funding sources, equipment, and supplies). Include name and number of grant if available.	This work was supported by Nonghyup Feed inc., Republic of Kore
Acknowledgements	No applicable.
Availability of data and material	All data generated or analyzed during this study are included in the published article.
Authors' contributions Please specify the authors' role using this form .	Conceptualization: Cho JH, Jung JH, Park SY Data curation: Yang JM, Jeon KH, Kim H Formal analysis: Park SY, Song DC, Chang SY Methodology: Jung JH, Kim H, Yun W

	Software: Lee JH, Chang SY					
	Validation: Song MH, Song DC, Jeon KH					
	Investigation: Park SY, Yang JM, Kim HB					
	Writing - original draft: Cho JH, Yang JM, Lee JH					
	Writing - review & editing: Cho JH, Kim HB, Song MH, Yang JM, Lee					
	JH, Yun W, Jung JH, Park SY, Chang SY, Song DC, Jeon KH, Kim H					
Ethics approval and consent to participate	The experimental protocol was approved (CBNUA-24-0013-02) by					
	the Institutional Animal Care and Use Committee of Chungbuk					
	National University, Cheongju, Korea.					

2 CORRESPONDING AUTHOR CONTACT INFORMATION

For the corresponding author (responsible for correspondence, proofreading, and reprints)	Fill in information in each box below		
First name, middle initial, last name	Jinho Cho¹ Hyeunbum Kim⁵		
Email address – this is where your proofs will be sent	¹ jinhcho@chungbuk.ac.kr ⁵ hbkim@dankook.ac.kr		
Secondary Email address			
Address	¹ Department of animal science, Chungbuk National University, Cheongju 28644, Korea ⁵ Department of Animal Biotechnology, Dankook University, Cheonan 31116, Korea		
Cell phone number	¹ +82-10-8014-8580 (Jinho Cho)		
Office phone number	¹ +82-43-261-2544 (Jinho Cho) ⁵ +82-41-550-3653 (Hyeunbum Kim)		
Fax number	+82-43-273-2240 (Jinho Cho)		

Abstract

4

5 This study aimed to evaluate the effects of replacing molasses with monosodium glutamate (MSG)-6 condensed molasses solubles (CMS) in growing-finishing pig diets and determining the optimal 7 replacement ratio. Experiment 1, a total of 100 crossbred growing-finishing pigs [(Landrace × Yorkshire) 8 \times Duroc] (9 weeks of age; initial body weight 23.17 \pm 3.51 kg) were randomly assigned to five dietary 9 treatments for 14 weeks. Pigs were randomly assigned to five dietary treatments with 5 replicates of 10 pigs per pen. The treatments consisted of: (1) PC (basal diet with 2% molasses), (2) NC (basal diet), (3) T1 10 11 (basal diet with 1.5% molasses + 0.5% MSG-CMS), (4) T2 (basal diet with 1% molasses + 1% MSG-CMS), 12 and (5) T3 (basal diet with 2% MSG-CMS). Growth performance, nutrient digestibility, blood profiles, 13 fecal microbiota, and economic efficiency were assessed. Average daily gain in the T1 was higher (p < 0.05)14 than that in the T3. The average daily feed intake in the T3 was lower (p < 0.05) than that in the other 15 groups. In contrast, T1 and T2 had higher (p < 0.05) average daily feed intake than other groups. 16 Economically, the T1 showed higher total weight gain and lower (p < 0.05) feed cost per kg gain than the NC and T3 during the growing phase. Experiment 2, a total of 5 crossbred growing-finishing pigs (11 weeks 17 18 of age; initial body weight 36.84 ± 0.51 kg) were used in a 5-week metabolism trial based on a 5×5 Latin 19 square design to investigate the effects of MSG-CMS on nutrient digestibility and nitrogen retention. The 20 T1 had higher (p < 0.05) gross energy digestibility than the T3. Fecal nitrogen retention was lower (p < 0.05)21 0.05) in the T1 and NC than in the T2, while the T2 had higher (p < 0.05) total nitrogen retention than the 22 NC. In conclusion, Molasses can be replaced with MSG-CMS without negative effects, with 25% 23 replacement being the most effective for improving growth performance, nutrient digestibility, and 24 economic efficiency in growing-finishing pigs.

25

26

27

Keywords (3 to 6): feed additive, MSG-CMS, growth performance, nutrient digestibility, economic efficiency, swine

INTRODUCTION

Molasses, a by-product of sugar production from crops such as sugarcane, is widely used as an energy
source and primarily as a palatability enhancer in livestock feed due to its high contents of sucrose, glucose,
fructose, and minerals [1]. However, a recent decrease in the production of molasses combined with its
increasing global demand and disruptions in transportation through the Panama and Suez Canals have led
to a continuous rise in raw material costs, thereby exacerbating the economic burden associated with its use
as a feed additive [2].
In response to rising costs and the unstable global supply of molasses, increasing attention has been given
to monosodium glutamate-condensed molasses soluble (MSG-CMS), a fermentation derived by-product
that is generally more affordable due to its stable local availability, lower processing requirements, and
minimal competition with other industrial uses [3]. MSG-CMS is a secondary by-product obtained during
monosodium glutamate (MSG) production via microbial fermentation, in which molasses serves as the
primary carbon source [4]. During fermentation, microorganisms consume sugars from molasses,
producing glutamic acid and other amino acids concentrated in CMS [5]. In addition to these economic and
availability benefits, CMS contains glutamic acid and other amino acids derived from fermentation, which
support palatability and nutritional value in swine diets [2, 6]. Furthermore, it provides approximately 32%
crude protein (CP) and essential minerals (including potassium, chloride, and sulfur), further enhancing its
value as a feed ingredient for livestock [7]. Given these nutritional characteristics, several studies have
recently evaluated the efficacy of MSG-CMS in animal diets [5,8], including its potential role as a
palatability enhancer. Previous studies have shown that dietary inclusion of MSG-CMS can improve feed
intake (FI) and average daily gain (ADG) in growing-finishing pigs [2], and that replacing 2% molasses
with CMS does not compromise growth performance while increasing backfat thickness [7]. These findings
suggest that CMS may serve as an effective palatability enhancer like molasses.
However, previous studies have primarily focused on growth performance, leaving critical factors such
as nutrient utilization, blood profiles, fecal microbial, and cost-effectiveness relatively unexplored,
although these factors are all key aspects that must be addressed to comprehensively evaluate MSG-CMS
in pig diets. Therefore, this study aimed to determine the optimal substitution rate of molasses with MSG-
CMS in growing-finishing pig feed by evaluating its effects on growth performance, nutrient digestibility,

blood profiles, fecal microbiota, and economic efficiency.

MATERIALS AND METHODS

60	Ethics approval and consent to participate
61	The protocol for this study received approval after review by the Institutional Animal Care and Use
62	Committee at Chungbuk National University in Cheongju, Korea (approval no. CBNUA-24-0013-02).
63	
64	Preparation of molasses and MSG-CMS
65	Molasses was sugarcane-derived syrup provided by NongHyup Feed (Suwon, Korea) and used as an
66	energy and palatability source. MSG-CMS was a condensed liquid co-product from the monosodium
67	glutamate production process, also provided by NongHyup Feed. Both ingredients were top-dressed and
68	thoroughly mixed with the basal diet before feeding.
69	
70	Experiment 1
71	Experimental design, animals, and housing
72	A total of 100 crossbred pigs ([Landrace × Yorkshire] × Duroc) with an initial body weight (BW) of
73	23.17 ± 3.51 kg at 9 weeks of age were used for 14 weeks. The pigs were randomly assigned to five dietary
74	treatments with four replicates per treatment and five pigs per replicate. The experimental treatments
75	included: 1) PC (basal diet with 2% molasses); 2) NC (basal diet); 3) T1 (basal diet with 1.5% molasses
76	and 0.5% MSG-CMS); 4) T2 (basal diet with 1% molasses and 1% MSG-CMS); and 5) T3 (basal diet with
77	2% MSG-CMS).
78	The experimental period was divided into two phases: a growing phase (0-6 weeks) and a finishing phase
79	(6-14 weeks) according to the nutrient requirements suggested by NRC [9]. MSG-CMS was incorporated
80	into the diets based on the molasses replacement ratio designated for each treatment group (Table 1).
81	Throughout the entire experimental period, pigs had ad libitum access to feed and water.
82	
83	Sampling and Analysis
84	Growth performance and Backfat thickness
85	BW was measured at the beginning of the experiment and subsequently at 3, 6, 10, and 14 weeks (end
86	of the trial). FI was calculated by subtracting the remaining feed from the amount provided at each BW

measurement interval. ADG was determined by dividing the BW difference during each period by the number of days in that period. Feed efficiency was calculated as the ratio of ADG to average daily feed intake (ADFI).

Nutrient digestibility

To evaluate nutrient digestibility, 0.2% chromium oxide (Cr₂O₃) was added to the experimental diets as an indigestible marker at 6, 10, and 14 weeks. Fresh fecal samples were collected using the rectal massage method. Diet samples containing chromium oxide were also collected and stored at -20°C alongside fecal samples until further analysis. Before analysis, fecal samples were dried in an oven at 60°C for 72h and subsequently ground using a Wiley mill. The general nutrient composition and chromium concentrations of diets and feces were analyzed according to AOAC [9] procedures. Gross energy content was determined using an adiabatic bomb calorimeter (Model 6400, Parr Instrument, Moline, IL, USA). Nutrient digestibility was calculated using the following equation:

Digestibility (%) = $\{1 - (Cr_2O_3 \text{ concentration in diet, } \% \times \text{nutrient concentration in feces, } \%) / (Cr_2O_3 \text{ concentration in feces, } \% \times \text{nutrient concentration in diet, } \%)\} \times 100$

Blood profiles

At 6, 10, and 14 weeks, blood samples were collected from the jugular vein of four pigs per treatment using 5 mL syringes. Blood samples (2 mL) were collected into K₃EDTA vacuum tubes, and 3 mL samples were collected into serum separator tubes. Serum samples were centrifuged at 3,000 rpm for 15 min at 4°C. White blood cells (WBC), red blood cells (RBC), lymphocytes, neutrophils, eosinophils, and monocytes were analyzed using an automatic hematology analyzer (ADVIA 120, Bayer, NY, USA). Total protein (TP) was analyzed using the colorimetric method, and blood urea nitrogen (BUN) was analyzed using the urease-glutamate dehydrogenase (GLDH) method. After analysis, TP and BUN values were measured using an automatic chemistry analyzer (Cobas C720, Hoffmann-La Roche, Switzerland).

Fecal microbial

Fecal samples were collected from one pig per pen in each treatment at 6, 10, and 14 weeks using the rectal massage method. After collection, samples were immediately transported to the laboratory, suspended

in sterile saline solution, and homogenized. The samples were serially diluted from 10^{-3} to 10^{-7} and used for microbial enumeration. Harmful bacteria, *Escherichia coli*, were cultured using MacConkey agar, while beneficial bacteria, *Lactobacillus*, were cultured using Difco MRS agar. Both types of agar media used for the analyses were purchased from KisanBio (Seoul, Korea). The diluted samples were spread onto each agar medium and incubated at 37°C for 24 h for *E. coli* and 48 h for *Lactobacillus*. Microbial counts were determined and subsequently converted to logarithmic values (log CFU/g) for statistical analysis.

Economic efficiency

The economic efficiency of replacing molasses with MSG-CMS in growing-finishing pig diets was performed based on feed costs without considering other associated expenses during the experimental period. Feed cost per kilogram of weight gain was calculated using ingredient costs, total weight gain (TWG), and total feed intake (TFI).

Experiment 2

Experimental design, animals, and housing

A total of five crossbred pigs ([Landrace \times Yorkshire] \times Duroc) with an initial BW of 36.84 ± 0.51 kg at 11 weeks of age were used for 5 weeks in a 5×5 Latin square design experiment. The treatments were identical to those described in Experiment 1. Pigs were individually and randomly housed in metabolism cages (1.2 m \times 0.7 m).

Experimental diets were formulated and provided as described in Experiment 1. Daily feed allowance was adjusted to 2.7 times the maintenance energy requirement for growing pigs $(2.7 \times 110 \text{ kcal} \times \text{BW} \text{ kg}^{0.75})$. The daily feeding allowance was divided into two equal portions and fed twice daily at 08:00 and 17:00 h. Water was available *ad libitum*.

