

1 **Effects of sulfur and cyanide-utilizing bacteria in fermented total mixed ration containing**
2 **fresh cassava root on rumen fermentation in Thai beef cattle**

3

4 Thiraphat *Surakhai*¹, Chanon *Suntara*¹, Pachara *Srichompoo*¹, Nittaya *Phowang*¹, Waroon *Khota*², Metha
5 *Wanapat*¹, Chanadol *Supapong*³, and Anusorn *Cherdthong*^{1*}

6

7 *** Corresponding author: Anusorn Cherdthong**

8 Tel: +66-4320-2362, Fax: +66-4320-2362, Email address: anusornc@kku.ac.th

9 (A. Cherdthong)

10

11 ¹Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science,
12 Faculty of Agriculture, Khon Kaen 40002, Thailand

13 ²Faculty of Natural Resources, Rajamangala University of Technology Isan, Sakon Nakhon 47160, Thailand

14 ³Department of Animal Science, Faculty of Agricultural Innovation and Technology, Rajamangala University of
15 Technology Isan, Nakhon Ratchasima 30000, Thailand

16

17 **ORCID**

18 Thiraphat Surakhai <https://orcid.org/0009-0007-5129-6090>

19 Chanon Suntara <https://orcid.org/0000-0002-9924-5459>

20 Pachara Srichompoo <https://orcid.org/0000-0002-5716-4378>

21 Nittaya Phowang <https://orcid.org/0009-0009-9712-0490>

22 Waroon Khota <https://orcid.org/0000-0002-6766-9070>

23 Metha Wanapat <https://orcid.org/0000-0002-7633-052X>

24 Chanadol Supapong <https://orcid.org/0000-0001-5512-3508>

25 Anusorn Cherdthong <https://orcid.org/0000-0002-8719-4404>

26

27

28 **ABSTRACT**

29 This study investigated the effects of sulfur supplementation and cyanide-utilizing ruminal bacteria (CUB) on
30 nutrient digestibility, rumen fermentation, and blood urea-nitrogen (BUN) in Thai native beef cattle fed fermented
31 total mixed rations (FTMR) containing fresh cassava root. Two CUB strains, *Enterococcus gallinarum* KKU-
32 BC10 and *Enterococcus faecium* KKU-BF7, were isolated from the rumen based on their hydrogen cyanide
33 (HCN) degrading capacity. Four dietary treatments were prepared by formulating FTMR with 40% rice straw and
34 40% fresh cassava root (dry matter (DM) basis), supplemented with other concentrate ingredients, and differing
35 by additive: (1) 1% sulfur, (2) 2% sulfur, (3) *E. gallinarum* KKU-BC10, or (4) *E. faecium* KKU-BF7. Each ration
36 was fermented anaerobically for seven days before feeding. Four male Thai native beef cattle (2.5 years old; 222
37 \pm 12.0 kg initial body weight) were allocated to the four treatments in a 4×4 Latin square design, with each
38 animal receiving all four treatments across the four experimental periods. All FTMR treatments effectively
39 reduced HCN to safe levels for ruminant feeding. Specifically, HCN content in the FTMR dropped from ~60–
40 84 mg/kg DM before fermentation to ~41–52 mg/kg DM after 7 days, remaining well below the 100 mg/kg DM
41 safety threshold for cattle. No significant differences were observed in dry matter intake, nutrient digestibility, or
42 total volatile fatty acid concentrations ($p > 0.05$). However, fiber intake was enhanced by microbial inoculation.
43 Cattle receiving *E. gallinarum* KKU-BC10 showed the highest neutral detergent fiber intake ($p < 0.05$). In
44 contrast, *E. faecium* KKU-BF7 supplementation resulted in the highest acid detergent fiber intake ($p < 0.01$).
45 Notably, cattle fed *E. faecium* KKU-BF7 also had significantly lower blood urea-nitrogen concentrations at 4
46 hours post feeding ($p = 0.04$), indicating improved nitrogen utilization. Rumen pH and ammonia–nitrogen levels
47 remained within physiological ranges across all treatments. These findings confirm that sulfur and CUB
48 supplementation in FTMR supports the safe use of fresh cassava root in ruminant diets. Moreover, *E. faecium*
49 KKU-BF7 shows potential to enhance nitrogen efficiency beyond detoxification.

50

51 **Keywords:** detoxification strategy, energy source, microbial inoculation, ruminant nutrition, tropical forage
52 systems

53

54

55 INTRODUCTION

56 Cassava (*Manihot esculenta* Crantz) is a major tropical root crop valued for its high starch content and
57 resilience in marginal soils. In ruminant feeding systems, cassava root is often processed into dried chips as an
58 energy dense ingredient [1,2,3]. However, during the wet season, drying is impractical, leading to interest in fresh
59 cassava root as a direct feed source. Its use is limited by hydrocyanic acid (HCN), a toxic compound that can
60 impair animal health [4,5,6]. Reported HCN concentrations in fresh cassava typically range from 85 to 114 mg/kg
61 DM [7,8], which can be hazardous depending on intake and detoxification capacity. Values above 100 mg/kg DM
62 may pose subclinical risks, while levels exceeding 200 mg/kg body weight or 500 mg/kg DM are considered toxic
63 [3,4,6]. Once ingested, HCN is rapidly released in the rumen and absorbed into the bloodstream, where it inhibits
64 cytochrome oxidase in the mitochondrial electron transport chain, causing impaired oxidative phosphorylation
65 and cellular hypoxia [4,9]. Effective detoxification strategies are therefore critical to safely harness cassava's
66 nutritional potential [10,11].

67 Ruminants possess a natural defense mechanism against cyanide toxicity through the mitochondrial
68 enzyme rhodanese, which converts cyanide into the less toxic thiocyanate [4,12]. This process requires sulfur as
69 a co-substrate, highlighting the nutritional role of dietary sulfur in sustaining detoxification efficiency [16]. Sulfur
70 supplementation has been shown to support this conversion, particularly when dietary sulfur amino acid levels
71 are inadequate. Supapong et al. [16] reported that inclusion of 2% sulfur in FTMR containing 40% fresh cassava
72 root (DM basis) reduced hydrogen cyanide concentrations from approximately 180–200 mg/kg DM to below 100
73 mg/kg DM, likely by enhancing sulfur availability for rhodanese activity. However, excessive sulfur
74 supplementation can reduce feed palatability due to off odors and may cause toxicity symptoms such as
75 polioencephalomalacia (PEM) if not properly managed [10,17,18]. These challenges emphasize the need for
76 complementary strategies that ensure safe utilization of cassava without compromising intake or health, while
77 remaining practical for smallholder farmers. Microbial detoxification has therefore emerged as a promising
78 biological approach [9]. *Enterococcus gallinarum* KKU-BC10 and *E. faecium* KKU-BF7, isolated from the rumen
79 contents of swamp buffalo and beef cattle, demonstrated rhodanese activity and HCN degrading ability under *in*
80 *vitro* conditions [19]. Similarly, Lukbun et al. [11] reported that *E. gallinarum* KKU-BC10 enhanced cyanide
81 degradation, fiber digestibility, and propionate production in high HCN cassava substrates. These findings suggest
82 that cyanide-utilizing ruminal bacteria (CUB) could be effective inoculants for improving both safety and

83 fermentation quality of cassava based rations, although their persistence and activity *in vivo* remain to be
84 confirmed.

