ARTICLE INFORMATION	Fill in information in each box below
Article Type	Research article
Article Title (within 20 words without abbreviations)	Effects of fructooligosaccharides and inulin on growth performance, immunity and the gut microbiome in weaned piglets
Running Title (within 10 words)	Effects of fructooligosaccharides and inulin supplementation on weaned piglets
Author	Gi Beom Keum ^{1#} , Jinho Cho ^{2#} , Minho Song ^{3#} , Yejin Choi ¹ , Juyoun Kang ¹ , Hyunok Doo ¹ , Jinok Kwak ¹ , Haram Kim ¹ , Yeongjae Chae ¹ , Hyunjin Yang ¹ , Suyoung Lee ¹ , Eun Sol Kim ⁴ , Sheena Kim ^{1*} and Hyeun Bum Kim ^{1*}
Affiliation	1 Departement of Animal Biotechnology, Dankook University, Cheonan 31116, Korea 2 Division of Food and Animal Science, Chungbuk National University, Cheongju 28644, Korea 3 Division of Animal and Dairy Science, Chungnam National University, Daejeon 35015, Korea 4 Division of Infectious Diseases, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
ORCID (for more information, please visit https://orcid.org)	Gi Beom Keum: https://orcid.org/0000-0001-6006-9577 Jinho Cho: https://orcid.org/0000-0001-7151-0778 Minho Song: https://orcid.org/0000-0002-4515-5212 Yejin Choi: https://orcid.org/0000-0002-4515-5212 Juyoun Kang: https://orcid.org/0000-0002-3974-2832 Hyunok Doo: https://orcid.org/0000-0003-4329-4128 Jinok Kwak: https://orcid.org/0000-0003-1217-3569 Haram Kim: https://orcid.org/0009-0002-7504-5249 Yeongjae Chae: https://orcid.org/0009-0004-5573-1465 Hyunjin Yang: https://orcid.org/0009-0008-5544-6938 Suyoung Lee: https://orcid.org/0009-0009-3393-7960 Eun Sol Kim https://orcid.org/0000-0001-8801-421X Sheena Kim: https://orcid.org/0000-0002-5410-1347 Hyeun Bum Kim: https://orcid.org/0000-0003-1366-6090 No potential conflict of interest relevant to this article was reported.
Funding sources	Not applicable.
State funding sources (grants, funding sources, equipment, and supplies). Include name and number of grant if available.	
Acknowledgements	Not applicable.
Availability of data and material	The datasets analyzed for this study can be found in the National Center for Biotechnology Information (NCBI) database under Sequence Read Archive (SRA) with accession number PRJNA1139403.

Authors' contributions	Conceptualization: Keum GB, Song M, Cho J, Kim HB
Please specify the authors' role using this form.	Data curation: Choi Y, Kang J Formal analysis: Keum GB, Doo H, Kwak J, Kim ES, Kim H, Chae Y, Yang H, Lee S Methodology: Song M Validation: Kim S, Kim HB Investigation: Keum GB, Kim ES Writing – original draft: Keum GB, Song M, Cho J, Kim HB Writing – review & editing: Keum GB, Song M, Cho J, Kim ES, Doo H, Kwak J, Choi Y, Kang J, Kim H, Chae Y, Yang H, Lee S, Kim S, Kim HB
Ethics approval and consent to participate	Animal experiment in this study was approved by the Institutional Animal Care and Use Committee of Chungnam National University, Daejeon, South Korea (approval no. 202103A-CNU-077).

6 CORRESPONDING AUTHOR CONTACT INFORMATION

For the corresponding author (responsible for correspondence, proofreading, and reprints)	Fill in information in each box below		
First name, middle initial, last name	Hyeun Bum Kim		
Email address – this is where your proofs will be sent	hbkim@dankook.ac.kr		
Secondary Email address			
Address	Department of Animal Biotechnology, Dankook University, Cheonan 31116, Korea		
Cell phone number	+82-10-3724-3416		
Office phone number	+82-41-550-3653		
Fax number	+82-41-565-2940		

For the corresponding author (responsible for correspondence, proofreading, and reprints)	Fill in information in each box below
First name, middle initial, last name	Sheena Kim
Email address – this is where your proofs will be sent	sheenaaa@dankook.ac.kr
Secondary Email address	
Address	Department of Animal Biotechnology, Dankook University, Cheonan 31116, Korea
Cell phone number	+82-10-9486-0915
Office phone number	+82-41-550-3664
Fax number	+82-41-565-2940

9 Effects of fructooligosaccharides and inulin on growth performance, immunity and the gut microbiome in weaned piglets 10 Gi Beom Keum^{1#}, Jinho Cho^{2#}, Minho Song^{3#}, Yejin Choi¹, Juyoun Kang¹, Hyunok Doo¹, Jinok Kwak¹, Haram 11 12 Kim¹, Yeongjae Chae¹, Hyunjin Yang¹, Suyoung Lee¹, Eun Sol Kim⁴, Sheena Kim^{1*} and Hyeun Bum Kim^{1*} 13 14 ¹ Department of Animal Biotechnology, Dankook University, Cheonan, South Korea 15 ² Division of Food and Animal Science, Chungbuk National University, Cheongju, South Korea 16 ³ Division of Animal and Dairy Science, Chungnam National University, Daejeon, South Korea 17 ⁴ Division of Infectious Diseases, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel 18 Hill, NC 27599, USA 19 20 # Equal contributors 21 22 * Corresponding authors 23 Sheena Kim 24 Department of Animal Biotechnology, Dankook University, Cheonan, South Korea 25 Tel: +82-41-550-3664 26 Email: sheenaaa@dankook.ac.kr 27 Hyeun Bum Kim 28 Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea 29 Tel: +82-41-550-3653 30 Email: hbkim@dankook.ac.kr

31 Abstract

Prebiotics such as fructooligosaccharides and inulin are biological activators that selectively stimulate the growth and activity of beneficial bacteria in the gastrointestinal tract. However, their specific effects when applied during the weaning period in piglets remains limited. Therefore, this study evaluated the effects of fructooligosaccharides and inulin supplementation in weaned piglets on growth performance, nutrient digestibility, immune response, and gut microbiota composition with the aim of exploring their potential benefits for piglet health during the weaning transition. A total of 72 weaned piglets (28 days of age) were allocated to three dietary groups: CON (basal diet), FOS (CON + 0.3% fructooligosaccharides), and INU (CON + 3% inulin) to investigate the effects of fructan supplementation. Growth performance, nutrient digestibility, blood profiles, immune responses, and fecal microbiota were evaluated. Although fructan supplementation did not induce significant changes in growth performance or nutrient digestibility, it significantly increased serum immunoglobulin A levels. Furthermore, the fecal microbiota of the supplemented piglets was enriched with short-chain fatty acid-producing bacteria, including *Phascolarctobacterium*, *Agathobacter*, *Clostridium sensu stricto*, and *Flavonifractor*. Fructan supplementation in the diets of weaned piglets positively influenced immune response and gut microbiota composition, suggesting its potential to enhance gut health during the weaning period.

Keywords (3 to 6):

48 Fructooligosaccharides (FOS), Inulin, Weaned piglet, Growth performance, 16S rRNA gene, Metagenome

Introduction

The gastrointestinal tract (GIT) is a complex ecosystem of microbial communities, and its composition influences
key aspects of animal physiology, including feed efficiency, growth performance, and overall health [1-5]. In pigs,
the gut microbiota undergoes a rapid shift during the weaning period as piglets transition to solid feed. This
transition is accompanied by various biological stressors that can disrupt gut and immune function, potentially
leading to reduced health and growth performance [6, 7]. These challenges pose a significant economic burden
on the swine industry, prompting ongoing research into effective mitigation strategies. One such approach
involves the use of prebiotics [8-10].
Prebiotics are biological activators that modulate the composition of gut microbiota in animals, offering various
benefits to livestock health and productivity [11]. They are non-digestible fibers that selectively stimulate the
growth and activity of beneficial bacteria in the gastrointestinal tract (GIT), thereby exerting positive effects on
the host. To be classified as a prebiotic, a substance must meet the following criteria [12, 13]: (1) it must resist
hydrolysis by gastric acid and mammalian digestive enzymes, as well as absorption in the upper GIT; (2) it should
be fermentable by intestinal microbiota; and (3) it must selectively stimulate the growth or activity of intestinal
bacteria associated with health benefits. Prebiotics are categorized based on their molecular structure and type
into groups such as β -glucans, non-digestible oligosaccharides (NDOs), inulin, resistant starch, and pectin. These
compounds are metabolized by various intestinal bacteria, leading to the production of beneficial metabolites [14].
The fermentation of prebiotics by specific bacteria contributes to the improvement of the gut microbial community
enhances the host's growth performance, and strengthens the intestinal epithelial barrier, thereby promoting overall
health [15, 16]. Owing to these functional properties, prebiotics are used as feed additives to promote growth and
health in the swine industry, with fructooligosaccharides (FOS) and inulin being among the most commonly used
additives. Fructans, such as FOS and inulin, both composed of one glucose molecule and multiple fructose units,
are classified by their degree of polymerization (DP): inulin typically has a DP of 2 to 65 (average DP \geq 10), while
FOS has a DP of 2 to 9 [17]. These compounds are primarily obtained from natural sources such as chicory roots
(Cichorium intybus) [18, 19], and FOS can also be produced by enzymatically breaking down inulin into shorter
chains [20]. Because they are hydrolyzed by β -fructosidase, they cannot be digested by the mammalian digestive
system and are instead fermented primarily by Bifidobacterium and other gut microbiota [19]. FOS and inulin
have been reported to enrich Lactobacillus and Bifidobacterium populations in the gastrointestinal mucosa of

weaned piglets, with FOS having a relatively greater impact in the upper intestine compared to inulin due to differences in metabolic timing related to chain length [21]. Gut bacteria metabolize the hexoses from prebiotics to produce hydrogen, methane, carbon dioxide, short-chain fatty acids (SCFAs; such as acetate, propionate, and butyrate), and organic acids (such as lactate, succinate, and pyruvate). Some bacteria further utilize these fermentation byproducts as an energy source to produce final metabolites [22].

Despite the known biological benefits of FOS and inulin, detailed information on the specific effects of these fructans in pigs remains limited. Therefore, we examined the effects of fructan supplementation on the growth

performance, immunity and gut microbiome of weaned piglets.

Materials and Methods

Animal study design

Animal experiment in this study was approved by the Institutional Animal Care and Use Committee of Chungnam National University, Daejeon, South Korea (approval no. 202103A-CNU-077). A total of 72 weaned piglets ((Yorkshire x Landrace) x Duroc, 28 days of age) with an initial average body weight (BW) of 7.3 ± 0.76 kg were used in a four-week experiment. Each treatment group consisted of 6 replicate pens, with four castrated pigs per pen, randomly assigned based on their initial BW. The experimental dietary groups were organized as follows: CON (control group; basal diet), FOS (FOS group; CON + 0.3 % FOS), and INU (Inulin group; CON + 3 % inulin). The fructans used in the experiments were FOS (CAT No. Orafti®P95, BENEO, Mannheim, Germany) and inulin (CAT No. Orafti®HP, BENEO, Mannheim, Germany). The basal diets were formulated to meet the nutrient requirements for weaned piglets as recommended by the National Research Council (NRC, 2012). The ingredient composition and nutrient content of the diets are shown in Table 1. To assess nutrient digestibility, 0.5 % chromium oxide, an indigestible marker, was added to the feed from Day 22 for a period of seven days [23]. Throughout the 4-week experimental period, pigs were housed in pens equipped with single-sided stainless steel self-feeders and had ad libitum access to water and feed.

Growth performance and nutrient digestibility

During the experimental period, BW and feed intake were recorded weekly to calculate the average daily gain (ADG), average daily feed intake (ADFI), and the feed efficiency ratio (G:F). To evaluate nutrient digestibility,

fecal samples were collected directly via rectal massage from six pigs per group (18 pigs in total) over a three-day period starting on Day 26. During this period, feces containing chromium oxide were collected three times. The collected samples were pooled with previously collected feces and stored at -80 °C until the end of the experiment.

After the experiment, the fecal samples were thoroughly dried at 70 °C for at least 24 hours and then ground for analysis [24]. Crude protein (CP), chromium, dry matter (DM), and gross energy content in both the feed and feces were measured. The apparent total tract digestibility (ATTD) of nutrients was calculated using the following formula [25]: 1-[(Nutrient in fecal x chromium in diet) / (Nutrient in diet x Chromium in fecal)] x 100.

Hematological analysis

For blood analysis, blood samples were collected from 6 pigs per group (1 pig per pen) on Days 0, 7, and 14. Blood collection was performed using heparin and K₃EDTA tubes (VACUETTE® TUBE, Greiner Bio-One, Kremsmünster, Austria) to obtain both serum and whole blood. The collected blood was centrifuged at 4 °C at 3000 RPM for 15 minutes to separate the serum, which was then stored at -80 °C. Whole blood was analyzed for hemoglobin (HGB), hematocrit (HCT), red blood cell (RBC) count, white blood cell (WBC) count, and platelet (PLT) levels using a Scil Vet abc hematology analyzer (Scil Animal Care Company, Altorf, France) as part of a Complete Blood Count (CBC) test.

The ELISA kit for cortisol (R&D Systems, Minneapolis, U.S.), and ELISA kits (Koma Biotech Inc., Seoul, South Korea) for other biomarkers including Tumor Necrosis Factor-α (TNF-α), Immunoglobulin G (IgG), Immunoglobulin M (IgM), and Immunoglobulin A (IgA) were used according to the manufacturer's instructions

16S rRNA gene sequencing

to quantify serum biomarker levels.

For gut microbiome analysis, fecal samples were collected from five pigs per group on Days 0 and 28, resulting in a total of 30 fecal samples from 15 pigs. Samples were collected directly from the rectum and transferred to sterile 1.5 mL microcentrifuge tubes, then stored at -80 °C until further analysis. Total DNA was extracted from 200 mg of feces per sample using the QIAamp Fast DNA Stool Mini Kit (QIAGEN, Hilden, Germany), following the manufacturer's instructions. The concentration and purity of the extracted DNA were measured using a Colibri

Microvolume Spectrometer (Titertek Berthold, Pforzheim, Germany). Only DNA samples with an OD 260/280 ratio between 1.8 and 2.0 were used for downstream analysis.

For 16S rRNA gene sequencing, 799F-mod6 (5' - CMGGATTAGATACCCKGT - 3') and 1114R (5' - GGTTGCCTCGTTGC - 3') primers were used to amplify the V5- V6 hypervariable regions of 16S rRNA gene [26]. The amplification mixture contained KOD OneTM PCR Master Mix -Blue- (TOYOBO Co., Ltd., Osaka, Japan), a 10 pmol of each primer, and 2uL of DNA (5 ng/μL) in a total reaction volume of 50 μl. The polymerase chain reaction (PCR) cycling conditions were as follows: initial denaturation at 98 °C for 3 min, 25 cycles of 98 °C for 10 s, 57 °C for 5 s, and 68 °C for 1 s, and a final extension at 72 °C for 5 min. Amplified PCR products were purified using the Wizard® SV Gel and PCR Clean-Up System kit (Promega, Wisconsin, USA). Sequencing of the amplified barcoded 16S rRNA gene was performed using the Illumina MiSeq platform at Dx&Vx (Seoul, Korea).

16S rRNA gene sequence analysis

The raw 16S rRNA gene sequencing data were processed using the Quantitative Insights into Microbial Ecology 2 (QIIME2) software package for quality control, trimming, and microbial community analysis [27]. To minimize the effects of random sequencing errors, sequences were filtered based on a PHRED quality score threshold of 27 and the absence of ambiguous base calls. Using the deblur plugin, sequences were trimmed to a length of 280 bp, and amplicon sequence variants (ASVs) were inferred by reconstructing the biological sequences. Multiple sequence alignment was performed using the MAFFT (Multiple Alignment using Fast Fourier Transform) pipeline for phylogenetic diversity analysis. Alpha diversity metrics including Observed Features, Chao1, Shannon index, and Simpson index were calculated in QIIME2. Beta diversity was assessed using both weighted (quantitative) and unweighted (qualitative) UniFrac distance metrics and visualized using principal coordinate analysis (PCoA) plots generated in QIIME2. Taxonomic assignment of ASVs was performed using the naïve Bayesian classifier trained on the Ribosomal Database Project (RDP) reference database version 19.

Statistical analysis

Growth performance, nutrient digestibility, and blood parameters were analyzed using one-way analysis of variance (ANOVA) in a randomized complete block design, with the initial BW as a block and the pen as the

experimental unit. These outcomes are presented as mean \pm standard error of the mean (SEM). When the ANOVA was significant, means were compared using Dunnett's test. Analyses were performed in GraphPad Prism version 8.00 (GraphPad Software, San Diego, CA, USA). Between-group differences in microbial community structure were assessed using analysis of similarities (ANOSIM) based on weighted and unweighted UniFrac distance matrices. Relative abundances of microbial taxa and predicted functional genes were evaluated in Statistical Analysis of Metagenomic Profiles (STAMP) software version 2.1.3 using one-way ANOVA with Tukey–Kramer post hoc comparisons for pairwise group differences. Statistical significance was set at p < 0.05.

Results

Growth performance and nutrient digestibility

Although there were no statistically significant differences in growth performance among the groups, the FOS and INU groups showed higher ADG compared to the CON group, indicating a trend toward improved growth performance with fructan supplementation. Additionally, the FOS and INU groups exhibited higher G:F than the CON group over the entire experimental period (Table 2). The ATTD of DM, energy, and CP is presented in Table 3. No statistically significant differences were observed in the digestibility of DM, energy, or CP among the groups.

Blood profile and immune response

The levels of HGB, HCT, RBC, WBC, and PLT in whole blood before and after fructan supplementations are presented in Figure 1a. No significant differences in HGB, HCT, RBC, WBC, or PLT levels were observed among the groups, and fructan supplementation did not result in any significant changes.

The serum concentrations of cortisol, TNF- α , IgG, IgM, and IgA are shown in Figure 1b. Cortisol, TNF- α , IgG, and IgM levels showed no significant differences among the groups, nor were they significantly affected by fructan supplementation. Interestingly, IgA concentrations increased on Day 14 in the fructan supplemented groups, with a statistically significant increase observed in the FOS group (p < 0.05).

Microbial diversity

After quality filtering, the 16S rRNA gene of fecal samples generated a total of 1,677,793 reads ranging from 24,324 to 104,436 reads per sample.

Alpha diversity was assessed using Observed Features and Chao1 (representing species richness), as well as Shannon and Simpson indices (representing species evenness), to evaluate changes in the fecal microbial community following fructan supplementation (Figure 2a-d). At the beginning of the experiment (Week 0), no significant differences in alpha diversity were observed among the groups. However, by the end of the experiment (Week 4), the INU group showed significantly lower Observed Features and Chao1 values compared to the CON and FOS groups (p < 0.05). Additionally, the Shannon index in the INU group tended to be lower than in the FOS group (p = 0.095). No significant differences in Simpson index values were observed among the groups at Week 4.

PCoA plots based on both weighted and unweighted UniFrac distances illustrated the microbial community structure for each dietary group at week 0 (0W) and week 4 (4W) (Figure 2e–f). At 0W, the microbial communities of all groups clustered similarly. However, at 4W, the INU group formed a distinct cluster, clearly separating from the CON and FOS groups, which remained closely clustered. The UniFrac distances at week 4, as determined by ANOSIM, yielded R-values of 0.6497 (weighted) and 0.8923 (unweighted), indicating that the microbial community structure in weaned piglets was significantly altered by diet (p = 0.001).

Microbial composition

Differences in the relative abundances of the gut microbial community composition in weaned piglets following fructan supplementation were examined at the phylum, family, and genus levels (Figure 3). At the phylum level, the fecal microbiota of all weaned piglets was dominated by Bacillota, comprising more than 70% of the total composition (Figure 3a). At Week 0 (0W), all groups showed similar microbial profiles, with Pseudomonadota, Bacteroidota, Spirochaetota, and Fusobacteriota being the most abundant, while 13 other phyla collectively accounted for approximately 2% of the total microbiota. By Week 4 (4W), the phylum Pseudomonadota constituted 20.2% and 21.4% of the microbial communities in the CON and FOS groups, respectively, with 15 other phyla collectively representing 3.3% and 4.3% of the total composition. In contrast, the INU group was predominated by Actinomycetota (15.7%) and Bacteroidota (3.2%), while the remaining 14 phyla accounted for only 1.1% of the total.

At the family level, all groups at Week 0 (0W) were dominated by Oscillospiraceae, Lachnospiraceae, and Enterobacteriaceae, showing a similar microbial family composition across groups (Figure 3b). By Week 4 (4W),

the relative abundance of Oscillospiraceae decreased in all groups, while Lachnospiraceae and Peptostreptococcaceae increased. In the CON group, Lactobacillaceae showed a significant increase from an average of 1.3% to 23% (p < 0.05), and the FOS group also exhibited a notable increase from 1.8% to 8%. In the INU group, Enterobacteriaceae significantly decreased from an average of 12.5% to 0.07%, while Clostridiaceae_1 significantly increased from 0.4% to 25.7%, and Atopobiaceae increased from 0.01% to 10.9% (p < 0.05). At the genus level, while all groups exhibited a similar composition of genera at Week 0 (0W), the compositions at Week 4 (4W) showed significant changes in the relative abundances of certain genera depending on the diet (Figure 3c). The changes observed at 4W in genera such as Lactobacillus (Lactobacillaceae), Clostridium sensu stricto (Clostridiaceae_1), Terrisporobacter (Peptostreptococcaceae), and Olsenella (Atopobiaceae) were consistent with the trends observed at the family level. The results of the STAMP analysis, which identified genera with significant differences in relative abundance among the dietary groups at 4W, are presented in Figure 4a. The genus Lactobacillus showed a significantly higher relative abundance in the CON group compared to the other groups, whereas Phascolarctobacterium was significantly more abundant in the FOS group. The genera Clostridium sensu stricto, Olsenella, Flavonifractor, and Pseudoramibacter were significantly more abundant in the INU group than in the other dietary groups. Linear Discriminant Analysis Effect Size (LEfSe), conducted with a p-value cutoff of 0.1 and a log LDA score threshold of 4.0, identified the top 15 genera most characteristically enriched in each group at 4W (Figure 4b). In the CON group, four genera, including Lactobacillus and Limosilactobacillus, were identified as representative. In the FOS group, seven genera, including Desulfovibrio, Mitsuokella, and Turicibacter, were distinguished as characteristic. In the INU group, four genera, including Olsenella and Mediterraneibacter, were identified as representative of that dietary group.

238

240

241

242

243

244

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

239 **Discussion**

Previous studies have reported that dietary supplementation with FOS and inulin significantly improves the growth performance of weaned piglets [28, 29]. In the present study, fructan supplementation tended to enhance growth performance, although the differences were not statistically significant, and no significant differences were observed in nutrient digestibility. Similar studies involving FOS and inulin supplementation in weaned pigs have reported comparable findings. Berrocosoet al. [30] observed improved growth performance and digestibility under

poor sanitary conditions compared with optimized conditions, whereas several trials conducted in high-hygiene, welfare-compliant settings found no significant growth effects [31-33]. This pattern suggests that, under nutrientadequate diets and high-quality rearing environments, the marginal room for additional performance gains is limited [34, 35]. Additionally, other studies have reported that longer supplementation periods can significantly improve pig growth performance. Samolińskaet al. [36] reported that three months of prebiotic supplementation significantly improved ADG and feed conversion ratio (FCR) in growing-finishing pigs, whereas Grelaet al. [37] observed enhanced final BW and overall FCR following two months of supplementation in weaned piglets. Therefore, longer supplementation and experimental durations may be necessary to observe meaningful improvements in long-term growth performance. HGB is a crucial component of RBCs, responsible for oxygen transport. A deficiency in RBCs or HGB in the blood may indicate anemia [38], while HCT, which represents the proportion of RBCs in blood volume, has been associated with diarrhea in pigs [39]. An increase in WBCs, which are involved in immune responses, may indicate inflammation, and abnormal levels of PLTs, which are essential for blood clotting, can suggest risks of bleeding or thrombus [40, 41]. Blood profile parameters remained within were within the previously reported normal ranges for hematological characteristics in weaned pigs [42], indicating that fructan supplementation did not negatively affect blood components. We limited hematological measurements to d 0, 7, and 14 to capture the early postweaning period, when stress-related hematological changes are most pronounced. However, extending the duration of hematological measurements might yield more reliable results. Moeseret al. [43] reported that cortisol, a stress-related marker known to mediate gut dysfunction, was elevated in pig serum seven days after weaning. Increased stress can lead to changes in inflammatory cytokines such as TNF-α, which increase intestinal permeability and mucosal inflammation, potentially disrupting gut barrier function and impairing gut development and nutrient absorption [44, 45]. In the present study, no significant changes in cortisol or TNF-α levels, nor differences among groups, were observed during the experimental period in response to fructan supplementation. Serum IgA and IgG are key immunoglobulins used to assess immune function [46]. Previous studies have reported that prebiotic supplementation can stimulate immune responses, leading to increased IgA and IgG concentrations [47, 48], which is consistent with our observation of elevated IgA levels in the fructan-supplemented groups. These findings suggest that fructan supplementation did not negatively affect the health of weaned piglets and may support the enhancement of their immune system.

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

In the microbiota of the FOS supplemented group, several genera such as *Phascolarctobacterium*, *Mitsuokella*, Turicibacter, Streptococcus, and Agathobacter were distinctly dominant compared to the other groups. Xieet al. [49] reported that FOS increased the relative abundance of Phascolarctobacterium in the gut microbiota by simulating colonic pH. Phascolarctobacterium utilizes succinate as a substrate to produce acetate or propionate and maintains a symbiotic relationship with bacteria that produce succinate as a metabolic byproduct of polysaccharide fermentation [50]. Mitsuokella, Turicibacter, Streptococcus, and Agathobacter have been reported to possess beneficial butyrogenic properties [51]. In particular, Agathobacter is recognized as a beneficial bacterium that produces butyrate from complex carbohydrates [52]. In the microbiota of the inulin supplemented group, several genera such as Clostridium sensu stricto, Olsenella, Flavonifractor, and Pseudoramibacter were notably dominant. Clostridium sensu stricto is known for efficiently metabolizing a variety of substrates such as carbohydrates, amino acids, and alcohols and for producing butyrate in the pig [53]. The genus Olsenella ferments glucose to produce acetate and lactate, and its dominance may be influenced by metabolites generated during inulin degradation [54, 55]. Flavonifractor is a butyrate-producing bacterium that has been reported in several studies to be associated with the alleviation of intestinal inflammation [56, 57]. Although research on *Pseudoramibacter* is limited, it is known to produce various short-chain fatty acids, including formate, acetate, and butyrate, which can help protect the gut barrier in weaned piglets [58, 59]. Previous studies have reported that SCFAs produced by these microbes can improve the intestinal environment and enhance gut health in pigs by promoting the development of colonic and small intestinal epithelial cells, maintaining the integrity of epithelial tight junctions, and inhibiting pathogen adhesion through pH reduction [60-63]. This study showed that fructan supplementation did not lead to significant improvements in growth performance or nutrient digestibility but altered the microbial composition by increasing the relative abundance of SCFAs and organic acid producing bacteria. As discussed above, these findings suggest that, under optimized rearing and sanitary conditions, the gut microbiota alterations induced by fructan supplementation may have contributed to improved intestinal health—such as enhanced barrier function and pathogen suppression—rather than directly facilitating nutrient digestion and absorption, and similar findings supporting this interpretation have been reported [33, 64, 65]. These studies suggest that fructan-induced shifts in the gut microbiota may contribute to long-term improvements in pig productivity; however, additional evaluations, including quantification of gut

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

SCFA concentrations, functional gene profiling of the microbiota, and long-term feeding trials, are required to more clearly verify host-microbe interactions.

303 Conclusion

This study indicates that dietary fructan supplementation can modulated the gut microbiota and promoted short-chain fatty acid (SCFA)-producing bacteria without adversely affecting growth performance, nutrient digestibility, or immune responses in weaned piglets. A comprehensive analysis of the effects of FOS and inulin supplementation on growth performance, immunity and gut microbiota composition in weaned piglets provides valuable insights into the role of fructans in piglet health. This multi-dimensional approach highlights the interconnections among various outcomes and underscores the importance of studying host–microbiota interactions.

Acknowledgments

313 Not applicable.

References

- 315 1. Yang Q, Huang X, Zhao S, Sun W, Yan Z, Wang P, et al. Structure and function of the fecal microbiota
- in diarrheic neonatal piglets. Frontiers in microbiology. 2017;8:502. doi:10.3389/fmicb.2017.00502.
- 317 2. Oh JK, Chae JP, Pajarillo EAB, Kim SH, Kwak MJ, Eun JS, et al. Association between the body weight
- 318 of growing pigs and the functional capacity of their gut microbiota. Animal Science Journal.
- 319 2020;91(1):e13418.·doi:10.1111/asj.13418.

- 320 3. Wang X, Tsai T, Deng F, Wei X, Chai J, Knapp J, et al. Longitudinal investigation of the swine gut
- 321 microbiome from birth to market reveals stage and growth performance associated bacteria. Microbiome.
- 322 2019;7:1-18.·doi:10.1186/s40168-019-0721-7.
- 4. Keum GB, Pandey S, Kim ES, Doo H, Kwak J, Ryu S, et al. Understanding the Diversity and Roles of
- 324 the Ruminal Microbiome. J Microbiol. 2024;62(3):217-30. doi:10.1007/s12275-024-00121-4.
- 325 5. Kim H, Chae Y, Cho JH, Song M, Kwak J, Doo H, et al. Understanding the diversity and roles of the
- 326 canine gut microbiome. J Anim Sci Biotechno. 2025;16(1):95. doi:10.1186/s40104-025-01235-4.
- Guevarra RB, Hong SH, Cho JH, Kim BR, Shin J, Lee JH, et al. The dynamics of the piglet gut
- 328 microbiome during the weaning transition in association with health and nutrition. J Anim Sci Biotechno.
- 329 2018;9.·doi:10.1186/s40104-018-0269-6.
- Campbell JM, Crenshaw JD, Polo J. The biological stress of early weaned piglets. J Anim Sci Biotechnol.
- 331 2013;4(1):19.·doi:10.1186/2049-1891-4-19.
- 8. Pandey S, Doo H, Keum GB, Kim ES, Kwak J, Ryu S, et al. Antibiotic resistance in livestock,
- environment and humans: One Health perspective. J Anim Sci Technol. 2024;66(2):266-
- 334 78.·doi:10.5187/jast.2023.e129.
- 9. Ma K, Su B, Li F, Li J, Nie J, Xiong W, et al. Maternal or post-weaning dietary fructo-oligosaccharide
- supplementation reduces stillbirth rate of sows and diarrhea of weaned piglets. Animal Nutrition. 2024;17:155-
- 337 64.·doi:<u>10.1016/j.aninu.2024.04.002</u>.
- 338 10. Huaman SOB, de Souza FA, Bonato MA, Dias CP, Callegari MA, Oba A, et al. Effects of prebiotic and
- multispecies probiotic supplementation on the gut microbiota, immune function, and growth performance of
- 340 weaned piglets. Plos One. 2024;19(11):e0313475.·doi:10.1371/journal.pone.0313475.
- 341 11. Ji J, Jin W, Liu SJ, Jiao Z, Li X. Probiotics, prebiotics, and postbiotics in health and disease. MedComm

- 342 (2020). 2023;4(6):e420.·doi:10.1002/mco2.420.
- 343 12. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the
- 344 concept of prebiotics. The Journal of nutrition. 1995;125(6):1401-12. doi:10.1093/jn/125.6.1401.
- 345 13. Doo H, Kwak J, Keum GB, Ryu S, Choi Y, Kang JY, et al. Lactic acid bacteria in Asian fermented foods
- and their beneficial roles in human health. Food Sci Biotechnol. 2024. doi:10.1007/s10068-024-01634-9.
- 347 14. Song H, Jeon D, Unno T. Evaluation of Prebiotics through an In Vitro Gastrointestinal Digestion and
- Fecal Fermentation Experiment: Further Idea on the Implementation of Machine Learning Technique. Foods.
- 349 2022;11(16).·doi:10.3390/foods11162490.
- 350 15. Zhou H, Yu B, Sun J, Liu ZH, Chen H, Ge LP, et al. Short-chain fatty acids can improve lipid and
- 351 glucose metabolism independently of the pig gut microbiota. J Anim Sci Biotechno.
- 352 2021;12(1).·doi:10.1186/s40104-021-00581-3.
- Park JH, Kotani T, Konno T, Setiawan J, Kitamura Y, Imada S, et al. Promotion of Intestinal Epithelial
- 354 Cell Turnover by Commensal Bacteria: Role of Short-Chain Fatty Acids. Plos One.
- 355 2016;11(5):e0156334.·doi:10.1371/journal.pone.0156334.
- 356 17. Kelly G. Inulin-type prebiotics--a review: part 1. Altern Med Rev. 2008;13(4):315-29.
- Roberfroid MB. Inulin-type fructans: functional food ingredients. J Nutr. 2007;137(11 Suppl):2493S-
- 358 502S.·doi:10.1093/jn/137.11.2493S.
- 359 19. Sabater-Molina M, Larque E, Torrella F, Zamora S. Dietary fructooligosaccharides and potential
- benefits on health. J Physiol Biochem. 2009;65(3):315-28. doi:10.1007/BF03180584.
- 361 20. Chikkerur J, Samanta AK, Kolte AP, Dhali A, Roy S. Production of Short Chain Fructo-oligosaccharides
- from Inulin of Chicory Root Using Fungal Endoinulinase. Appl Biochem Biotechnol. 2020;191(2):695-
- 363 715.·doi:10.1007/s12010-019-03215-7.
- Patterson JK, Yasuda K, Welch RM, Miller DD, Lei XG. Supplemental dietary inulin of variable chain
- lengths alters intestinal bacterial populations in young pigs. J Nutr. 2010;140(12):2158-
- 366 61.·doi:10.3945/jn.110.130302.
- 367 22. Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrients. 2013;5(4):1417-
- 368 35.·doi:10.3390/nu5041417.
- 369 23. Jagger S, Wiseman J, Cole DJA, Craigon J. Evaluation of inert markers for the determination of ileal

- and faecal apparent digestibility values in the pig. British Journal of Nutrition. 1992;68(3):729-
- 37. doi:10.1079/BJN19920129.
- 372 24. Zinn RA, Montaño M, Alvarez E, Shen Y. Feeding value of cottonseed meal for feedlot cattle. J Anim
- 373 Sci. 1997;75(9):2317-22.·doi:10.2527/1997.7592317x.
- 374 25. Adeola O. Digestion and balance techniques in pigs. Swine nutrition: CRC press; 2000. p. 923-36.
- 375 26. Hanshew AS, Mason CJ, Raffa KF, Currie CR. Minimization of chloroplast contamination in 16S rRNA
- gene pyrosequencing of insect herbivore bacterial communities. J Microbiol Methods. 2013;95(2):149-
- 377 55.·doi:10.1016/j.mimet.2013.08.007.
- 378 27. Bolyen E, Rideout JR, Dillon MR, Bokulich N, Abnet CC, Al-Ghalith GA, et al. Reproducible,
- 379 interactive, scalable and extensible microbiome data science using QIME 2. Nature Biotechnology.
- 380 2019;37(8):852-7.·doi:10.1038/s41587-019-0209-9.
- 28. Zhao F, Xia Z, editors. Effects of Dietary FOS and CPP on growth performance and serum biochemical
- parameters for weaned piglets. E3S Web of Conferences; 2019: EDP Sciences.
- 383 ·doi:10.1051/e3sconf/201913101078
- 384 29. Chen T, Chen D, Tian G, Zheng P, Mao X, Yu J, et al. Effects of soluble and insoluble dietary fiber
- supplementation on growth performance, nutrient digestibility, intestinal microbe and barrier function in weaning
- piglet. Animal Feed Science and Technology. 2020;260:114335. doi:10.1016/j.anifeedsci.2019.114335.
- 387 30. Berrocoso JD, Menoyo D, Guzman P, Saldana B, Camara L, Mateos GG. Effects of fiber inclusion on
- growth performance and nutrient digestibility of piglets reared under optimal or poor hygienic conditions. J Anim
- 389 Sci. 2015;93(8):3919-31. doi:10.2527/jas.2015-9137.
- 390 31. Park J, Wickramasinghe S, Mills DA, Lonnerdal BL, Ji P. Iron Fortification and Inulin Supplementation
- 391 in Early Infancy: Evaluating the Impact on Iron Metabolism and Trace Mineral Status in a Piglet Model. Curr Dev
- 392 Nutr. 2024;8(4):102147. doi:10.1016/j.cdnut.2024.102147.
- 393 32. Hayhoe M-AN, Archbold T, Wang Q, Yang X, Fan MZ. Prebiotics and β-Glucan as gut modifier feed
- 394 additives in modulation of growth performance, protein utilization status and dry matter and lactose digestibility
- in weanling pigs. Frontiers in Animal Science. 2022; Volume 3 2022. doi:10.3389/fanim.2022.855846.
- 396 33. Kulkarni T, Siegien P, Comer L, Vandel J, Chataigne G, Richel A, et al. A comparative study of the
- 397 effects of crude chicory and inulin on gut health in weaning piglets. Journal of Functional Foods.

- 398 2024;123:106578.·doi:<u>10.1016/j.jff.2024.106578</u>.
- 399 34. Mikkelsen LL, Jakobsen M, Jensen BB. Effects of dietary oligosaccharides on microbial diversity and
- 400 fructo-oligosaccharide degrading bacteria in faeces of piglets post-weaning. Animal Feed Science and Technology.
- 401 2003;109(1):133-50.·doi:10.1016/S0377-8401(03)00172-X.
- Wang W, Chen D, Yu B, Huang Z, Mao X, Zheng P, et al. Effects of dietary inulin supplementation on
- 403 growth performance, intestinal barrier integrity and microbial populations in weaned pigs. Br J Nutr.
- 404 2020;124(3):296-305.·doi:10.1017/S0007114520001130.
- 405 36. Samolińska W, Kowalczuk-Vasilev E, Grela ER. Comparative effect of different dietary inulin sources
- and probiotics on growth performance and blood characteristics in growing-finishing pigs. Archives of animal
- 407 nutrition. 2018;72(5):379-95. doi:10.1080/1745039X.2018.1505147.
- 408 37. Grela ER, Semeniuk V, Czech A. Efficacy of fructooligosaccharides and mannanoligosaccharides in
- piglet diets. Medycyna Weterynaryjna. 2006;62(07):762-5.
- 410 38. Svoboda M, Drabek J. Iron deficiency in suckling piglets: etiology, clinical aspects and diagnosis. Folia
- 411 Vet. 2005;49:104-11.
- 412 39. Buzzard BL, Edwards-Callaway LN, Engle TE, Rozell TG, Dritz SS. Evaluation of blood parameters
- as an early assessment of health status in nursery pigs. Journal of Swine Health and Production. 2013;21(3):148-
- 414 51.·doi:10.54846/jshap/748.
- 415 40. George JN. Platelets. The Lancet. 2000;355(9214):1531-9. doi:10.1016/S0140-6736(00)02175-9.
- 416 41. Gordon-Smith T. Structure and function of red and white blood cells. Medicine. 2009;37(3):119-
- 417 24. doi: 10.1016/j.mpmed.2009.01.013.
- 418 42. Estienne MJ, Clark-Deener SG, Williams KA. Growth performance and hematology characteristics in
- pigs treated with iron at birth and weaning and fed a nursery diet supplemented with a pharmacological level of
- zinc oxide. Journal of Swine Health and Production. 2019;27(2):64-75. doi:10.54846/jshap/1111.
- 421 43. Moeser AJ, Klok CV, Ryan KA, Wooten JG, Little D, Cook VL, et al. Stress signaling pathways
- 422 activated by weaning mediate intestinal dysfunction in the pig. Am J Physiol Gastrointest Liver Physiol.
- 423 2007;292(1):G173-81.·doi:10.1152/ajpgi.00197.2006.
- 424 44. Smith F, Clark JE, Overman BL, Tozel CC, Huang JH, Rivier JE, et al. Early weaning stress impairs
- development of mucosal barrier function in the porcine intestine. Am J Physiol Gastrointest Liver Physiol.

- 426 2010;298(3):G352-63.·doi:10.1152/ajpgi.00081.2009.
- 427 45. McKay DM, Baird AW. Cytokine regulation of epithelial permeability and ion transport. Gut.
- 428 1999;44(2):283-9.·doi:10.1136/gut.44.2.283.
- 429 46. Han Y, Zhan T, Tang C, Zhao Q, Dansou DM, Yu Y, et al. Effect of Replacing in-Feed Antibiotic Growth
- 430 Promoters with a Combination of Egg Immunoglobulins and Phytomolecules on the Performance, Serum
- 431 Immunity, and Intestinal Health of Weaned Pigs Challenged with Escherichia coli K88. Animals (Basel).
- 432 2021;11(5).·doi:10.3390/ani11051292.
- 433 47. Grela ER, Sobolewska S, Kowalczuk-Vasilev E, Krasucki W. Effect of dietary inulin source on piglet
- 434 performance, immunoglobulin concentration, and plasma lipid profile. B Vet I Pulawy. 2014;58(3):453-
- 435 8.·doi:10.2478/bvip-2014-0069.
- 436 48. Roller M, Rechkemmer G, Watzl B. Prebiotic inulin enriched with oligofructose in combination with
- 437 the probiotics and modulates intestinal immune functions in rats. J Nutr. 2004;134(1):153-6. doi:DOI
- 438 10.1093/jn/134.1.153.
- 439 49. Xie ZQ, He WW, Gobbi A, Bertram HC, Nielsen DS. The effect of in vitro simulated colonic pH
- 440 gradients on microbial activity and metabolite production using common prebiotics as substrates. Bmc
- 441 Microbiology. 2024;24(1).·doi:10.1186/s12866-024-03235-2.
- 442 50. Ikeyama N, Murakami T, Toyoda A, Mori H, Iino T, Ohkuma M, et al. Microbial interaction between
- 443 the succinate-utilizing bacterium Phascolarctobacterium faecium and the gut commensal Bacteroides
- thetaiotaomicron. Microbiologyopen. 2020;9(10):e1111.·doi:10.1002/mbo3.1111.
- Tandon D, Haque MM, Gote M, Jain M, Bhaduri A, Dubey AK, et al. A prospective randomized, double-
- blind, placebo-controlled, dose-response relationship study to investigate efficacy of fructo-oligosaccharides
- 447 (FOS) on human gut microflora. Sci Rep. 2019;9(1):5473. doi:10.1038/s41598-019-41837-3.
- 448 52. Iversen KN, Dicksved J, Zoki C, Fristedt R, Pelve EA, Langton M, et al. The Effects of High Fiber Rye,
- Compared to Refined Wheat, on Gut Microbiota Composition, Plasma Short Chain Fatty Acids, and Implications
- 450 for Weight Loss and Metabolic Risk Factors (the RyeWeight Study). Nutrients.
- 451 2022;14(8).·doi:10.3390/nu14081669.
- 452 53. Fu XD, Wei XY, Xiao MS, Han ZL, Secundo F, Mou HJ. Properties of hydrolyzed guar gum fermented
- 453 with pig fecal inocula and its favorable impacts on microbiota. Carbohyd Polym.

- 454 2020;237.·doi:10.1016/j.carbpol.2020.116116.
- 455 54. Riva A, Rasoulimehrabani H, Cruz-Rubio JM, Schnorr SL, von Baeckmann C, Inan D, et al.
- 456 Identification of inulin-responsive bacteria in the gut microbiota via multi-modal activity-based sorting. Nat
- 457 Commun. 2023;14(1):8210.·doi:10.1038/s41467-023-43448-z.
- 458 55. Kraatz M, Wallace RJ, Svensson L. Olsenella umbonata sp. nov., a microaerotolerant anaerobic lactic
- 459 acid bacterium from the sheep rumen and pig jejunum, and emended descriptions of Olsenella, Olsenella uli and
- 460 Olsenella profusa. Int J Syst Evol Microbiol. 2011;61(Pt 4):795-803. doi:10.1099/ijs.0.022954-0.
- 461 56. Ogita T, Yamamoto Y, Mikami A, Shigemori S, Sato T, Shimosato T. Oral Administration of
- 462 Flavonifractor plautii Strongly Suppresses Th2 Immune Responses in Mice. Front Immunol.
- 463 2020;11:379.·doi:10.3389/fimmu.2020.00379.
- 464 57. Meng Q, Sun S, Luo Z, Shi B, Shan A, Cheng B. Maternal dietary resveratrol alleviates weaning-
- associated diarrhea and intestinal inflammation in pig offspring by changing intestinal gene expression and
- 466 microbiota. Food Funct. 2019;10(9):5626-43. doi:10.1039/c9fo00637k.
- 467 58. Hou L, Wang L, Qiu Y, Xiong Y, Xiao H, Yi H, et al. Effects of Protein Restriction and Subsequent
- 468 Realimentation on Body Composition, Gut Microbiota and Metabolite Profiles in Weaned Piglets. Animals (Basel).
- 469 2021;11(3).·doi:10.3390/ani11030686.
- 470 59. WILLEMS A, COLLINS MD. Phylogenetic Relationships of the Genera Acetobacterium and
- 471 Eubacterium Sensu Stricto and Reclassification of Eubacterium alactolyticum as Pseudoramibacter alactolyticus
- gen. nov., comb. nov. International Journal of Systematic and Evolutionary Microbiology. 1996;46(4):1083-
- 473 7.·doi:<u>10.1099/00207713-46-4-1083</u>.
- 474 60. Lu D, Pi Y, Ye H, Wu Y, Bai Y, Lian S, et al. Consumption of Dietary Fiber with Different
- Physicochemical Properties during Late Pregnancy Alters the Gut Microbiota and Relieves Constipation in Sow
- 476 Model. Nutrients. 2022;14(12).·doi:10.3390/nu14122511.
- 477 61. Jung T-H, Park JH, Jeon W-M, Han K-S, Butyrate modulates bacterial adherence on LS174T human
- 478 colorectal cells by stimulating mucin secretion and MAPK signaling pathway. Nutr Res Pract. 2015;9(4):343-
- 479 9.·doi:10.4162/nrp.2015.9.4.343.
- 480 62. Ji C, Lu F, Wu Y, Lu Z, Mo Y, Han L, et al. Rhubarb Enema Increasing Short-Chain Fatty Acids that
- 481 Improves the Intestinal Barrier Disruption in CKD May Be Related to the Regulation of Gut Dysbiosis. Biomed

- 482 Res Int. 2022;2022:1896781. doi:10.1155/2022/1896781.
- 483 63. Zhu LB, Zhang YC, Huang HH, Lin J. Prospects for clinical applications of butyrate-producing bacteria.
- 484 World J Clin Pediatr. 2021;10(5):84-92. doi:10.5409/wjcp.v10.i5.84.
- 485 64. Ayuso M, Michiels J, Wuyts S, Yan H, Degroote J, Lebeer S, et al. Short-chain fructo-oligosaccharides
- supplementation to suckling piglets: Assessment of pre-and post-weaning performance and gut health. Plos One.
- 487 2020;15(6):e0233910.·doi:10.1371/journal.pone.0233910.
- 488 65. Xia B, Wu W, Zhang L, Wen X, Xie J, Zhang H. Gut microbiota mediates the effects of inulin on
- 489 enhancing sulfomucin production and mucosal barrier function in a pig model. Food & Function.
- 490 2021;12(21):10967-82.·doi:10.1039/D1FO02582A.

Table 1. Composition of the weaned piglet diets (as-feed basis).

Item	Basal Diet
Ingredients, %	
Corn, Yellow Dent	49.52
Milk, Whey Powder	13.5
Soybean Meal, Solvent Extracted	20.77
Soy Protein Concentrate	9.3
Soybean Oil	2.9
Limestone	1.36
MCP	1.05
Vit-Min Premix	0.8
Lys-HCl	0.43
DL-Methionine	0.21
L-Threonine	0.12
L-Valine	0.04
Total	100
Calculated nutrients content	
GE, kcal/kg	4061
DE, kcal/kg	3601
ME, kcal/kg	3453
NE, kcal/kg	2539
CP, %	21.47
Ca, %	0.86
P, %	0.66
Lys, %	1.53
Met, %	0.53
TSAA, %	0.88
Thr, %	0.95
Trp, %	0.25

GE, gross energy; DE, digestible energy; ME, metabolizable energy; NE, net energy; CP, crude protein; Ca, calcium; P, phosphorus; Lys, lysine; Met, methionine; TSAA, total sulfur amino acids; Thr, threonine; Trp, tryptophan.

Table 2. Effects of fructans on growth performance of weaned piglets.

	Dietary group			CEN.	1
	CON	FOS	INU	SEM	<i>p</i> -value
BW, kg					
Day 0	7.29	7.3	7.31	0.005	0.98
Day 7	8.55	8.69	8.88	0.097	0.51
Day 14	10.73	10.77	11.27	0.175	0.34
Day 21	14.08	13.86	15.16	0.401	0.09
Day 28	17.57	17.7	18.96	0.442	0.18
ADG, g/d					
Day 0 to 7	175	193.68	219	12.75	0.46
Day 7 to 14	348	273.16	325	22.13	0.24
Day 14 to 21	479.17	441.74	554.58	33.18	0.07
Day 21 to 28	498.33	547.39	541.67	15.49	0.56
Overall	367.92	371.3	415.42	15.3	0.19
ADFI, g/d					
Day 0 to 7	1232.86	1132.38	1413.33	82.19	0.32
Day 7 to 14	2303.81	1593.33	1887.62	206.1	0.17
Day 14 to 21	2617.62	2290.71	2889.52	173.1	0.13
Day 21 to 28	3218.1	3350.71	3467.62	72.08	0.76
Overall	2343.1	2091.79	2414.52	97.87	0.36
G:F, g/kg					
Day 0 to 7	584.31	705.95	640.9	35.14	0.15
Day 7 to 14	646.16	702.62	700.14	18.42	0.69
Day 14 to 21	731.66	727.36	768.14	12.94	0.7
Day 21 to 28	602.24	627.42	621.89	7.64	0.94
Overall	622.29	680.8	688.68	20.94	0.2

CON, basal diet; FOS, basal diet + 0.3 % fructooligosaccharide; INU, basal diet + 3 % inulin; BW, body wieght;

⁴⁹⁸ ADG, average daily gain; ADFI, average daily feed intake; G:F, feed efficiency.

Table 3. Effects of fructans on nutrients digestibility of weaned piglets.

Dietary group			SEM	<i>p</i> -value	
	CON	FOS	INU	SEN	p value
DM, %	73.99	78.58	69.01	2.764	0.59
Energy, %	78.12	79.57	73.13	1.95	0.72
CP, %	73.17	75.32	70.04	1.533	0.88

500 CON, basal diet; FOS, basal diet + 0.3 % fructooligosaccharide; INU, basal diet + 3 % inulin; DM, dry matter;

501 CP, crude protein

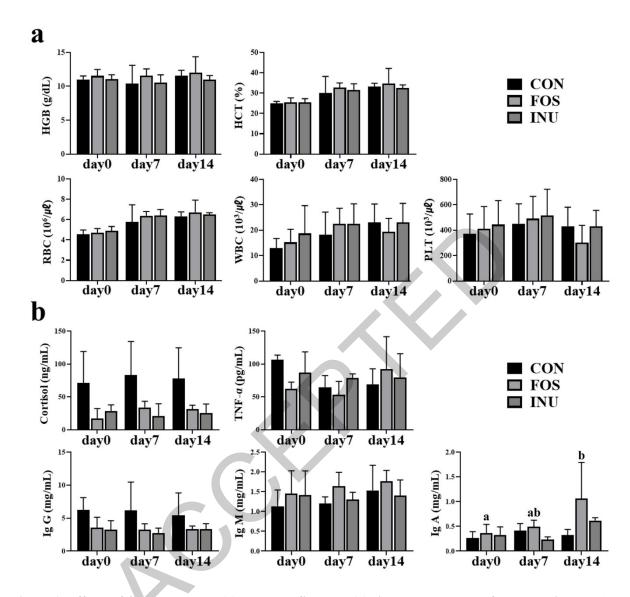


Figure 1. Effects of fructans on the (a) blood profiles and (b) immune response of weaned piglets. a-b: Different letters indicate significantly different (p < 0.05). HGB: hemoglobin; HCT: hematocrit; RBC: red blood cell; WBC: white blood cell; PLT: platelet.

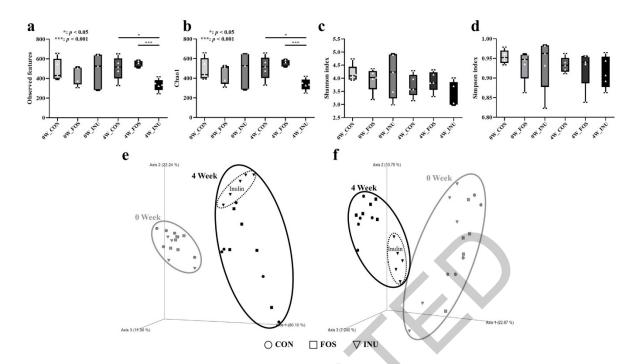


Figure 2. Microbial diversity analysis of weaned piglets at 0 week (0W, day 0) and 4 week (4W, day 28). (a - d) Box plots of the alpha diversity indices in the fecal microbiomes. *: p < 0.05; ***: p < 0.001. (e - f) Principal coordinate analysis (PCoA) plots based on (e) weighted and (f) unweighted UniFrac distance metrics. CON: basal diet; FOS: basal diet + 0.3% fructooligosaccharide; INU: basal diet + 3% inulin.

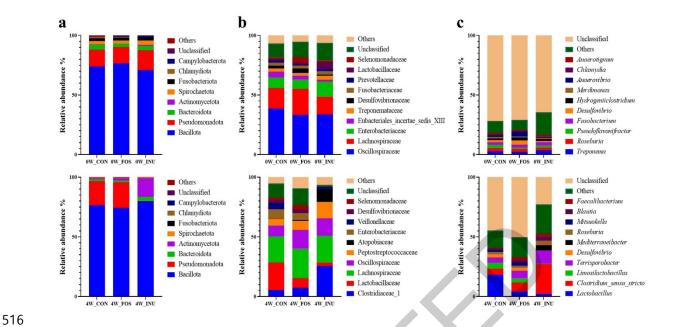


Figure 3. Taxonomic composition of weaned piglets at 0 week (0W, day 0) and 4 week (4W, day 28). Classification of the 16S rRNA gene sequences at the (a) phylum, (b) family, and (c) genus levels. CON: basal diet; FOS: basal diet + 0.3% fructooligosaccharide; INU: basal diet + 3% inulin.

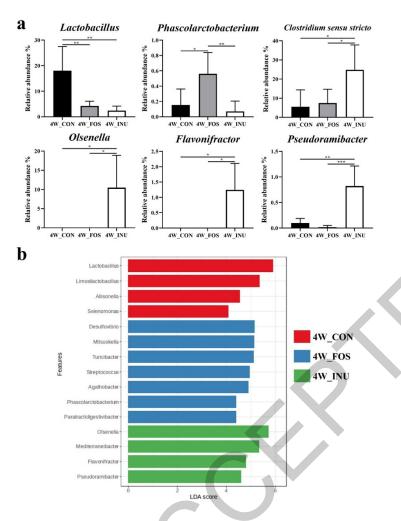


Figure 4. Differential abundance of bacteria among the CON, FOS and INU groups. (a) The bar plots showing genera that showed significant differences in relative abundance, as determined by the Tukey-Kramer multiple comparison test. *: p < 0.05; **: p < 0.01; ***: p < 0.001. (b) Identification of characteristic genera for each dietary group using Linear Discriminant Analysis Effect Size (LEfSe). The Log₁₀LDA score threshold was set at 4. CON: basal diet; FOS: basal diet + 0.3% fructooligosaccharide; INU: basal diet + 3% inulin.