Sampling and Analysis

Apparent total tract digestibility (ATTD) was determined by the total collection method. After an adaptation period of 5 days, pigs were fed experimental diets containing 0.4% chromium oxide (Cr₂O₃) as an indigestible marker. Total feces and urine were collected from the appearance of the marker for the following 3 days. Urine was collected daily into a container with 50 mL of 6 mol/L HCl placed under each

45	metabolism cage to fix nitrogen. Collected feces and urine were weighed and stored at -20°C until analysis.
46	Before analysis, fecal samples were dried in an oven at 60°C for 72h and subsequently ground using a
47	Wiley mill. The chemical composition of the diets and feces was analyzed following AOAC (2007)
48	methods, and gross energy was determined using an adiabatic bomb calorimeter (Model 6400, Parr
49	Instrument, Moline, IL, USA).
50	The ATTD of nutrients and nitrogen retention were calculated using the following equations:
51	$Nutrient\ digestibility\ (\%) = [(Dry\ matter\ intake \times Nutrient\ concentration\ in\ diet) - (Fecal\ output \times Nutrient\ digestibility\ (\%)]$
52	concentration in feces)] / (Dry matter intake \times Nutrient concentration in diet) \times 100
53	Nitrogen retention (%) = [(Nitrogen intake - Nitrogen excreted in feces - Nitrogen excreted in urine) /
54	Nitrogen intake] \times 100.
55	
56	Statistical analysis
57	All data in this study were analyzed utilizing JMP (JMP® Pro version 16.0.0, SAS Institute Inc., Cary,
58	NC, USA). A one-way analysis of variance (ANOVA) was conducted to evaluate differences among
59	treatment groups, and the significance of treatment means was determined using Tukey's multiple range
60	test to assess differences among treatment groups, with significance set at $p < 0.05$. A tendency was
61	considered when $0.05 \le p < 0.10$. Data are presented as means with their corresponding standard errors.

162	RESULTS
163	Experiment 1
164	Growth performance
165	The effects of replacing molasses with different ratios of MSG-CMS in growing-finishing pig diets on
166	growth performance are presented in Table 2. During the 0–6 weeks, the T1 showed significantly higher (p
167	< 0.05) ADG and G:F than the T3. Additionally, the T3 exhibited significantly less ($p < 0.05$) ADFI than
168	the PC. During 10–14 weeks and 6–14 weeks, the T1 showed significantly higher ($p < 0.05$) ADFI than the
169	NC. Throughout the entire experimental period, the T1 and the T2 showed significantly higher ($p < 0.05$)
170	ADFI than the NC, but no significant differences were observed when compared with the PC.
171	
172	Nutrient digestibility
173	The effects of replacing molasses with different ratios of MSG-CMS in growing-finishing pig diets on
174	nutrient digestibility are presented in Table 3. There were no significant differences in DM, CP, and GE
175	digestibility among treatments during the experimental periods.
176	
177	Blood profiles
178	The effects of replacing molasses with different ratios of MSG-CMS in growing-finishing pig diets on
179	blood profiles are presented in Table 4. There were no significant differences in blood profiles (WBC, RBC,
180	neutrophils, lymphocytes, eosinophils, monocytes, total protein, and BUN) among treatments during the
181	experimental periods.
182	
183	Fecal microbial
184	The effects of replacing molasses with different ratios of MSG-CMS in growing-finishing pig diets on
185	fecal microbial counts are presented in Table 5. There were no significant differences in fecal <i>E. coli</i> and
186	Lactobacillus counts that were observed among treatments during the experimental periods.
187	
188	Economic efficiency

The effects of replacing molasses with different ratios of MSG-CMS in growing-finishing pig diets on

economic efficiency are presented in Table 6. During weeks 0–6, the T1 showed significantly higher (p < 0.05) TWG than the NC and the T3. TFI was significantly lower (p < 0.05) in the T3 than the PC. The T1 exhibited significantly lower (p < 0.05) feed cost per kg gain than both the PC and the T3. During the weeks 6–14, the T1 and the PC showed significantly higher (p < 0.05) TFI than the NC. Throughout the entire experimental period, the T1 and T2 showed significantly higher (p < 0.05) TFI than the NC.

Experiment 2

Nutrient Digestibility and Nitrogen retention

The effects of replacing molasses with different ratios of MSG-CMS in growing-finishing pig diets on nutrient digestibility are presented in Table 7. The T1 tended to have lower CP digestibility than the T2 (p = 0.069). While GE digestibility was significantly higher (p < 0.05) in the T1 than the T3.

The effects of replacing molasses with different ratios of MSG-CMS in growing-finishing pig diets on nitrogen retention are shown in Table 8. Fecal nitrogen retention was significantly lower (p < 0.05) in the T1 and NC than in the T2. Total nitrogen retention was significantly higher (p < 0.05) in the T2 than in the NC. Nitrogen retention relative to nitrogen intake tended to be higher in the T1 and T3 than in the T2 (p = 0.079).

DISCUSSION

Experiment 1

In comparison to other conventional CMS, MSG-CMS contains relatively lower levels of crude protein,
essential amino acids, and minerals [2,6,11]. Nevertheless, its high digestibility and appropriate moisture
content enhance its manageability and applicability in feed formulation, highlighting its potential as a
valuable ingredient in animal nutrition [12]. However, potential limitations associated with its excessive
inclusion, particularly its impact on feed palatability and intake, must also be considered.
Excessive use of flavor additives, such as MSG-CMS, disrupts the overall flavor profile of feed, reduce
its palatability and ultimately decrease feed intake [13-15]. In the present study, the treatment in which
molasses was completely replaced with MSG-CMS significantly reduced ADFI, ADG, and G:F during 0-
6 weeks. The observed decrease was due to reduced feed palatability caused by excessive inclusion of
MSG-CMS [6,15]. However, no significant differences were observed during 6-14 weeks. This result
suggests that the negative effects of MSG-CMS were reduced over time as pigs adapted to the flavor [17].
In contrast, partial replacement of molasses with 0.5% MSG-CMS showed no adverse effects on growth
performance, indicating its potential as an appropriate inclusion level. This is because amino acids and
nitrogenous compounds in CMS, which originated from microbial fermentation, improved protein synthesis
and maintained nutrient balance [6]. Overall, these findings are consistent with previous research indicating
that determining an appropriate inclusion level is critical for the practical application of MSG-CMS as a
functional feed ingredient [18-20].
In this study, there were no significant differences in the digestibility of DM (85-88%), CP (67-72%),
and GE (77-82%) among treatments, which is attributed to the low inclusion level of MSG-CMS [6]. These
results suggest that MSG-CMS, when included at an appropriate level, does not impair nutrient digestibility
and can be safely used as a feed ingredient in pig diets. This is consistent with a previous study showing
that appropriate inclusion of molasses by-products does not impair nutrient digestibility in pigs [21,22].
Similarly, Stemme et al. [3] also reported similar digestibility values for organic matter (72.3%) and crude
protein (71.8%) when CMS was included at 16% in pig diets. However, when CMS was included at levels
over 43%, CP digestibility decreased by more than 10% [3].
BUN and total protein levels were evaluated as indicators of protein utilization and overall metabolic
status, as they can indirectly reflect nitrogen retention and liver protein synthesis [23,24]. In this study,
blood profiles such as WBC, RBC, total protein, and BUN showed no significant differences among

treatments. These results indicate that MSG-CMS did not negatively affect metabolic health, which is consistent with previous studies reporting that MSG had no adverse effects on blood profiles related to metabolism [25-27]. Therefore, MSG-CMS can be considered metabolically safe and nutritionally acceptable when used at appropriate levels [28,29].

Fecal microbiota are dynamic biomarkers affected by large intestinal fermentation, environmental factors, and dietary components such as soluble carbohydrates and organic acid compounds [30,31]. They are closely associated with nutrient digestibility, immune function, and animal productivity [32,33]. *Lactobacillus* is a beneficial microbe that can enhance gut health and nutrient absorption, whereas excessive *E. coli* intestinal function, making their balance a key indicator of intestinal microbial status [34]. In this study, no significant differences in fecal microbial composition were observed among treatments. This result is likely due to attributed to the relatively low substitution level of MSG-CMS [35,36]. Therefore, while this finding suggests that MSG-CMS at low inclusion levels does not negatively impact the microbial balance in feces, further studies are needed to evaluate its effects at higher substitution levels.

MSG-CMS, a secondary by-product of MSG production, is more affordable and requires less processing than other fermentation-derived additives such as yeast extract or *Lactobacillus* products [37]. This economic advantage enhances its practicality as a feed additive in commercial pig diets [38]. In the present study, pigs fed MSG-CMS diets showed a tendency toward improved feed cost efficiency without a negative effect on FI, aligning with its economic potential. This result indicates its potential as a cost-effective additive for pig diets [39]. Similarly, Park et al. [40] reported that partial replacement of high-cost protein sources such as spray dried porcine plasma with hydrolyzed proteins significantly reduced feed costs without negatively affecting growth performance in pigs, suggesting that low-cost alternatives like MSG-CMS may offer comparable economic benefits. Shahini et al [41] have emphasized that feed cost reduction is a key strategy for improving farm profitability, especially under rising input prices. This perspective supports the economic applicability of MSG-CMS as a low-cost additive in swine production.

Experiment 2

Metabolic trials offer controlled conditions with limited animal movement, which contribute to reduced variability and enable accurate measurement of nutrient digestibility and metabolism [42,43]. Under controlled conditions, reduced GE digestibility was only observed when MSG-CMS completely replaced molasses. MSG-CMS contains significantly lower levels of monosaccharides such as sucrose and glucose

than molasses [44]. This is because it is a by-product of MSG production that undergoes different processing steps known to reduce the contents of monosaccharides [4]. Monosaccharides are rapidly absorbed in the small intestine and directly utilized as an immediate energy source [45,46]. Therefore, a reduction in monosaccharide intake, as observed in complete MSG-CMS replacement, reduces the supply of absorbable energy in the intestinal tract [47]. Consequently, it impairs the development of the intestinal tract and reduces the synthesis or activity of digestive enzymes over time, ultimately decreasing GE digestibility [48]. Accordingly, maintaining an appropriate inclusion level of MSG-CMS is considered important to support optimal digestive function. MSG-CMS is not regarded as a primary protein source but contains amino acids and nitrogenous compounds derived from microbial fermentation, which can contribute to nitrogen utilization in pig diets [34]. However, previous studies have reported that CMS supplementation reduces reduce nitrogen digestibility and increase nitrogen excretion, depending on the inclusion level and diet composition [49]. In the present study, nitrogen excretion tended to decrease in the T1 group, which contained a lower level of MSG-CMS in combination with molasses, whereas this effect was not observed in T2 and T3, where MSG-CMS was included at higher levels. This suggests that moderate supplementation of MSG-CMS, when combined with fermentable carbohydrates such as molasses, may be more effective in improving

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

underlying mechanisms involved.

In the present study, nitrogen excretion tended to decrease in the T1 group, which contained a lower level of MSG-CMS in combination with molasses, whereas this effect was not observed in T2 and T3, where MSG-CMS was included at higher levels. This suggests that moderate supplementation of MSG-CMS, when combined with fermentable carbohydrates such as molasses, may be more effective in improving nitrogen metabolism. Molasses provides fermentable carbohydrates, including non-starch polysaccharides, that serve as energy sources for intestinal microbes and epithelial cells [50,51], and enhance microbial fermentation in the large intestine [34,52]. These microbial activities can support microbial protein synthesis and nitrogen retention, thereby contributing to improved nitrogen utilization [53]. In contrast, high inclusion levels of MSG-CMS have adverse effects on nitrogen balance due to limited digestibility or metabolic burden [54]. Taken together, these findings indicate that a balanced combination of fermentable carbohydrates and nitrogenous compounds is critical for optimizing nitrogen utilization. Further studies are needed to determine the optimal inclusion levels of MSG-CMS and to clarify the

Conclusion

This study supports the feasibility of partially replacing molasses with MSG-CMS in growing-finishing
pig diets. Specifically, a 25% replacement of molasses with MSG-CMS improved ADG, G:F, GE
digestibility, and economic efficiency without negative impacts on blood profiles or fecal microbiota
Future studies should explore higher inclusion rates or extended feeding durations to clarify physiological
and microbial responses to MSG-CMS.

REFERENCES

- 300 1. Choi IH. Effects of dietary microbial-fermented molasses on egg production and egg quality in laying
- 301 hens. J Environ Sci Int. 2019;28(1):159–62. https://doi.org/10.5322/JESI.2019.28.1.159
- 302 2. Kim KH, Song IH, Chun JL, Jeon JH, Seo K, Nam KT. Effects of dietary supplementation of condensed
- 303 molasses soluble (CMS) on growth performance and meat quality in growing-finishing
- 304 pigs. J Korea Acad Ind Coop Soc. 2020;21(11):427–34. https://doi.org /10.5762/ KAIS.2020.21.1
- 305 1.427

- 306 3. Stemme K, Gerdes B, Harms A, Kamphues J. Beet-vinasse (condensed molasses solubles) as an
- ingredient in diets for cattle and pigs: nutritive value and limitations. J Anim Physiol Anim Nutr.
- 308 2005;89(3–6):179–83. https://doi.org/10.1111/j.1439-0396.2005.00554.x
- 4. Damron BL, Hall MF, Harms RH. Condensed molasses solubles in poultry feeds. Poult Sci.
- 310 1980;59(3):673–5. https://doi.org/10.3382/ps.0590673
- 5. Ma J, Ma C, Fan X, Shah AM, Mao J. Use of condensed molasses fermentation solubles as an alternative
- source of concentrates in dairy cows. Anim Biosci. 2020;34(2):205. https://doi.org/10.3382/ps.0590673
- 6. Figueroa J, Frías D, Solà-Oriol D, Tadich T, Franco-Rosselló R, Nuñez V, Dwyer DM. Palatability in
- 314 pigs, the pleasure of consumption. J Anim Sci. 2019;97(5):2165–74. https://doi.org/10.1093/jas/skz085
- 7. Munezero O, Kim IH. Effect of condensed molasses fermentation solubles (CMS) to replace molasses
- on the growth performance, nutrient digestibility, and backfat thickness in growing pigs. Korean J Agric
- 317 Sci. 2022;49(2):185–92. https://doi.org/10.7744/kjoas.20220015
- 8. Chien YH, Chen CC. Substitution of defatted soybean meal with condensed molasses fermentation
- soluble in diets for fingerling milkfish (Chanos chanos Forsskal). J Fish Soc Taiwan. 2007;34(1):11–
- 320 20.
- 9. National Research Council (NRC). Nutrient requirements of swine. 11th ed. Washington (DC): National
- 322 Academy Press; 2012.
- 323 10. Association of Official Analytical Chemists (AOAC). Official methods of analysis. 18th ed. Arlington
- 324 (VA): AOAC; 2007.
- 325 11. Palmonari A, Cavallini D, Sniffen CJ, Fernandes L, Holder P, Fagioli L, Mammi L. Characterization of
- 326 molasses chemical composition. J Dairy Sci. 2020;103(7):6244–9. https://doi.org/10.3168/jds.2019-
- 327 17644

- 328 12. Shurson GC, Hung YT, Jang JC, Urriola PE. Measures matter—determining the true nutri-physiological
- 329 value of feed ingredients for swine. Animals. 2021;11(5):1259. https://doi.org/10.3390/ani11051259
- 330 13. Seabolt BV, Van Heugten E, Kim SW, Ange-van Heugten KD, Roura E. Feed preferences and
- performance of nursery pigs fed diets containing various inclusion amounts and qualities of distillers
- 332 coproducts and flavor. J Anim Sci. 2010;88(11):3725–38. https://doi.org/10.2527/jas.2009-2640
- 333 14. Hastad CW. The use of dried distillers grain with solubles in swine diets [doctoral dissertation].
- Manhattan (KS): Kansas State University; 2005.
- 335 15. O'Reilly K. Effect of condensed molasses solubles on intake, growth performance, digestibility and
- certain rumen parameters of sheep [master's thesis]. Pretoria (South Africa): University of Pretoria;
- 337 2017.
- 338 16. Roura E, Fu M. Taste, nutrient sensing and feed intake in pigs (130 years of research: then, now and
- future). Anim Feed Sci Technol. 2017;233:3–12. https://doi.org/10.1016/j.anifeedsci.2017.08.002
- 340 17. Oostindjer, M., Bolhuis, J. E., Simon, K., van den Brand, H., & Kemp, B. (2011). Perinatal flavour
- learning and adaptation to being weaned: all the pig needs is smell. PLoS One, 6(10), e25318.
- 342 https://doi.org/10.1016/j.anifeedsci.2019.114315
- 18. Xu B, Li Z, Wang C, Fu J, Zhang Y, Wang Y, Lu Z. Effects of fermented feed supplementation on pig
- growth performance: a meta-analysis. Anim Feed Sci Technol. 2020;259:114315.
- 345 19. Tang X, Liu X, Zhang K. Effects of microbial fermented feed on serum biochemical profile, carcass
- traits, meat amino acid and fatty acid profile, and gut microbiome composition of finishing pigs. Front
- 347 Vet Sci. 2021;8:744630. https://doi.org/10.3389/fvets.2021.744630
- 20. Rao ZX, Tokach MD, Woodworth JC, DeRouchey JM, Goodband RD, Gebhardt JT. Effects of various
- feed additives on finishing pig growth performance and carcass characteristics: a review. Animals.
- 350 2023;13(2):200. https://doi.org/10.3390/ani13020200
- 351 21. Ramukanda M. Effects of molasses-enhanced fermentation and exogenous enzymes on the nutritive
- value of castor bean (Ricinus communis L) oil cake for growing pigs [dissertation]. Pietermaritzburg:
- 353 University of KwaZulu-Natal; 2023.
- 354 22. Eklund M, Mosenthin R, Tafaj M, Wamatu J. Effects of betaine and condensed molasses solubles on
- nitrogen balance and nutrient digestibility in piglets fed diets deficient in methionine and low in
- 356 compatible osmolytes. Arch Anim Nutr. 2006;60(4):289–300.
- 357 https://doi.org/10.1080/17450390600785525.

- 358 23. Ndlovu T, Chimonyo M, Okoh AI, Muchenje V, Dzama K, Raats JG. Assessing the nutritional status
- of beef cattle: current practices and future prospects. Afr J Biotechnol. 2007;6(24). t
- 360 http://www.academicjournals.org/AJB
- 361 24. Abeni F, Petrera F, Dal Prà A, Rapetti L, Crovetto GM, Galassi G. Blood parameters in fattening pigs
- from two genetic types fed diet with three different protein concentrations. Transl Anim Sci.
- 363 2018;2(4):372–82. https://doi.org/10.1093/tas/txy069
- 364 25. Cho JH, Upadhaya SD, Kim IH. Effects of dietary supplementation of modified zinc oxide on growth
- performance, nutrient digestibility, blood profiles, fecal microbial shedding and fecal score in weanling
- 366 pigs. Anim Sci J. 2015;86(6):617–23. https://doi.org/10.1111/asj.12329
- 367 26. Rezaei R, Knabe DA, Tekwe CD, Dahanayaka S, Ficken MD, Fielder SE, Wu G. Dietary
- 368 supplementation with monosodium glutamate is safe and improves growth performance in postweaning
- pigs. Amino Acids. 2013;44:911–23. https://doi.org/10.1007/s00726-012-1420-x
- 27. Fang LH, Jin YH, Do SH, Hong JS, Kim BO, Han TH, Kim YY. Effects of dietary energy and crude
- protein levels on growth performance, blood profiles, and carcass traits in growing-finishing pigs. J
- 372 Anim Sci Technol. 2019;61(4):204. https://doi.org/10.5187/jast.2019.61.4.204
- 373 28. Ježek J, Starič J, Nemec M, Plut J, Oven IG, Klinkon M, Štukelj M. The influence of age, farm, and
- physiological status on pig hematological profiles. J Swine Health Prod. 2018;26(2):72–8.
- 375 29. Han GG, Lee JY, Jin GD, Park J, Choi YH, Kang SK, Choi YJ. Tracing of the fecal microbiota of
- 376 commercial pigs at five growth stages from birth to shipment. Sci Rep. 2018;8(1):6012.
- 377 https://doi.org/10.1038/s41598-018-24508-7
- 37.8 30. Guo Y, He F, Deng Z, Yin J, Guan G, Xie Z, et al. Dietary serine supplementation improves growth
- performance, intramuscular fat content, and composition of gut microbes and metabolites in growing—
- finishing pigs. Agriculture. 2024;14(3):349. https://doi.org/10.3390/agriculture14030349
- 381 31. Xiong Y, Yi H, Wu Q, Jiang Z, Wang L. Effects of acute heat stress on intestinal microbiota in grow-
- finishing pigs, and associations with feed intake and serum profile. J Appl Microbiol. 2020;128(3):840–
- 383 52. https://doi.org/10.1111/jam.14504
- 384 32. Song D, Chang S, An J, Park S, Jeon K, Kim H, Cho J. Effects of different stocking density in lairage
- of fattening pigs in high temperatures. Korean J Agric Sci. 2023;50(4):861–7.
- 386 https://doi.org/10.7744/kjoas.500422

- 33. Chang SY, Lee JH, Oh HJ, An JW, Song DC, Cho HA, Cho JH. Effect of different ratios of phytogenic
- feed additives on growth performance, nutrient digestibility, intestinal barrier integrity, and immune
- response in weaned pigs challenged with a pathogenic Escherichia coli. J Anim Sci. 2023;101:skad148.
- 390 https://doi.org/10.1093/jas/skad148
- 39.1 34. Wang T, Yao W, Li J, Shao Y, He Q, Xia J, Huang F. Dietary garcinol supplementation improves
- diarrhea and intestinal barrier function associated with its modulation of gut microbiota in weaned
- 393 piglets. J Anim Sci Biotechnol. 2020;11:1–13. https://doi.org/10.1186/s40104-020-0426-6
- 394 35. Yan L, Kim IH. Effect of probiotics supplementation in diets with different nutrient densities on growth
- performance, nutrient digestibility, blood characteristics, faecal microbial population and faecal noxious
- gas content in growing pigs. J Appl Anim Res. 2013;41:23-8.
- 397 https://doi.org/10.1080/09712119.2012.739092
- 398 36. Zali A, Eftekhari M, Pourasad K, Ganjkhanlou M, Fatehi F, Zakaria Pour H. Effect of vinasse
- 399 (condensed molasses solubles) on performance, blood metabolites, ruminal parameters and carcass
- 400 characteristics of Mahabadi goat male kids. J Anim Feed Sci. 2019;28:321-7.
- 401 https://doi.org/10.22358/jafs/112527/2019
- 402 37. Mordenti AL, Giaretta E, Campidonico L, Parazza P, Formigoni A. A review regarding the use of
- 403 molasses in animal nutrition. Animals. 2021;11(1):115. https://doi.org/10.3390/ani11010115
- 38. Cravens WW, Holck GL. Economic benefits to the livestock producer and to the consumer from the
- 405 use of feed additives, J Anim Sci. 1970;31(6):1102–6. https://doi.org/10.2527/jas1970.3161102x
- 406 39. Pienaar GA. The potential of condensed molasses solubles (CMS) to replace molasses in feedlot diets
- 407 [master's thesis]. Pretoria (South Africa): University of Pretoria; 2016.
- 408 40. Park S, Lee J, Kim S, Kim H, Song D, Chang S, et al. Identifying the optimal ratios for replacing spray-
- dried plasma protein with hydrolyzed porcine intestinal protein in weaning pig. J Anim Sci Technol.
- 410 2024. https://doi.org/10.5187/jast.2024.e120
- 41. Shahini E, Misiuk M, Zakhodym M, Borkovska V, Koval N. Analysis of the economic efficiency of
- 412 growing pigs for meat and its improvement. Sci Horiz. 2023;26(6):110–20. 10.48077/scihor6.2023.110
- 413 42. Li DH, Kim BG, Lee SR. A respiration-metabolism chamber system for measuring gas emission and
- 414 nutrient digestibility in small ruminant animals. Rev Colomb Cienc Pecu. 2010;23(4):444–50.
- 415 43. Hansard SL, Plumlee MP, Hobbs CS, Comar CL. The design and operation of metabolism units for
- 416 nutritional studies with swine. J Anim Sci. 1951;10(1):88–96. https://doi.org/10.2527/jas1951.10188x

- 41.7 44. Karalazos A, Swan H. The nutritional value for sheep of molasses and condensed molasses solubles.
- 418 Anim Feed Sci Technol. 1977;2:143–52. https://doi.org/10.1016/0377-8401(77)90015-3
- 419 45. Navarro DM, Abelilla JJ, Stein HH. Structures and characteristics of carbohydrates in diets fed to pigs:
- 420 a review. J Anim Sci Biotechnol. 2019;10:1–17. https://doi.org/10.1186/s40104-019-0345-6
- 421 46. Knudsen KEB, Hedemann MS, Lærke HN. The role of carbohydrates in intestinal health of pigs. Anim
- 422 Feed Sci Technol. 2012;173(1–2):41–53. https://doi.org/10.1016/j.anifeedsci.2011.12.020
- 47. Knudsen KB, Lærke HN, Ingerslev AK, Hedemann MS, Nielsen TS, Theil PK. Carbohydrates in pig
- 424 nutrition–recent advances. J Anim Sci. 2016;94(Suppl 3):1-11. https://doi.org/10.2527/jas.2015-9785
- 425 48. Chen L, Gao LX, Huang OH, Zhong RO, Zhang LL, Tang XF, Zhang HF. Viscous and fermentable
- 426 nonstarch polysaccharides affect intestinal nutrient and energy flow and hindgut fermentation in
- 427 growing pigs. J Anim Sci. 2017;95(11):5054–63. https://doi.org/10.2527/jas2017.1662
- 49. Hannon K, Trenkle A. Evaluation of condensed molasses fermentation solubles as a nonprotein nitrogen
- 429 source for ruminants. J Anim Sci. 1990;68(9):2634–41. https://doi.org/10.2527/1990.6892634x
- 430 50. Nahm KH. Influences of fermentable carbohydrates on shifting nitrogen excretion and reducing
- 431 ammonia emission of pigs. Crit Rev Environ Sci Technol. 2003;33(2):165-86.
- 432 https://doi.org/10.1080/10643380390814523
- 433 51. Mayromichalis I, Hancock JD, Hines RH, Senne BW, Cao H. Lactose, sucrose, and molasses in simple
- and complex diets for nursery pigs. Anim Feed Sci Technol. 2001;93(3-4):127-35.
- 435 https://doi.org/10.1016/S0377-8401(01)00287-5
- 436 52. Van Der Peet-Schwering CMC, Kemp B, Den Hartog LA, Schrama JW, Verstegen MWA. Adaptation
- 437 to the digestion of nutrients of a starch diet or a non-starch polysaccharide diet in group-housed pregnant
- 438 sows. J Anim Physiol Anim Nutr (Berl). 2002;86(11-12), 414-421. https://doi.org/10.1046/j.1439-
- 439 0396.2002.00398.x
- 440 53. Pi Y, Gao K, Peng Y, Mu CL, Zhu WY. Antibiotic-induced alterations of the gut microbiota and
- 441 microbial fermentation in protein parallel the changes in host nitrogen metabolism of growing
- pigs. Animal. 2019;13(2), 262-272. https://doi.org/10.1017/S1751731118001416
- 443 54. Mansilla WD. Non-protein nitrogen is used efficiently for improving protein deposition and feed
- efficiency in growing pigs [doctoral dissertation]. Guelph (Canada): University of Guelph; 2013.

TABLES AND FIGURES

Table 1. Compositions of basal diet (as-fed-basis)¹

Items	Growing period (0–6 W)	Finishing period (6–14 W)
Ingredients, %		
Corn	53.479	53.959
Soybean meal	15.660	15.466
Wheat	3.750	3.750
Rice bran	6.500	6.500
DDGS	11.500	10.500
Limestone	1.270	0.883
Vegetable oil	1.320	2.000
Sugar	4.590	4.950
Poultry oil	0.200	0.200
Salt	0.358	0.378
Choline chloride	0.040	0.066
Lysine sulfate, 78%	0.724	0.731
L-methionine, 99%	0.083	0.128
Tryptophan, 98%	0.049	0.043
Emulsifier	0.050	0.050
MDCP	0.061	-
Threonine, 99%	0.146	0.176
Vitamin & mineral premix ²	0.220	0.220
Total	100.00	100.00
Calculated value		
NE, kcal/kg	2475	2475
CP, %	15.90	14.89
Lysine, %	1.35	0.96
Methionine, %	0.36	0.34
Ca, %	0.72	0.46
P, %	0.49	0.44

¹⁾DDGS, dried distiller's grains with solubles; MDCP, monodicalcium phosphate; CP, crude protein; NE, net energy; Ca, calcium; P, phosphorus.

²⁾Provided per kilogram of complete diet: vitamin A, 11025 U; vitamin D₃, 1103 U; vitamin E, 44 U; vitamin K, 4.4 mg; riboflavin, 8.3 mg; niacin, 50 mg; thiamine, 4 mg; d-pantothenic, 29 mg; choline, 166 mg; and vitamin B₁₂, 33 μg; Cu (as CuSO₄ · 5H₂O), 12 mg; Zn (as ZnSO₄), 85 mg; Mn (as MnO₂), 8 mg; I (as KI), 0.28 mg; and selenium (as Na₂SeO₃ · 5H₂O), 0.15 mg.

Table 2. Effect of monosodium glutamate-condensed molasses solubles (MSG-CMS) to replace

molasses on growth	performance in	n growing-f	inishing	pigs (Ex	(p 1)

molasses on gro	PC	nce in growi NC	ng-misning T1	T2	T3	SE	<i>p</i> -value
BW, kg							1
Initial	23.30	23.20	23.23	23.05	23.05	2.027	1.000
3W	37.95	37.23	38.88	37.88	36.98	2.304	0.980
6W	56.43	54.35	58.63	57.08	53.85	2.109	0.502
10 W	83.95	80.55	85.90	84.40	80.95	3.005	0.674
14W	112.53	108.23	114.88	114.15	108.43	2.862	0.349
0-3 W							
ADG, kg	0.70	0.67	0.75	0.71	0.66	0.058	0.858
ADFI, kg	1.62	1.56	1.57	1.57	1.55	0.022	0.200
G:F	0.43	0.43	0.48	0.45	0.43	0.040	0.887
3–6 W							
ADG, kg	0.88	0.82	0.94	0.91	0.80	0.060	0.434
ADFI, kg	2.22a	2.04^{b}	2.19^{ab}	2.17 ^{ab}	2.10 ^{ab}	0.033	0.011
G:F	0.40	0.40	0.43	0.42	0.38	0.030	0.810
0–6 W							
ADG, kg	0.79^{ab}	0.74^{b}	0.84^{a}	0.81 ^{ab}	0.73^{b}	0.018	0.003
ADFI, kg	1.92ª	1.80^{b}	1.88 ^{ab}	1.87 ^{ab}	1.82 ^b	0.018	0.002
G:F	0.41^{ab}	0.41^{ab}	0.45a	0.43 ^{ab}	0.40^{b}	0.010	0.029
6–10 W							
ADG, kg	0.98	0.94	0.97	0.98	0.97	0.107	0.998
ADFI, kg	2.49	2.43	2.48	2.47	2.46	0.021	0.317
G:F	0.39	0.39	0.39	0.39	0.39	0.043	1.000
10–14 W		7					
ADG, kg	1.02	0.99	1.03	1.06	0.98	0.054	0.819
ADFI, kg	2.84ª	2.64 ^b	2.85^{a}	2.79^{ab}	2.73^{ab}	0.036	0.005
G:F	0.36	0.38	0.36	0.38	0.36	0.019	0.901
6–14 W							
ADG, kg	1.00	0.96	1.00	1.02	0.97	0.042	0.868
ADFI, kg	2.66a	2.53 ^b	2.67 ^a	2.63^{ab}	2.59 ^{ab}	0.023	0.005
G:F	0.38	0.38	0.38	0.39	0.38	0.016	0.985
0–14 W							
ADG, kg	0.91	0.87	0.94	0.93	0.87	0.024	0.190
ADFI, kg	2.29 ^a	2.17 ^c	2.27 ^a	2.25^{ab}	2.21^{bc}	0.011	< 0.001
G:F	0.40	0.40	0.41	0.41	0.39	0.011	0.693

PC, basal diet with 2% molasses; NC, basal diet; T1, basal diet with 1.5% molasses and 0.5% MSG-CMS; T2, basal diet with 1% molasses and 1% MSG-CMS; T3, basal diet with 2% MSG-CMS; BW, body weight; ADG, average daily gain; ADFI, average daily feed intake; G:F, feed efficiency; SE, standard error.

 $^{^{\}text{a-c}}$ Means with different letters are significantly different (p < 0.05).

Table 3. Effect of monosodium glutamate-condensed molasses solubles (MSG-CMS) to replace molasses on nutrient digestibility in growing-finishing pigs (Exp 1)

Items, %	PC	NC	T1	T2	Т3	SE	<i>p</i> -value
6W							
DM	86.08	85.88	86.75	87.08	87.02	0.533	0.411
CP	68.41	67.12	68.56	69.09	69.05	0.615	0.206
GE	78.29	78.72	80.42	78.15	77.40	1.105	0.420
10W							
DM	86.87	85.15	86.16	86.62	85.74	0.968	0.730
CP	70.69	69.90	70.55	71.48	71.13	0.743	0.635
GE	78.49	78.40	79.12	78.45	77.20	0.980	0.732
14W							
DM	86.54	85.83	85.75	87.98	87.17	0.913	0.410
CP	70.67	70.12	70.31	72.03	71.51	0.564	0.133
GE	80.46	78.08	79.28	81.22	80.44	0.813	0.109

PC, basal diet with 2% molasses; NC, basal diet; T1, basal diet with 1.5% molasses and 0.5% MSG-CMS; T2, basal diet with 1% molasses and 1% MSG-CMS; T3, basal diet with 2% MSG-CMS; DM, dry matter; CP, crude protein; GE, gross energy; SE, standard error.

Table 4. Effect of monosodium glutamate-condensed molasses solubles (MSG-CMS) to replace molasses on blood profiles in growing-finishing pigs (Exp.1)

molasses on blood							
Items	PC	NC	T1	T2	T3	SE	<i>p</i> -value
6W							
WBC, $10^6/\mu l$	17.90	17.06	17.40	17.89	16.98	0.369	0.273
RBC, $10^3/\mu l$	7.05	6.33	6.76	7.31	6.75	0.307	0.271
TP, g/dL	6.28	5.69	6.11	6.12	6.30	0.298	0.616
BUN, mg/dL	10.50	9.84	10.18	10.80	9.88	0.617	0.776
Lymphocyte, %	53.61	51.41	53.02	54.40	54.85	1.839	0.714
Neutrophil, %	34.23	34.40	35.09	34.43	33.70	1.257	0.956
Eosinophil, %	1.62	1.54	1.54	1.64	1.53	0.168	0.980
Monocyte, %	4.57	5.41	4.40	4.85	4.44	0.403	0.410
10W							
WBC, $10^{6}/\mu 1$	19.86	19.69	18.98	19.16	19.55	0.405	0.533
RBC, $10^{3}/\mu 1$	7.03	7.16	6.87	6.78	6.96	0.227	0.795
TP, g/dL	5.98	5.96	6.11	5.81	5.72	0.311	0.909
BUN, mg/dL	10.59	10.45	11.04	11.03	11.15	0.546	0.857
Lymphocyte, %	55.62	51.64	52.42	55.02	55.30	2.190	0.604
Neutrophil, %	35.89	35.22	36.35	33.29	34.63	1.868	0.801
Eosinophil, %	1.56	1.32	1.48	1.38	1.55	0.155	0.745
Monocyte, %	3.92	4.76	5.15	3.62	4.52	0.407	0.103
14W							
WBC, $10^{6}/\mu 1$	19.26	20.99	19.28	20.26	21.33	0.942	0.428
RBC, $10^{3}/\mu 1$	7.48	7.07	7.33	6.92	6.91	0.286	0.551
TP, g/dL	5.83	6.20	6.37	5.98	6.07	0.345	0.825
BUN, mg/dL	12.68	11.58	11.70	12.60	11.37	0.477	0.219
Lymphocyte, %	50.07	51.22	51.63	55.55	52.67	2.105	0.451
Neutrophil, %	37.70	35.19	35.93	32.85	34.94	1.709	0.412
Eosinophil, %	1.59	1.31	1.43	1.76	1.43	0.131	0.187
Monocyte, %	4.81	4.67	4.63	4.90	4.53	0.490	0.984

PC, basal diet with 2% molasses; NC, basal diet; T1, basal diet with 1.5% molasses and 0.5% MSG-CMS; T2, basal diet with 1% molasses and 1% MSG-CMS; T3, basal diet with 2% MSG-CMS; WBC, white blood cell; RBC, red blood cell; TP, total protein; BUN, blood urea nitrogen; SE, standard error.

Table 5. Effect of monosodium glutamate-condensed molasses solubles (MSG-CMS) to replace molasses on fecal microbial in growing-finishing pigs (Exp 1)

morasses on recai interoblar in growing miniming pigs (Exp 1)								
Items, log CFU/g	PC	NC	T1	T2	T3	SE	<i>p</i> -value	
6W								
E. coli	6.79	6.50	6.39	6.50	6.58	0.144	0.389	
Lactobacillus	7.92	7.86	8.08	8.26	8.06	0.276	0.859	
10W								
E. coli	6.50	6.45	6.46	6.54	6.62	0.188	0.967	
Lactobacillus	8.54	8.12	8.11	7.91	7.93	0.334	0.680	
14W								
E. coli	6.42	6.44	6.22	6.39	6.66	0.159	0.458	
Lactobacillus	8.11	8.15	8.39	8.20	8.29	0.267	0.948	

PC, basal diet with 2% molasses; NC, basal diet; T1, basal diet with 1.5% molasses and 0.5% MSG-CMS; T2, basal diet with 1% molasses and 1% MSG-CMS; T3, basal diet with 2% MSG-CMS; CFU, colony forming unit; SE, standard error.

Table 6. Effect of monosodium glutamate-condensed molasses solubles (MSG-CMS) to replace molasses on economic efficiency in growing-finishing pigs (Exp 1)

Items	PC	NC	T1	T2	Т3	SE	<i>p</i> -value
0–6 W							
TWG, kg/pig	33.13 ^{ab}	31.15^{b}	35.40^{a}	34.03 ^{ab}	30.80^{b}	0.755	0.003
TFI, kg/pig	80.69^{a}	75.71 ^b	78.91^{ab}	78.49^{ab}	76.44 ^b	0.765	0.002
FCG, ₩/kg gain	1209 ^a	1187 ^{ab}	1105 ^b	1142 ^{ab}	1226 ^a	27.996	0.045
6–14 W							
TWG, kg/pig	56.10	53.88	56.25	57.08	54.58	2.360	0.868
TFI, kg/pig	149.17 ^a	141.89 ^b	149.24 ^a	147.21 ^{ab}	145.25 ^{ab}	1.268	0.005
FCG, ₩/kg gain	1340	1312	1338	1310	1346	59.177	0.988
0–14 W							
TWG, kg/pig	89.23	85.03	91.65	91.10	85.38	2.357	0.190
TFI, kg/pig	224.67a	212.48°	222.64 ^a	220.38ab	216.27 ^{bc}	1.029	< 0.001
FCG, ₩/kg gain	1260	1233	1215	1211	1267	35.625	0.728

PC, basal diet with 2% molasses; NC, basal diet; T1, basal diet with 1.5% molasses and 0.5% MSG-CMS; T2, basal diet with 1% molasses and 1% MSG-CMS; T3, basal diet with 2% MSG-CMS; TWG, total weight gain; TFI, total feed intake; FCG, feed cost per gain; SE, standard error.

^{a-c} Means with different letters are significantly different (p < 0.05).