85 Among detoxification platforms, FTMR offer several advantages for incorporating fresh cassava root
86 into ruminant diets. This system stabilizes feed through lactic acid fermentation, enhances preservation, and
87 lowers HCN concentrations during ensiling [9]. Moreover, FTMR ensures consistent nutrient intake and supports
88 microbial protein synthesis under anaerobic conditions, providing an effective framework for evaluating both
89 chemical and microbial detoxification methods [20,21,22]. Such integration could enhance feed safety and expand
90 the usable range of cassava based rations under tropical conditions [6].

91 Although previous studies have reported the detoxification potential of both sulfur supplementation and
92 microbial inoculation with cyanide-utilizing bacteria (CUB) in cassava based diets [11,16,23], no *in vivo*
93 investigation has systematically compared these approaches within a unified feeding system to assess their effects
94 on rumen function and nitrogen metabolism. Understanding how these detoxification strategies influence
95 physiological outcomes such as ruminal fermentation dynamics and nitrogen utilization is important for refining
96 dietary interventions in tropical cattle. Therefore, the present study evaluated the impact of supplementing FTMR
97 containing fresh cassava root with either sulfur (1% or 2%) or CUB strains (*E. gallinarum* KKU-BC10 and *E.*
98 *faecium* KKU-BF7) on hydrogen cyanide degradation, ruminal parameters, nutrient digestibility, and blood urea
99 nitrogen in Thai native beef cattle. The hypothesis was that, beyond detoxification, microbial and chemical
100 additives would exert distinct effects on rumen fermentation profiles and indicators of nitrogen metabolism.

101

102 **MATERIALS AND METHODS**

103 **Ethical procedure**

104 All procedures involving animals were approved by the Animal Ethics Committee of Khon Kaen
105 University (Approval No. ACUC-KKU 32/67; dated 30 April 2024) and were conducted in accordance with
106 institutional guidelines for the care and use of animals in research.

107

108 **FTMR preparation**

109 Four dietary treatments were prepared by formulating FTMR based on 40% rice straw and 40% fresh
110 cassava root (DM basis), supplemented with soybean meal, palm kernel meal, rice bran, urea, molasses, salt, and
111 a mineral premix. The treatments differed by additive as follows: 1% sulfur, 2% sulfur, *E. gallinarum* KKU-
112 BC10, or *E. faecium* KKU-BF7 (Table 1). The inclusion levels of sulfur were selected based on previous reports
113 indicating efficacy for cyanide detoxification without exceeding recommended safety limits for ruminants
114 [8,10,16].

115 Fresh cassava roots (8 months old) were sourced from farms surrounding Khon Kaen University
116 (16.4322°N, 102.8236°E). The roots were washed, left to drain overnight, then chopped into approximately 10
117 mm pieces before being mixed with the designated treatments. Sulfur was directly mixed into the TMR, while
118 bacterial inoculants were sprayed evenly over the total mixed ration (TMR).

119 The CUB strains (*E. gallinarum* KKU-BC10 and *E. faecium* KKU-BF7) were originally isolated from
120 the rumen of swamp buffalo and beef cattle, and selected based on their rhodanese activity, as reported by Khota
121 et al. [19]. Bacterial cultures were prepared according to Khota et al. [24]: Each strain was incubated in de Man,
122 Rogosa, and Sharpe (MRS) broth (Difco Laboratories, Detroit, MI, USA) at 39 °C for 24 hours. The optical
123 density (OD600) of the culture was adjusted to 1.0 using 8.5 g/L sterile NaCl, corresponding to approximately
124 10⁸ colony forming units (CFU)/mL. The inoculum was applied at a rate of 1 mL/kg fresh TMR.

125 All FTMR treatments were ensiled in sealed plastic containers under anaerobic conditions and stored at
126 ambient outdoor temperatures (25–32 °C) for 7 days. Such temperature variability may influence fermentation
127 dynamics and the viability of added microbial strains. After fermentation, samples were analyzed for pH, chemical
128 composition, and HCN concentration.

129

130 **Experimental animals and treatments**

131 Four male Thai native beef cattle, aged 2.5 years with an initial average body weight of 222 ± 12.00 kg,
132 were used in a 4 × 4 Latin square design to evaluate the effects of four dietary treatments. The treatments consisted
133 of FTMR containing fresh cassava root, each supplemented with one of the following additives: 1% sulfur, 2%
134 sulfur, *E. gallinarum* KKU-BC10, or *E. faecium* KKU-BF7. Each animal received all four treatments across four
135 consecutive 21 day experimental periods. The Latin square design was selected to control for individual animal
136 variability and period effects, thereby enhancing the precision of treatment comparisons despite the limited sample
137 size (n = 4). This experimental approach is commonly employed in ruminant nutrition studies, particularly for
138 digestibility evaluations.

139 Each animal was housed in an individual pen and had free access to clean drinking water. The FTMR
140 was offered ad libitum, divided into two daily feedings at 07:00 and 16:00. The experimental period lasted for
141 four 21 day cycles, each comprising a 14 day dietary adaptation phase followed by a 7 day data collection phase.
142 During the final 7 days of each period, cattle were moved to individual metabolism crates and fed FTMR at 90%
143 of their average intake from the preceding adaptation period. This adjustment ensured complete feces collection
144 for digestibility measurements. Daily feed intake was recorded by weighing the amount of feed offered and
145 refusals, and body weight was measured at the beginning and end of each experimental period to monitor changes
146 during the trial.

147

148 **Sample collection and chemical analysis**

149 During the last seven days of each experimental period, samples of the experimental feed, refusals, and
150 feces were collected to determine nutrient digestibility and other parameters. Feces were collected using a total
151 collection method while the animals were housed in metabolism crates. Each day, 5% of the total fresh feces were
152 subsampled. One portion was used for daily DM analysis, while the remainder was stored at -20 °C and pooled
153 by animal at the end of each period for chemical analysis.

154 At the conclusion of the 7 day collection period, pooled samples of feed offered, feed refused, and feces
155 were thawed, thoroughly mixed, dried in a forced air oven at 60 °C for 72 hours, and ground to pass through a 1
156 mm screen using a Cyclotech Mill (Tecator, Hoganas, Sweden). These samples were analyzed for DM (ID
157 967.03), ash (ID 942.05), ether extract (EE; ID 954.02), crude protein (CP; ID 984.13), and acid detergent fiber
158 (ADF; ID 973.18) following AOAC [25] procedures. The neutral detergent fiber (NDF) content was also
159 determined using the method of Van Soest et al. [26], incorporating alpha amylase but excluding sodium sulfite.

160 After 7 days of ensiling, FTMR samples were analyzed for pH, chemical composition, and total HCN
161 content. HCN concentrations in fresh cassava root and FTMR before and after fermentation were measured
162 colorimetrically using a UV/VIS spectrometer (PG Instruments Ltd., London, UK), following the method of Khota
163 et al. [24]. Briefly, 1 g of sample was homogenized with 9 mL distilled water and stored at -20 °C for 12 hours to
164 promote cell lysis. After thawing with shaking at 120 rpm, the homogenate was centrifuged at 4200 rpm at 4 °C
165 for 10 minutes. Then, 1 mL of the supernatant was transferred into a 15 mL conical tube (Eppendorf AG,
166 Hamburg, Germany) and sequentially mixed with 0.4 mL of n-chlorosuccinimide oxidizing reagent, 0.4 mL of
167 hydantoin pyridine reagent, and 8.2 mL distilled water. After mixing with a vortex and incubating at 25 °C for 1
168 minute, the absorbance was read at 403 nm using standardized potassium cyanide (KCN) as reference.

169 On day 21 of each period, 10 mL blood samples were collected from the jugular vein at 0 h (before
 170 feeding) and 4 h post feeding for the determination of blood urea-nitrogen (BUN). Blood samples were collected
 171 to evaluate systemic nitrogen metabolism and detect changes related to detoxification efficiency. Blood was drawn
 172 into EDTA containing tubes (12 mg/tube), centrifuged at $500 \times g$ for 10 minutes at 4°C , and plasma was analyzed
 173 using a commercial BUN assay kit (L-type Wako UN, Tokyo, Japan) following the method of Kohn et al. [21].

174 Simultaneously, approximately 45 mL of rumen fluid was collected via a stomach tube attached to a
 175 vacuum pump at 0 h (before morning feeding) and 4 h post feeding on day 21 of each period for the determination
 176 of rumen fermentation characteristics. These two time points were selected to represent baseline (pre feeding) and
 177 postprandial responses, which are commonly used in ruminant nutrition studies. Intermediate sampling was not
 178 performed; therefore, only absolute values at 0 h and 4 h were analyzed. Rumen pH and temperature were
 179 immediately measured using a portable pH/temperature meter (HI 8424, Hanna Instruments, Kallang, Singapore).
 180 The rumen fluid was strained through four layers of cheesecloth and divided into three subsamples. The first
 181 subsample (approximately 45 mL of rumen fluid) was preserved with 5 mL of 1 M H_2SO_4 in a plastic vial for
 182 ammonia-nitrogen ($\text{NH}_3\text{-N}$) and volatile fatty acid (VFA) analysis. Ammonia-nitrogen was determined
 183 spectrophotometrically using a UV/VIS spectrometer (Shimadzu UV-1800, Kyoto, Japan) [19]. Total and
 184 individual VFAs (acetate, propionate, and butyrate) were quantified using gas chromatography (5890A Series II,
 185 Hewlett Packard, Wilmington, DE, USA) equipped with a $180 \text{ cm} \times 4 \text{ mm}$ glass column packed with 100 g/L SP-
 186 1200 and 10 g/L H_3PO_4 on 80/100 mesh Chromosorb WAW (Supelco, Bellefonte, PA, USA) [24]. The second
 187 subsample was used to determine hydrogen cyanide (HCN) concentration using the same procedure as described
 188 above for FTMR samples. The final subsample (1 mL) was diluted with 9 mL of a 10% formalin solution and
 189 used for protozoal enumeration. Ruminal protozoa were manually counted with a haemocytometer (Boeco,
 190 Hamburg, Germany) following standard procedures [8], and their abundance was considered a complementary
 191 index of microbial stability in response to dietary treatments.

192

193 **Calculations and statistical analysis**

194 All variables were tested for normality and homoscedasticity before GLM analysis. All data were
 195 analyzed using the General Linear Model (GLM) procedure of SAS version 9.0 (SAS Institute, Cary, NC, USA)
 196 according to a 4×4 Latin square design, using the following statistical model:

197

198
$$Y_{ijk} = \mu + M_i + A_j + P_k + \epsilon_{ijk}$$

199

200 where: Y_{ijk} , observation from animal j , receiving diet i , in period k ; μ , the overall mean, M_i , the fixed
 201 effect of dietary treatment ($i = 1, 2, 3, 4$); A_j , the effect of animal ($j = 1, 2, 3, 4$); P_k , the effect of period ($k = 1, 2,$
 202 $3, 4$); and ϵ_{ijk} the residual effect. All results are presented as least squares means with their associated standard
 203 errors (SEM). Differences among treatment means were evaluated using Tukey's multiple comparison test.
 204 Statistical differences among treatments are denoted by different superscript letters within each row ($p < 0.05$).

205

206 **RESULTS**

207 **Chemical composition and HCN reduction**

208 After 7 days of fermentation, the FTMR showed clear but small differences in chemical composition
 209 among treatments. The 1% sulfur group had the lowest dry matter (DM) content (26.52%), whereas the *E.*
 210 *gallinarum* KKU-BC10 treatment had the highest DM (29.41%). Crude protein content varied slightly, ranging
 211 from 10.23% to 10.74% of DM across treatments. The *E. gallinarum* KKU-BC10 diet also had the highest NDF
 212 concentration (41.03%), while the *E. faecium* KKU-BF7 diet showed the greatest ADF value (26.97%). All
 213 FTMRs reached low final pH (3.63 to 3.77), confirming successful fermentation. Hydrogen cyanide content
 214 decreased in all treatments after ensiling, falling from 58.42–84.47 mg/kg DM before fermentation to 40.95 to
 215 51.56 mg/kg DM after 7 days.

216

217 **Intake and digestibility**

218 Dry matter intake (DMI) did not differ among treatments ($p > 0.05$) when expressed as kg/day, %BW,
 219 or $\%BW^{0.75}$ (Table 2). Numerically, cattle fed *E. gallinarum* KKU-BC10 had the highest DMI (4.69 kg/day),
 220 followed by *E. faecium* KKU-BF7 (4.51 kg/day), while the 1% sulfur group showed the lowest intake (4.12
 221 kg/day). Organic matter and crude protein intakes were similar among treatments ($p > 0.05$). NDF intake differed
 222 ($p < 0.05$), with the highest value in the *E. gallinarum* KKU-BC10 group (1.92 kg/day), while the 1% sulfur and
 223 *E. faecium* KKU-BF7 groups had lower intakes (1.57 and 1.59 kg/day, respectively). ADF intake also differed (p
 224 < 0.01), with the highest intake in the *E. faecium* KKU-BF7 group (1.23 kg/day). Digestibility of DM, OM, CP,
 225 NDF, and ADF did not differ among treatments ($p > 0.05$).

226

227 **Ruminal fermentations and blood urea nitrogen**

228 Ruminal pH (6.81 to 7.13), ammonia–nitrogen (12.61 to 13.80 mg/dL), and protozoal counts ($16.00 \times$
229 10^6 to 19.00×10^6 cells/mL) did not differ among treatments ($p > 0.05$; Table 3). Hydrogen cyanide degradation
230 exceeded 83% in all treatments. Blood urea nitrogen (BUN) at 4 h post feeding differed among treatments ($p =$
231 0.04). The *E. faecium* KKU-BF7 group showed the lowest BUN concentration (6.50 mg/dL), whereas the control
232 and other treatments had higher values.

233

234 **Volatile fatty acid**

235 Total volatile fatty acid (TVFA) concentration and the molar proportions of acetate, propionate, and
236 butyrate did not differ among treatments at either 0 or 4 h post feeding ($p > 0.05$; Table 4). Across diets and
237 sampling times, TVFA averaged about 107 mmol/L. Acetate accounted for roughly 62 mol/100 mol, with
238 propionate around 22 mol/100 mol and butyrate 15–16 mol/100 mol. The acetate to propionate ratio remained
239 stable at approximately 2.8 to 3.0 in all treatments.

240

241 **DISCUSSION**

242 The findings of this study underscore the potential of FTMR with sulfur or CUB as an effective strategy
243 to reduce HCN concentrations in ruminant diets. The significant reduction in HCN content after a 7 day ensiling
244 period reflects the combined action of chemical and microbial detoxification mechanisms. This result aligns with
245 previous studies by Supapong et al. [23] and Sombuddee et al. [27], which highlighted the role of sulfur as a
246 cofactor for rhodanese, facilitating the conversion of cyanide into the less toxic thiocyanate.

247 In lactic environments typical of ensiling, BC10 and BF7 likely contribute to cyanide detoxification
248 through two complementary routes: (i) sulfurtransferase mediated conversion of cyanide (CN^-) to thiocyanate
249 (SCN^-) using thiosulfate/mercaptopropruvate donors primarily via rhodanese (thiosulfate sulfurtransferase, TST)
250 and the related 3-mercaptopropruvate sulfurtransferase (3-MST) and (ii) acidification assisted glycoside hydrolysis,
251 in which LAB driven pH decline accelerates the breakdown of cassava cyanogenic glycosides (e.g., linamarin)
252 and promotes subsequent CN^- handling by sulfurtransferases [4,12,28]. In the presence of supplemental sulfur,
253 these enzymes have ready sulfur donors (e.g., thiosulfate), improving the stoichiometric conversion CN^- to SCN^- ,
254 a far less toxic anion that is readily absorbed and excreted [4,12]. This suggests that the detoxification process
255 was not only chemical (sulfur mediated) but also biological, where microbial enzymes such as rhodanese may

256 have acted synergistically with low pH conditions to accelerate cyanide degradation. BC10 (*E. gallinarum*), a
257 facultative heterofermentative LAB, is expected to drive rapid early acidification, stabilizing silage and
258 maintaining conditions that favor sulfurtransferase activity and inhibit cyanohydrin reversion. BF7 (*E. faecium*),
259 noted for probiotic robustness, likely sustains enzyme activity under low pH and anaerobiosis and may show
260 higher survival across the ensiling feeding interface, supporting continued CN⁻ to SCN⁻ conversion post-ingestion
261 [19,28]. Together, BC10's pH control and BF7's persistence plausibly increase net flux to thiocyanate under sulfur
262 supplied conditions [4,12,19]. The incorporation of *E. gallinarum* KKU-BC10 and *E. faecium* KKU-BF7 likely
263 enhanced cyanide degradation through their enzymatic activity, particularly via rhodanese production [4,12].
264 Microbial TST/3-MST activity likely pre processes CN⁻ in the silage and rumen, generating SCN⁻ that is absorbed
265 and handled by the host, complementing hepatic rhodanese to complete detoxification. The availability of sulfur
266 donors from the ration (supplemental sulfur) is rate limiting for this pathway; thus, CUB × sulfur interactions are
267 biologically expected [4,12]. In ruminants, rhodanese is localized in both microbial and host tissues, and the
268 presence of sulfur donors enhances the conversion of cyanide to thiocyanate, which is then excreted in urine. To
269 mechanistically verify the pathway, follow up work should quantify SCN⁻ in rumen fluid, plasma, and urine, assay
270 TST/3-MST activities in silage and rumen fractions, and (where feasible) screen for *tst/mpst* gene markers in
271 BC10/BF7 populations across ensiling and feeding stages [4,12,19]. However, *in vivo* rhodanese activity was not
272 directly measured in this study. As reported by Khota et al. [19], these strains are capable of functioning effectively
273 under anaerobic conditions, which may explain their efficiency during silage fermentation. Low pH reduces
274 cyanohydrin instability, limits re-liberation of CN⁻, and preserves sulfur donor pools during ensiling, thereby
275 maintaining substrate–enzyme alignment for microbial sulfurtransferases once the FTMR is fed [28].
276 Furthermore, the low pH values observed across all treatments support the success of lactic acid fermentation,
277 contributing to feed preservation and providing a favorable environment for microbial detoxification [28].
278 Measuring microbial survival or activity post ensiling would strengthen the interpretation of these results.
279 However, the study did not assess lactic acid content, microbial counts, or aerobic stability, which are critical
280 indicators of silage quality; these should be prioritized in future investigations.

281 Although slight differences were observed in the chemical composition particularly in fiber fractions
282 these did not result in significant changes in feed intake or nutrient digestibility. For example, the *E. gallinarum*
283 KKU-BC10 group exhibited higher DM and NDF content, which may suggest improved fiber structure or
284 fermentability. As proposed by Mertens [20], such characteristics can influence voluntary intake, though further
285 investigation under extended feeding trials is warranted.

286 However, it should be noted that our assessment of detoxification focused primarily on the reduction of
287 HCN concentrations in the feed before ingestion. Although ruminal HCN levels were monitored, we did not
288 measure downstream detoxification products such as thiocyanate in rumen fluid or blood, which would provide a
289 more complete understanding of cyanide metabolism. Nonetheless, the observed decline in feed HCN levels,
290 along with stable fermentation characteristics and nutrient composition, supports the application of sulfur or CUB
291 enhanced FTMR as a practical strategy to improve feed safety in tropical beef production systems [6]. Future *in*
292 *vivo* research is warranted to evaluate the long term implications of these detoxification strategies on animal
293 performance, nitrogen retention, and rumen microbial dynamics. Notably, performance indicators such as average
294 daily gain or feed efficiency were not assessed in the present trial.

295 The results demonstrate that varying levels of sulfur and the inclusion of CUB in FTMR had no effect
296 on DMI, whether expressed in absolute terms or relative to body weight. This aligns with previous findings by
297 Drewnoski et al. [18], who reported that moderate sulfur supplementation does not adversely influence feed intake
298 in ruminants. Although numerical differences were observed particularly with the *E. gallinarum* KKU-BC10
299 group exhibiting the highest DMI these variations did not reach statistical significance, indicating stable intake
300 behavior in Thai native beef cattle across treatments. This may be attributed to the limited sample size, which
301 constrains statistical power despite numerical trends. Future studies involving larger animal cohorts may help
302 determine whether these trends hold biological relevance.

303 Organic matter and CP intake were similarly unaffected by the additives, suggesting that neither sulfur
304 nor microbial supplementation impaired voluntary nutrient consumption. However, fiber intake showed distinct
305 patterns among treatments. Notably, cattle fed *E. gallinarum* KKU-BC10 exhibited the highest NDF intake, while
306 those receiving *E. faecium* KKU-BF7 had the greatest ADF intake. These outcomes may be attributable to strain
307 specific effects on rumen microbial populations or differential influence on fiber palatability and fermentation [9].
308 Further investigation into rumen fibrolytic microbial populations may clarify these strain specific effects. As
309 discussed by Mertens [20], fiber intake is governed not only by concentration but also by physical and
310 fermentative characteristics, which can modulate satiety and gut motility.

311 The lack of significant digestibility changes suggests that the rumen microbiota were able to adapt
312 functionally to the presence of sulfur and CUB without disruption of fibrolytic activity, reflecting the resilience
313 of the rumen ecosystem. Despite these intake differences, nutrient digestibility including DM, OM, CP, NDF, and
314 ADF remained statistically unaffected. This suggests that rumen microbial populations were able to adapt

315 effectively to the sulfur and CUB supplemented FTMR formulations. These results align with Mertens [20], who
316 emphasized that digestibility depends more on effective fiber and particle size than intake volume alone.

317 This could reflect differences in nitrogen partitioning, where more nitrogen was captured for microbial
318 protein synthesis rather than being degraded excessively in the rumen. Interestingly, the *E. faecium* KKU-BF7
319 group exhibited numerically lower CP digestibility than the other treatments. Although treatment effects on CP
320 digestibility were not significant, numerical reductions in the BF7 group are noteworthy. This reduction may
321 reflect differences in ruminal nitrogen utilization or microbial efficiency, which warrants further investigation.
322 The adaptability of Thai native cattle and the resilience of their rumen ecosystem to such interventions support
323 the use of FTMR incorporating fresh cassava root, detoxified via sulfur or microbial strategies [29]. For
324 smallholder systems, both approaches offer accessible, cost effective methods to enhance the utility of local feed
325 resources without impairing digestive performance.

326 Across all treatments, ruminal fermentation parameters remained within physiologically acceptable
327 ranges, indicating that neither sulfur supplementation nor CUB disrupted rumen homeostasis. Rumen pH values
328 were consistent with the optimal range required for cellulolytic microbial activity and fiber degradation [30]. This
329 finding aligns with previous observations that the rumen possesses strong buffering capacity and regulatory
330 mechanisms to maintain functional stability [31]. Such regulatory mechanisms include saliva secretion rich in
331 bicarbonate and phosphate buffers, continuous rumen contractions that facilitate mixing and gas removal, and
332 microbial cross feeding that stabilizes fermentation end products. Together, these processes maintain ruminal pH
333 within the narrow range required for microbial activity and fiber degradation [31]. Moreover, no signs of sulfur
334 toxicity (e.g., neurological symptoms of polioencephalomalacia) were observed at the 2% sulfur inclusion level,
335 indicating this level was well tolerated in the short term. Neurological symptoms of PEM, including ataxia,
336 blindness, and abnormal posture, were assessed by daily visual observation of animal behavior and health status.
337 None of these clinical signs were observed in cattle across treatments.

338 The similarity in protozoal populations across treatments suggests that the inclusion of sulfur or CUB at
339 the tested levels does not significantly alter the protozoal ecosystem. This stability is nutritionally relevant because
340 protozoa contribute to fiber degradation and regulate nitrogen turnover through bacterial predation. Maintaining
341 their populations indicates that both fiber fermentation and nitrogen recycling were preserved, supporting overall
342 rumen fermentation efficiency [32,33]. The maintenance of optimal ruminal pH across treatments underscores the
343 resilience of the rumen buffering system. This is consistent with the findings of Belanche et al. [34], who reported
344 limited shifts in protozoal abundance under moderate dietary interventions.

345 Post ingestion, residual CN⁻ from cassava is expected to undergo immediate microbial conversion to
346 SCN⁻ via sulfurtransferases from BF7 and, to a lesser extent, BC10, provided sulfur donors are present. This
347 ruminal step complements the ensiling phase detoxification and aligns with the >83% degradation efficiency,
348 consistent with a two stage (ensiling and rumen) sulfurtransferase cascade [4,9,12,19]. Cyanide degradation
349 efficiency was consistently high, supporting the effectiveness of both chemical and microbial detoxification
350 strategies [9]. This likely reflects rhodanese mediated conversion of HCN into thiocyanate, a less toxic compound
351 readily excreted by the host [4,12]. It should be noted that the present experiment did not include performance
352 parameters such as body weight gain, feed conversion ratio, or nitrogen balance. These omissions limit the extent
353 to which the results can be extrapolated to practical feeding outcomes and highlight the need for additional studies
354 that integrate both ruminal responses and animal performance indicators. It should be acknowledged that the
355 present study utilized only four Thai native beef cattle within a 4 × 4 Latin square design. Although this design is
356 statistically valid for controlling individual and period effects, the restricted number of animals inherently reduces
357 statistical power and limits the generalizability of the results. Consequently, the outcomes should be interpreted
358 as preliminary, recognizing that smaller treatment differences may not have been detectable under the current
359 experimental conditions. It should be emphasized that the present study did not assess rumen microbiota
360 composition or downstream detoxification products such as thiocyanate. These measurements would have
361 provided stronger mechanistic evidence of how sulfur and cyanide-utilizing bacteria interact with rumen
362 metabolism. Previous reports indicate that sulfur supplementation and microbial inoculation can modulate
363 rhodanese activity, microbial adaptation, and cyanide detoxification pathways in ruminants [4,11,19,23]. Without
364 such data, the interpretation of mechanisms remains limited and the current results should therefore be regarded
365 as indicative rather than conclusive. These outcomes corroborate previous reports demonstrating the practical
366 viability of sulfur based and microbial detoxification methods in cassava based rations [10,27]. Although the
367 present results demonstrate that both sulfur and cyanide-utilizing bacteria can reduce hydrogen cyanide
368 concentrations and maintain stable ruminal fermentation, the interpretation remains limited. Key production
369 outcomes such as body weight gain, feed conversion efficiency, and nitrogen balance were not assessed, and
370 microbial community shifts were not characterized. These limitations restrict the scope of the findings, which
371 should be regarded as preliminary evidence requiring further validation under broader experimental conditions.
372 However, *in vivo* measures of rhodanese activity or thiocyanate levels would help clarify the exact detoxification
373 mechanism.

374 Because CN⁻ inhibits terminal oxidases, incomplete detoxification can depress microbial ATP yield. By
375 diverting CN⁻ to SCN⁻, BF7 may help preserve microbial energy status, supporting protein synthesis and ammonia
376 capture, which is consistent with the lower BUN observed in *E. faecium* KKU-BF7 fed cattle [19,24,33]. However,
377 as BUN is only a systemic surrogate of nitrogen utilization, this finding should be interpreted cautiously. Other
378 indicators such as urinary nitrogen excretion, microbial protein synthesis, and isotopic nitrogen balance were not
379 measured in the present study. Future work incorporating these parameters, alongside microbial profiling, is
380 required to confirm whether reduced BUN truly reflects improved nitrogen utilization efficiency.

381 In ruminants, nitrogen not captured in microbial protein is converted to urea in the liver. This urea may
382 be excreted or recycled into the gastrointestinal tract via urea nitrogen salvaging (UNS), where ureolytic microbes
383 hydrolyze it into ammonia for further microbial protein synthesis [35]. When this recycling pathway is efficiently
384 utilized, less urea accumulates in circulation, resulting in reduced BUN and nitrogen loss [21,35].

385 This finding is biologically relevant because lower BUN implies more efficient nitrogen capture by
386 rumen microbes, reducing nitrogen waste and potential environmental losses. The observation that only *E. faecium*
387 KKU-BF7 supplementation led to reduced BUN suggests a strain specific enhancement of nitrogen metabolism.
388 Although not ureolytic itself, *E. faecium* may facilitate nitrogen efficiency indirectly by stabilizing the gut
389 microbial community, supporting the growth of urease positive microbes, and optimizing fermentation balance
390 [36]. Microbial sequencing or DGGE profiles would help validate this proposed community shift. Its established
391 probiotic effects including modulation of immune responses and competitive exclusion of pathogens may create
392 conditions conducive to improved nitrogen capture and microbial protein synthesis [36].

393 Taken together, these results suggest that *E. faecium* KKU-BF7 contributes not only to HCN
394 detoxification but also to improved nitrogen economy through microbial and host mediated pathways [19,24,36].
395 This dual functionality detoxification and improved nitrogen efficiency could benefit cassava based rations in low
396 protein systems. Further studies should investigate microbial shifts, protein synthesis rates, and animal
397 performance over longer feeding durations to confirm these functional benefits and elucidate underlying
398 mechanisms. Collectively, the findings support the potential of microbial detoxification strategies as a component
399 of integrated feed safety protocols.

400 Volatile fatty acids are key end products of rumen microbial fermentation and serve as a primary energy
401 source for ruminants, contributing approximately 40% to 70% of the total digestible energy in the diet [37]. In the
402 present study, both the concentrations and molar proportions of VFAs were within expected physiological ranges,
403 indicating that the rumen fermentation process remained stable across all treatment groups. This suggests that the

404 basal diet composition may have exerted a dominant effect, overshadowing treatment induced shifts [38]. The
405 comparable VFA profiles among treatments support the similarity observed in digestibility coefficients, indicating
406 that neither microbial inoculants nor sulfur additives negatively affected ruminal fermentation efficiency [39].

407 Despite intervention with sulfur and CUB, VFA concentrations and profiles remained largely stable
408 across treatments. The major VFAs acetate, propionate, and butyrate are produced in varying ratios depending on
409 dietary composition [40]. High fiber diets typically favor acetate production, while diets richer in starch promote
410 propionate synthesis [38]. The VFA profiles observed in this study are consistent with diets containing fibrous
411 ingredients such as cassava root and rice straw, suggesting that neither sulfur supplementation nor inoculation
412 with CUB disrupted the fermentation balance.

413 Given that VFAs provide 40 to 70% of the host's metabolizable energy, stability of their proportions
414 across treatments indicates that the energetic contribution from microbial fermentation was preserved regardless
415 of detoxification strategy. The acetate to propionate (C2:C3) ratio is often used to evaluate energy utilization
416 efficiency. Elevated ratios are generally associated with greater methane production and less efficient energy
417 conversion, whereas a shift toward propionate reflects enhanced glucose availability for tissue metabolism
418 [38,40]. The stability of this ratio across treatments implies that energy partitioning remained unaffected. In
419 addition, the levels of butyrate detected likely support ruminal epithelial development and energy metabolism,
420 further reflecting a well functioning microbial ecosystem. However, this remains an indirect inference, as
421 microbial composition was not directly assessed.

422 Overall, these findings demonstrate that incorporating sulfur or CUB into FTMR did not impair the core
423 pathways of microbial fermentation responsible for energy production. The consistent VFA profiles across
424 treatments highlight the adaptive capacity of the rumen microbiota to dietary modifications, supporting the
425 practical use of these additives in tropical beef cattle feeding systems [1,5]. Although microbial adaptation is
426 inferred, this study did not quantify bacterial community composition. The similarity in VFA profiles aligns with
427 the comparable digestibility coefficients among treatments, suggesting that microbial or sulfur interventions did
428 not impair fermentation end products [11,16]. These results partially confirmed our hypothesis. Although all
429 treatments reduced HCN as expected, only the CUB inoculants showed additional nutritional benefits.
430 Specifically, *E. faecium* KKU-BF7 was associated with higher fiber intake, suggesting improved feed
431 acceptability, while its lower BUN concentrations reflected more efficient nitrogen utilization. Thus, the benefits
432 extended beyond detoxification to include improved feed use and potential enhancement of nitrogen metabolism.

433 While reduced BUN suggests a possible improvement in nitrogen capture, it cannot be taken as conclusive
434 evidence of enhanced nitrogen utilization without supporting data on urinary nitrogen excretion, microbial protein
435 synthesis, or isotopic nitrogen balance.

436

437 CONCLUSION

438 This study confirms that both sulfur supplementation and CUB effectively reduced hydrogen cyanide
439 levels in FTMR containing fresh cassava root, without compromising feed intake, digestibility, or rumen
440 fermentation in Thai native beef cattle. Notably, *E. faecium* KKU-BF7 improved nitrogen utilization, as indicated
441 by reduced blood urea nitrogen, suggesting additional benefits beyond detoxification. These findings support the
442 practical use of sulfur and CUB enhanced FTMR in tropical systems where cassava is abundant but underutilized
443 due to HCN concerns. However, the small number of animals used in the design limits statistical power and the
444 ability to generalize these results beyond the experimental conditions. Nevertheless, the limited sample size and
445 the absence of performance indicators such as body weight gain, feed conversion efficiency, and nitrogen balance
446 restrict the scope of interpretation. Furthermore, the lack of microbial community analysis and thiocyanate
447 quantification represents an additional limitation, as these measurements would provide more direct insights into
448 detoxification mechanisms and microbial contributions. The present findings should therefore be regarded as
449 preliminary evidence, reinforcing the need for longer term *in vivo* studies to confirm the biological and practical
450 significance under field conditions.

451

452 COMPETING INTEREST

453 No potential conflict of interest relevant to this article was reported

454

455 FUNDING SOURCES

456 The authors sincerely acknowledge the financial support from the Fundamental Fund of Khon Kaen
457 University, provided by the National Science, Research, and Innovation Fund (NSRF).

458

459 ACKNOWLEDGMENTS

460 The Program on Toxic Substances, Microorganisms and Feed Additives in Livestock and Aquatic
461 Animals for Food Safety, Khon Kaen University (KKU), were also acknowledged. Thiraphat Surakhai also

462 gratefully acknowledges support from the Research Fund for Supporting Graduate Students in Animal Science,
463 Faculty of Agriculture, Khon Kaen University (KKU), as well as a scholarship under the Research Assistant
464 Program from the Research and Innovation Affairs Division, Khon Kaen University, Thailand (Grant No.
465 RA2566-04). The authors extend their appreciation to the Tropical Feed Resources Research and Development
466 Center (TROFREC) for providing research facilities.

467

468 **AVAILABILITY OF DATA AND MATERIAL**

469 Upon reasonable request, the datasets of this study can be available from the corresponding author.

470

471 **AUTHORS' CONTRIBUTIONS**

472 **Conceptualization:** Surakhai T, Suntara C, Srichompoo P, Phowang N, Khota W, Wanapat M,
473 Supapong C, Cherdthong A

474 **Formal analysis:** Surakhai T, Cherdthong A

475 **Methodology:** Surakhai T, Srichompoo P, Phowang N, Khota W, Cherdthong A

476 **Validation:** Surakhai T, Suntara C, Srichompoo P, Phowang N, Khota W, Wanapat M, Supapong C,
477 Cherdthong A

478 **Investigation:** Surakhai T, Srichompoo P, Phowang N, Cherdthong A

479 **Writing - original draft:** Surakhai T, Srichompoo P, Cherdthong A

480 **Writing - review & editing:** Surakhai T, Suntara C, Srichompoo P, Phowang N, Khota W, Wanapat
481 M, Supapong C, Cherdthong A

482

483 **ETHICS APPROVAL AND CONSENT TO PARTICIPATE**

484 All procedures involving animals were approved by the Animal Ethics Committee of Khon Kaen
485 University (Approval No. ACUC-KKU 32/67; dated 30 April 2024) and were conducted in accordance with
486 institutional guidelines for the care and use of animals in research.

487

488 **REFERENCES**

- 489 1. Gunha T, Kongphitee K, Binsulong B, Sommart K. Net energy value of a cassava chip ration for lactation
490 in Holstein–Friesian crossbred dairy cattle estimated by indirect calorimetry. *Animals* 2023;13:2296.
491 <https://doi.org/10.3390/ani13142296>
- 492 2. Borku AA, Tora TT, Masha M. Cassava in focus: A comprehensive literature review, its production,
493 processing landscape, and multi-dimensional benefits to society. *Food Chem Adv.* 2025;7:100945.
494 <https://doi.org/10.1016/j.focha.2025.100945>
- 495 3. Hossain MD, Yan Q, Zhou Z, Zhang X, Wittayakun S, Napasirth V, Napasirth P, Lukuyu BA, Tan Z.
496 Cassava as a feedstuff for ruminant feeding system in belt and road countries: innovations, benefits and
497 challenges. *J Agric Food Res.* 2025;21:101874. <https://doi.org/10.1016/j.jafr.2025.101874>
- 498 4. Lachowicz JI, Alexander J, Aaseth JO. Cyanide and cyanogenic compounds-toxicity, molecular targets,
499 and therapeutic agents. *Biomolecules*. 2024;14:1420. <https://doi.org/10.3390/biom14111420>
- 500 5. Cherdthong A. An overview of alternative protein sources for ruminants in the tropical area. *Ann Anim
501 Sci.* 2025;25:103–18. <https://doi.org/10.2478/aoas-2024-0049>
- 502 6. Forkum AT, Wung AE, Kelese MT, Ndum CM, Lontum A, Kamga EB, Nsaikila MN, Okwen PM. Safety
503 of cassava and cassava-based products: a systematic review. *Front Sustain Food Syst.* 2025;9:1497609.
504 <https://doi.org/10.3389/fsufs.2025.1497609>
- 505 7. Wanapat M, Kang S. Cassava chip (*Manihot esculenta* Crantz) as an energy source for ruminant feeding.
506 *Anim Nutr.* 2015;1:266–70. <https://doi.org/10.1016/j.aninu.2015.12.001>
- 507 8. Cherdthong A, Khonkhaeng B, Seankamsorn A, Supapong C, Wanapat M, Gunun N, Gunun P, Chanjula
508 P, Polyorach S. Effects of feeding fresh cassava root with high-sulfur feed block on feed utilization,
509 rumen fermentation and blood metabolites in Thai native cattle. *Trop Anim Health Prod.* 2018;50:1365–
510 71. <https://doi.org/10.1007/s11250-018-1569-8>
- 511 9. Bhalla TC, Kumar V. Microbial remediation of cyanides. In: Rathoure AK, editor. *Bioremediation:*
512 *Current research and application.* New Delhi: International Publishing House; 2017. p. 88–110.
- 513 10. Prachumchai R, Cherdthong A, Wanapat M, So S, Polyorach S. Fresh cassava root replacing cassava
514 chip could enhance milk production of lactating dairy cows fed diets based on high sulfur-containing
515 pellet. *Sci Rep.* 2022;12:3809. <https://doi.org/10.1038/s41598-022-07825-w>

516 11. Lukbun S, Suntara C, Prachumchai R, Khota W, Cherdthong C. Exploring the *in vitro* effects of cassava
517 diets and Enterococcus strains on rumen fermentation, gas production, and cyanide concentrations.
518 Animals 2024;14:3269. <https://doi.org/10.3390/ani14223269>

519 12. Cipollone R, Ascenzi P, Frangipani E, Visca P. Cyanide detoxification by recombinant bacterial
520 rhodanese. Chemosphere 2006;63:942–9. <https://doi.org/10.1016/j.chemosphere.2005.09.048>

521 13. Aminlari M. Distribution of the cyanide metabolizing enzyme rhodanese in different tissues of domestic
522 animals. J Vet Pharmacol Ther. 2006;29:128. https://doi.org/10.1111/j.1365-2885.2006.00762_20.x

523 14. Gwaltney-Brant S. Veterinary forensic toxicology. Vet Pathol. 2016;53:1067–77.
524 <https://doi.org/10.1177/0300985816641994>

525 15. Kennedy A, Brennan A, Mannion C, Sheehan M. Suspected cyanide toxicity in cattle associated with
526 ingestion of laurel-A case report. Ir Vet J. 2021;74:1–6. <https://doi.org/10.1186/s13620-021-00188-0>

527 16. Supapong C, Cherdthong A. Effect of sulfur concentrations in fermented total mixed rations containing
528 fresh cassava root on rumen fermentation. Anim Prod Sci. 2020;60:1429–34.
529 <https://doi.org/10.1071/AN18779>

530 17. Tele FF. Chronic poisoning by hydrogen cyanide in cassava and its prevention in Africa and Latin
531 America. Food Nutr Bull. 2002;23:407–12. <https://doi.org/10.1177/156482650202300418>

532 18. Drewnoski ME, Poore MH, Spears JW. Impact of sulfur and ruminal hydrogen sulfide on cattle health
533 and performance: a review. J Anim Sci. 2014;92:680–92.

534 19. Khota W, Kaewpila C, Kimprasit T, Seemakram W, Kakaisorn S, Wanapat M, Cherdthong A. The
535 isolation of rumen enterococci strains along with high potential utilizing cyanide. Sci Rep.
536 2023;13:13176. <https://doi.org/10.1038/s41598-023-40488-9>

537 20. Mertens DR. Creating a system for meeting the fiber requirements of dairy cows. J Dairy Sci.
538 1997;80:1463–81. [https://doi.org/10.3168/jds.S0022-0302\(97\)76075-2](https://doi.org/10.3168/jds.S0022-0302(97)76075-2)

539 21. Kohn RA, Dinneen MM, Russek-Cohen E. Using blood urea nitrogen to predict nitrogen excretion and
540 efficiency of nitrogen utilization in cattle, sheep, goats, horses, pigs, and rats. J Anim Sci. 2005;83:879–
541 89. <https://doi.org/10.2527/2005.834879x>

542 22. Santos FAP, Santos JEP, Theurer CB, Huber JT. Effects of ruminally degradable protein and
543 nonstructural carbohydrate levels on performance and ruminal characteristics of dairy cows. J Dairy Sci.
544 2010;83:281–93.

545 23. Supapong C, Cherdthong A, Wanapat M, Chanjula P, Uriyapongson S. Effects of sulfur levels in
546 fermented total mixed ration containing fresh cassava root on feed utilization, rumen characteristics,
547 microbial protein synthesis, and blood metabolites in Thai native beef cattle. *Animals*. 2019;9:261.
548 <https://doi.org/10.3390/ani9050261>

549 24. Khota W, Panyakaew P, Kesorn P, Gunun P, Suwannasing R, Kimprasit T, Puangploy P,
550 Kittipongpittaya K, Cherdthong A, Thip-uten S, Pakpoom S, Kaewpila C. *In vitro* rumen fermentation
551 of coconut, sugar palm, and durian peel silages, prepared with selected additives. *Fermentation*.
552 2023;9:567. <https://doi.org/10.3390/fermentation9060567>

553 25. AOAC International; Guideline Working Group. AOAC International guidelines for validation of
554 botanical identification methods. *J Assoc Off Agric Chem*. 2012;95:268–72.

555 26. Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch
556 polysaccharides in relation to animal nutrition. *J Dairy Sci*. 1991;74:3583–97.
557 [https://doi.org/10.3168/jds.S0022-0302\(91\)78551-2](https://doi.org/10.3168/jds.S0022-0302(91)78551-2)

558 27. Sombuddee N, Prachumchai R, Khota W, Boontiam W, Cherdthong A. Effect of cyanide-utilizing
559 bacteria and sulfur on feed utilization, microbiomes, and cyanide degradation in cattle supplemented with
560 fresh cassava root. *Sci Rep*. 2023;13:18689. <https://doi.org/10.1038/s41598-023-45993-5>

561 28. Coons E, Akins MS. Effects of low temperature and ensiling time on fermentation and nutritive value of
562 sorghum-Sudan grass silage. *Appl Anim Sci*. 2025;41:156–61. <https://doi.org/10.15232/aas.2024-02636>

563 29. Yu S, Fu Y, Qu J, Zhang K, Zhu W, Mao S, Liu J. Adaptive survival strategies of rumen microbiota with
564 solid diet deficiency in early life cause epithelial mitochondrial dysfunction. *ISME J*. 2025;19:1–16.
565 <https://doi.org/10.1093/ismej/wraf064>

566 30. Sun M, Luo Y, Xing Y, Zhang M, Yu Y, Wang W, Li D. Chestnut tannins impair ruminal fiber
567 degradation through modulation of cellulolytic bacterial activity in sheep: An *in vivo* and *in vitro*
568 investigation. *J Anim Sci*. 2025;103:skaf189. <https://doi.org/10.1093/jas/skaf189>

569 31. Russell JB, Wilson DB. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? *J*
570 *Dairy Sci*. 1996;79:1503–9. [https://doi.org/10.3168/jds.S0022-0302\(96\)76510-4](https://doi.org/10.3168/jds.S0022-0302(96)76510-4)

571 32. Chukaew K, Srisuwan C, Inaoy P, Prasanpanich S, Rangubhet KT, Kongmun P. The effects of using
572 spent coffee grounds as a protein source in the concentrated diet of goats. *Anim Sci J*. 2025;96:e70134.
573 <https://doi.org/10.1111/asj.70134>

574 33. de Oliveira M, Costa C, Fernandes T. Graduate student literature review: concepts and challenges of
575 amino acid supply and nitrogen metabolism in dairy cattle. *J Dairy Sci.* 2025;108:6906–16.
576 <https://doi.org/10.3168/jds.2024-26136>

577 34. Belanche A, Abecia L, Holtrop G, Guada JA, Castrillo C, de la Fuente G, Balcells J. Study of the effect
578 of presence or absence of protozoa on rumen fermentation and microbial protein contribution to the
579 chyme. *J Anim Sci.* 2011;89:4163–74. <https://doi.org/10.2527/jas.2010-3703>

580 35. Zhong C, Long R, Stewart GS. The role of rumen epithelial urea transport proteins in urea nitrogen
581 salvage: a review. *Anim Nutr.* 2022;9:304–13. <https://doi.org/10.1016/j.aninu.2022.01.008>

582 36. Mi J, He T, Hu X, Wang Z, Wang T, Qi X, Li K, Gao L, Liu C, Zhang Y, Wang S, Qiu Y, Liu Z, Song
583 J, Wang X, Gao Y. *Enterococcus faecium* C171: Modulating the immune response to acute lethal viral
584 challenge. *Int J Antimicrob Agents.* 2023;62:106969. <https://doi.org/10.1016/j.ijantimicag.2023.106969>

585 37. Ávila-Cervantes R, González-Pech P, Sandoval-Castro C, Torres-Acosta F, Ramos-Zapata J, Galicia-
586 Jiménez M, Pacheco-Arjona R. Effects of grazing in a low deciduous forest on rumen microbiota and
587 volatile fatty acid production in lambs. *Animals.* 2025;15:1565. <https://doi.org/10.3390/ani15111565>

588 38. Jorge-Smeding E, Martin C, Volmerange L, Violleau F, Salah N, Silberberg M. Volatolomics of
589 peripheral matrices as a potential tool to assess rumen function and host biology in lactating dairy cows
590 fed diets contrasting in fiber and starch content. *J Dairy Sci.* 2025;108:6917–33.
591 <https://doi.org/10.3168/jds.2024-25977>

592 39. Khejornsart P, