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Abstract

Male infertility is an increasing global health concern, with reduced sperm motility being a major
contributing  factor. Among various molecular mechanisms, the phosphoinositide  3-kinase
(P13K)/phosphoinositide-dependent protein kinase-1 (PDK1)/protein kinase B (AKT) signaling pathway has been
identified as a key regulator of sperm function, particularly motility. However, the relationship between this
pathway and sperm motility is not fully understood. In this study, we investigated the correlation between sperm
motility and the levels of PI3BK/PDK1/AKT pathway-related proteins in Duroc boar spermatozoa. Sperm motility
was assessed using computer-assisted sperm analysis (CASA), and protein levels were measured via enzyme-
linked immunosorbent assay (ELISA). Our results revealed significant correlations between signaling components
and specific motility parameters. Notably, PI3K levels were negatively correlated with beat cross frequency (BCF),
suggesting that excessive activation may impair flagellar motion. In contrast, phosphorylated PDK1 (p-PDK1)
and AKT phosphorylated at Thr308 and Ser473 were positively correlated with progressive motility (PRG),
supporting a role for AKT activation in enhancing forward movement.  Interestingly, both PTEN and
phosphorylated PTEN (p-PTEN) showed positive correlations with various velocity parameters, indicating a
potential regulatory role in modulating AKT activity to maintain optimal motility patterns. While these findings
enhance our understanding of sperm motility regulation, limitations include reliance on the correlation analysis
and the absence of direct enzymatic activity measurements. Additionally, these results are specific to Duroc boar
spermatozoa and may not be directly applicable to other species. Nonetheless, this study provides foundational
insights into the molecular 'mechanisms underlying sperm motility and underscores the importance of the

PI3K/PDK1/AKT pathway in male fertility.

Keywords: sperm motility, PI3K/PDK1/AKT pathway, boar, male fertility
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Introduction

Assessing sperm motility is crucial not only for diagnosing human infertility but also for livestock
reproduction. Evaluation of sperm motility is essential for artificial insemination (Al) and breeding soundness
evaluations (BSE) to ensure optimal reproductive performance and genetic improvement in various species,
including swine [1, 2]. Considering the economic and biological significance, elucidating the mechanisms

regulating sperm motility in livestock is indispensable.

The World Health Organization (WHO) defines infertility as the inability to conceive after 12 months or
more of regular, unprotected sexual intercourse. It affects approximately 8%-12% of couples of reproductive age,
with male-related factors contributing to nearly half of all cases [3]. Male infertility is commonly categorized
based on semen characteristics, including conditions such as azoospermia, oligozoospermia, necrozoospermia,
asthenozoospermia, teratozoospermia, and oligoasthenoteratozoospermia. Among these, asthenozoospermia,
characterized by reduced or absent sperm motility, is one of the most frequently observed in infertile men [4].
Sperm motility is a key determinant of male fertility, as sperm must be able to move efficiently through the female
reproductive tract to reach and fertilize the oocyte. Numerous studies have shown a positive association between
sperm motility and fertilization success, emphasizing its critical role in reproduction [5, 6]. Therefore,
understanding the molecular mechanisms that regulate sperm motility is vital not only for human infertility

diagnosis and treatment but also for advancing reproductive technology in livestock.

Capacitation is an important physiological process that sperm undergoes after ejaculation, characterized by
a series of biochemical changes for fertilization. During this process, sperm acquire hyperactivated motility,
enabling them to navigate cervical mucus and penetrate the zona pellucida surrounding the oocyte [7]. Recent
research indicates that the phosphoinositide 3-kinase (PI3K)/phosphoinositide-dependent protein kinase-1
(PDK1)/protein kinase B (AKT) pathway plays a pivotal role in controlling capacitation-induced motility changes

[8, 9]. Notably, this pathway modulates key phosphorylation and motility patterns required for fertilization.

The PI3K/PDK1/AKT pathway is well known for regulatory functions, including cell survival, growth,
metabolism, proliferation, and apoptosis [10]. In mammalian sperm, it has been shown to play a key role in
regulating motility, capacitation, and the acrosome reaction. Particularly, this pathway has been implicated in the
modulation of motility and tyrosine phosphorylation during capacitation [11-13]. Despite growing interest, the
precise relationship between the PI3BK/PDK1/AKT pathway and sperm matility and capacitation remains poorly
understood. To address this knowledge gap, the present study investigates the association between this signaling

pathway and sperm motility by quantifying the levels of PI3K/PDK1/AKT-related proteins and analyzing detailed
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motility parameters in Duroc boar spermatozoa.

Materials and Methods

Ethical statement

All procedures were conducted in accordance with the Guidelines for the Ethical Treatment of Animals and
were approved by the Institutional Animal Care and Use Committee of Kyungpook National University (KNU

2021-0207).

Sperm sample collection

Duroc boars were kept at a commercial facility (Gyeongsan Swine, Gyeongsan, Korea) under maintained
environmental conditions with temperature (20 + 5 °C) and adequate ventilation. Animals were fed a commercial
boar diet and fresh water was provided ad libitum. Semen samples were collected using the gloved-hand technique
from 76 healthy, sexually mature Duroc boars (24—36 months old) during summer season. Each boar served as an
individual biological replicate, with one sample collected per individual. The ejaculates were immediately diluted
at a 1:1 (v/v) ratio with a standard Beltsville thawing solution, which contained 37 mg/mL glucose, 6 mg/mL
sodium citrate, 1.25 mg/mL EDTA, 1.25 mg/mL sodium bicarbonate, and 0.75 mg/mL potassium chloride. The
extended semen was stored in a low-temperature incubator at 17 °C and processed within 2 hours of collection

[14, 15].

Sperm motility analysis

Sperm motility and motion kinematic parameters were evaluated using a computer-assisted sperm analysis
system (IVOS® I1, Hamilton Thorne, Beverly, MA, USA), following previously described protocols [16, 17]. A3
uL aliquot of each sample (20-30x10° cells/mL) was placed on a pre-warmed Makler counting chamber
maintained at 17 °C. The following parameters were assessed: total motility (MOT, %), progressive motility
(PRG, %), curvilinear velocity (VCL, um/s), straight-line velocity (VSL, um/s), average path velocity (VAP, um/s),
amplitude of lateral head displacement (ALH, um), beat-cross frequency (BCF, Hz), linearity (LIN, %), and

straightness (STR, %).
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Enzyme-linked immunosorbent assay

The expression levels of PI3K/PDK1/AKT-related proteins in spermatozoa were measured using an
enzyme-linked immunosorbent assay (ELISA) for each individual sample (n = 76), following previously
established methods [18, 19]. The PI3K/PDK1/AKT pathway proteins were selected based on their established
roles in mammalian sperm motility regulation. In boar spermatozoa, PI3K inhibition reduces motility parameter
[20, 21], while PDK1 has been reported to localize to sperm flagellum and become activation during
hyperactivation [12]. AKT phosphorylation at Thr308 and Ser473 represents activation states associated with PRG
in human and other mammalians [22-24]. PTEN was selected as the primary negative regulator to evaluate the
balance between activation and inhibition [25]. Total proteins were extracted by treating spermatozoa with a
rehydration buffer composed of 7 M urea, 2 M thiourea, 4% (w/v) 3-[(3-cholamidopropyl) dimethylammonio]-1-
propane sulfonate, 1% (w/v) octyl B-D-glucopyranoside, 24 mM PMSF, 1% (w/v) dithiothreitol, 0.05% (v/v)
Triton X-100, and 0.002% (w/v) bromophenol blue at 4 °C for 1 hour. Protein concentrations were determined
using the Bradford assay [26]. A total of 50 pg of protein extract was added to 96-well plates and incubated
overnight at 4 °C. After incubation, the plates were washed with 0.05% Tween-20 in PBS (PBST) and blocked
with 1% (w/v) bovine serum albumin in PBST for 90 minutes at 37 °C. The plates were then incubated with
primary antibodies (diluted 1:5,000) for 90 minutes at 37 °C. The primary antibodies used were as follows: anti-
PI3K (Proteintech Group, Inc., Rosemont, IL, USA), anti-phospho-PI3K (Affinity Biosciences, Cincinnati, OH,
USA), anti-PDK1 and anti-phospho-PDK1 (LSBio, Inc., Seattle, WA, USA), anti-AKT and anti-phospho-AKT
(Thr308) (Cell Signaling Technology, Danvers, MA, USA), anti-phospho-AKT (Ser473) (Genetex, Inc., Irvine,
CA, USA), anti-PTEN (MyBioSource, Inc., San Diego, CA, USA), and anti-phospho-PTEN (Bioss, Inc., Woburn,
MA, USA). After washing, the plates were incubated with HRP-conjugated secondary antibodies: goat anti-rabbit
IgG H&L (1:5,000; Cell Signaling Technology, Danvers, MA, USA) and goat anti-mouse 1gG H&L (1:5,000;
Abcam, Cambridge, UK) for 90 minutes at 37 °C. Tetramethylbenzidine (TMB) substrate was added and
incubated for 15 minutes at room temperature to allow color development. The reaction was then stopped by
adding 1 N sulfuric acid. Absorbance was measured at 450 nm using a microplate reader (Gemini Em; Molecular

Devices Corporation, Sunnyvale, CA, USA) to quantify PI3K/PDK1/AKT-related protein expression.

Statistical analysis
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Statistical analyses were conducted using SPSS (version 26.0; IBM, Armonk, NY, USA). Pearson
correlation coefficients were calculated to examine the relationships between sperm motility parameters and the
expression levels of PI3K/PDK1/AKT pathway-related proteins. To visualize these correlations, simple linear
regression analyses were performed, and corresponding regression equations were presented (Fig. 3). All data are

presented as means + standard errors of the mean (SEM), and statistical significance was defined as P < 0.05

Results

Sperm motility and motion kinematic parameters

The average values for sperm motility and motion kinematic parameters were as follows: MOT, 87.64 +
0.66%; PRG, 62.16 £ 1.51%; VAP, 97.74 £ 1.44 um/s; VCL, 184.26 = 3.72 um/s; VSL, 62.59 + 1.43 um/s; ALH,

7.43 £ 0.15 um; BCF, 35.59 £ 0.36 Hz; LIN, 36.21 + 1.15%; and STR, 64.33 £ 1.35% (Table 1, Fig. 1).

Protein levels of PI3BK/PDK1/AKT-related proteins

The average expression levels of proteins related to the PI3K/PDK1/AKT signaling pathway were as
follows: PI3K, 0.0727 + 0.0008; phosphorylated PI3K (p-PI3K), 0.0767 + 0.0007; PDK1, 0.0769 + 0.0006;
phosphorylated PDK1 (p-PDK1), 0.0765 + 0.0007; AKT, 0.0797 + 0.0009; AKT phosphorylated at Thr308,
0.0840 + 0.0001; AKT phosphorylated at Ser473, 0.0830 + 0.0007; PTEN, 0.0852 + 0.0008; and phosphorylated

PTEN (p-PTEN), 0.0896 + 0.0012 (Table 2, Fig. 2).

Correlation between protein levels of PI3K/PDK1/AKT-related proteins and sperm motility

Significant correlations were observed between PI3K/PDK1/AKT-related protein expression levels and
sperm motility parameters. p-PDK1 was positively correlated with PRG (r = 0.243, p < 0.05). Similarly, AKT
phosphorylated at Thr308 and Ser473 also showed positive correlations with PRG (r = 0.240, p < 0.05and r =
0.237, p < 0.05, respectively). PTEN expression was positively correlated with PRG (r = 0.262, p < 0.05), VAP (r
=0.231, p <0.05), and VSL (r = 0.335, p < 0.01). p-PTEN was positively correlated with both VAP (r = 0.322, p
<0.01) and VCL (r =0.301, p < 0.01). In contrast, a negative correlation was found between PI3K expression and

BCF (r =-0.245, p < 0.05) (Table 3, Fig. 3).
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Discussion

This study demonstrated significant correlations between PI3K/PDK1/AKT pathway components and
specific sperm motility parameters in ejaculated Duroc boar spermatozoa. Our findings revealed both expected
and unexcepted relationships, providing new insights into regulation of sperm motility at molecular levels.
Notably, PI3K expression exhibited a negative correlation with BCF (r = -0.245, p < 0.05). This finding aligns
with previous reports indicating that excessive PI3K activation can impair sperm motility and disrupt energy
homeostasis [20, 21, 27]. The observed negative correlation suggests that elevated PI3K activity may be
associated with reduced flagellar beating frequency, possibly reflecting a threshold beyond which PI13K activation
becomes detrimental to sperm movement. While PI3K is known to facilitate capacitation by regulating ATP
production and flagellar motion via downstream activation of AKT, our findings imply that dysregulation of its

activity could influence motility patterns in a dose-dependent manner.

Additionally, PRG was positively correlated with several PI3K/PDK1/AKT pathway components.
Specifically, p-PDK1 showed a significant positive correlation with PRG (r = 0.243, p < 0.05). Similarly, positive
correlations were observed for phosphorylated AKT at Thr308 (r = 0.240, p < 0.05) and Ser473 (r = 0.237, p <
0.05). The PIBK/PDK1/AKT pathway is a central signaling cascade that regulates cellular processes such as
survival, proliferation, and metabolism [10]. Activation of this pathway begins with PI13K, which is located in the
sperm plasma membrane and. catalyzes the conversion of phosphatidylinositol (4,5)-bisphosphate (PIP2) into
phosphatidylinositol (3,4,5)-trisphosphate (PIP3). AKT, a major downstream effector of PI3K, requires dual
phosphorylation for full activation: at Thr308 by PDK1, and at Ser473 by other kinases [10, 28, 29]. Previous
studies have shown that inhibition of AKT activity reduces progressive motility in mouse [22] and stallion
spermatozoa [23], while its activation enhances motility in human spermatozoa [24]. AKT is known to regulate
mitochondrial function, energy metabolism, and cell survival, all of which are intimately linked to flagellar
function and sperm motility [10, 30]. Therefore, it is reasonable to infer that AKT activation contributes positively

to progressive motility in boar spermatozoa.

As PTEN reduces PIP3 levels by dephosphorylating PIP3 back to PIP2, thereby suppressing AKT
activation, it is traditionally expected to exert a negative regulatory effect on the PI3K/PDK1/AKT pathway and,
consequently, on motility [25]. Interestingly, in our study, PTEN, a known negative regulator of the
PI3K/PDK1/AKT pathway, showed a positive correlation with PRG (r = 0.262, p < 0.05). This finding suggests

that appropriate levels of PTEN expression may help maintain signaling homeostasis by preventing excessive
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AKT activation, ultimately promoting PRG. Thus, our results imply that optimal, rather than maximal, AKT

signaling may be more beneficial for supporting sperm motility.

Furthermore, PTEN was positively correlated with VSL (r = 0.335, p < 0.01), while p-PTEN showed a
positive correlation with VCL (r = 0.301, p < 0.01). Phosphorylation of PTEN at C-terminal residues such as
Ser380 is known to stabilize the protein while reducing its enzymatic activity [31]. Thus, increased levels of p-
PTEN may reflect reduced PTEN activity, potentially leading to sustained activation of the PI3K/PDK1/AKT
signaling pathway. The AKT pathway plays a complex role in regulating sperm motility during capacitation.
Activated AKT is associated with hyperactivated motility, which is characterized by vigorous and asymmetrical
flagellar beating and results in increased curvilinear velocity [24]. This type of motility is essential for zona
pellucida penetration during fertilization [32]. Therefore, the observed positive correlation between p-PTEN and
VCL supports the idea that reduced PTEN activity facilitates AKT activation, promoting hyperactivated motility

during capacitation.

In contrast, the positive correlation between total PTEN and VSL suggests that higher PTEN levels may
help sustain more linear sperm movement by attenuating AKT-mediated hyperactivation and preventing
excessive flagellar bending. This more linear motility is advantageous for efficient navigation through the female
reproductive tract en route to the oocyte [33]. Taken together, these findings suggest that PTEN may act as a key
modulator of sperm motility, helping to balance hyperactivated and linear motility modes depending on the
fertilization context. Notably, VAP was positively correlated with both PTEN and p-PTEN. This dual correlation
suggests that both the total and phosphorylated forms of PTEN contribute to the regulation of sperm path velocity.
It is possible that a finely tuned balance between the active and inactive forms of PTEN, along with other

signaling components, orchestrates an optimal motility state suitable for fertilization.

In summary, our findings suggest that the PI3BK/PDK1/AKT signaling pathway plays a critical role in male
fertility by influencing sperm motility and associated kinematic parameters in Duroc boar spermatozoa. However,
several limitations must be considered. First, the analysis was based on correlation, which does not establish
direct causality. Second, the correlation coefficients were relatively low, which is generally considered weak
correlation. Although the correlations were low, large sample size may have contributed to achieving statistical
significance. Third, this study quantified only total and phosphorylated protein levels without directly assessing
the enzymatic activity of PI3K/PDK1/AKT pathway components. Therefore, future studies are needed to clarify
the functional relevance of these proteins through activity-based assays. Finally, as our findings are specific to
boar spermatozoa, species-specific differences should be considered before extrapolating these results to other

mammals, including humans. Nonetheless, this study offers valuable insights into the complex relationship
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between sperm motility and PI3K/PDK1/AKT signaling and provides foundational data to support future research

in male reproductive biology.
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Tables and Figures

Table 1. Sperm motility and motion kinematic parameters

MOT PRG VAP VCL VSL ALH BCF LIN STR

87.6368 62.1579 97.7416 184.2259 62.5987 7.4292 35.5909 36.2091 64.3266
+ 0.6599 +1.5143 +1.4330 +3.7191 +1.4321 + 0.1542 + 0.3601 +1.1491 + 1.3530

Sperm motility and motion kinematic parameters are presented as mean + SEM. MOT = Total sperm maotility (%); PRG = Progressive sperm motility (%); VAP = Average path
velocity (um/s); VCL = Curvilinear velocity (um/s); VSL = Straight-line velocity (um/s); ALH = Mean amplitude of head lateral displacement (um); BCF = Beat-cross frequency

(HZ); LIN = linearity [%, (VSL/VCL) x 100]; STR = Straightness [%, (VSL/VAP) x 100].
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Table 2. Levels of PI3K/PDK1/AKT pathway-related proteins

PI3K p-PI3K PDK1 p-PDK1 AKT Thr308 Ser473 PTEN p-PTEN

0.0727 0.0767 0.0769 0.0765 0.0797 0.0840 0.0830 0.0852 0.0896
+ 0.0008 + 0.0007 + 0.0006 + 0.0007 + 0.0009 + 0.0001 + 0.0007 + 0.0008 + 0.0012

Levels of PI3K/PDKL1/AKT pathway-related proteins are presented as mean + SEM. PI3K = phosphoinositide 3-kinase; p-PI3K = phospho-PI3K; PDK1 = phosphoinositide
dependent protein kinase-1; p-PDK1 = phospho-PDK1; AKT = protein kinase B; Thr308 = phospho-AKT (Thr308); Ser473 = phospho-AKT (Ser473); PTEN = phosphatase

and tensin homolog; p-PTEN = phospho-PTEN.
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Table 3. Correlation between sperm motility and levels of PI3K/PDK1/AKT pathway-related proteins

PRG VAP VCL VSL ALH BCF LIN STR PI3K p-PI3K PDKL p-PDKL AKT Thr308 Ser473 PTEN p-PTEN
MoT 03807 03337 0135 0088 -0.057 0346 0003 -0.113 -0122 -0.009 -0.004 0.32 -0.008 0.163 0.160 0.038 0.155
PRG 0.078 -0.343™ 0.826" -0.459 0.012 0.756™ 0.776” 0.050 0.153 0.083 0.243° 0.059 0.240" 0.237° 0.262° 0.002
VAP 0.847" 0.356™ 0.636™ 0.011 -0.337" -0.350™ 0.156 0.082 -0.076 -0.010 0113 0116 0221 0.231° 0.322"
VCL -0.070 0918~ -0.021 -0.744™ -0.691” 0.78 0053 -0.118 -0.091 0.092 0055 0129 0175 0.301"
VSL -0.168 -0.308™ 0.695™ 0.741" 0.154 0.106 0.015 0.109 0036 0.103 0.187 0.335" 0.003
ALH -0.269" -0.760™ -0.660” 0173 0012 -0.129 -0.101 0.050 -0.047 0012 0172 0.129
BCF -0.214 -0.275" -0.245" 0008 0.078 0.53 -0011 0129 0091 -0.120 0.172
LIN 0.962 -0.081 0.007 0.069 0.144 -0.050 0006 0019 0.094 -0.223
STR 0.005 0.047 0.066 0.149 -0.037 0.025 0037 0173 -0.222
PI3K 0.586™ 0.356" 0.017 0.422" 0447 0.404™ 0.151 0.490"
P_PI3K 0.424™ 0.473" 0.560" 0.677" 0.667" 0.369™ 0.558"
PDK1 0.491" 0.560” 0.379" 0.379™ 0.233" 0.274°
5-PDK1 0.533" 0447 0.536™ 0.448™ 0.198
AKT 0.707" 0.675™ 0474 0572
Thr308 0.763" 0.486™ 0.819"
Serd73 0.568™ 0.650"
PTEN 0.373"
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MOT = Total sperm motility (%); PRG = Progressive sperm motility (%); VAP = Average path velocity (um/s); VCL = Curvilinear velocity (um/s); VSL = Straight-line velocity
(um/s); ALH = Mean amplitude of head lateral displacement (um); BCF = Beat-cross frequency (Hz); LIN = linearity [%, (VSL/VCL) x 100]; STR = Straightness [%, (VSL/VVAP)
x 100; PI3K = phosphoinositide 3-kinase; p-PI3K = phospho-PI3K; PDK1 = phosphoinositide dependent protein kinase-1; p-PDK1 = phospho-PDK1; AKT = protein kinase B;

Thr308 = phospho-AKT (Thr308); Ser473 = phospho-AKT (Ser473); PTEN = phosphatase and tensin homolog; p-PTEN = phospho-PTEN.
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Figure 1. Sperm motility in Duroc boar samples
(A) MOT: total sperm motility (%); (B) PRG: progressive motility (%); (C) VAP: average path velocity (um/s);
(D) VCL: curvilinear velocity (um/s); (E) VSL: straight-line velocity (um/s); (F) ALH: mean amplitude of lateral

head displacement (um); (G) BCE: beat-cross frequency (Hz); (H) LIN: linearity (%); (I) STR: straightness (%).
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Figure 2. Protein expression levels of PISK/PDK1/AKT signaling pathway components in Duroc

boar spermatozoa

(A) PI3K: Phosphoinositide 3-kinase; (B) p-PI3K: Phosphorylated PI3K; (C) PDK1: Phosphoinositide-dependent
protein kinase-1; (D) p-PDK1: Phosphorylated PDK1; (E) AKT: Protein kinase B; (F) Thr308: AKT
phosphorylated at threonine 308; (G) Ser473: AKT phosphorylated at serine 473; (H) PTEN: Phosphatase and

tensin homolog; (1) p-PTEN: Phosphorylated PTEN.
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Figure 3. Correlation between PI3K/PDK1/AKT pathway-related protein levels and sperm

motility parameters in Duroc boar samples

(A) Correlation between p-PDK1 and PRG; (B) Thr308 and PRG; (C) Ser473 and PRG; (D) PTEN and PRG; (E)
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PTEN and VAP; (F) p-PTEN and VAP; (G) p-PTEN and VCL; (H) PTEN and VSL; (I) PI3K and BCF.





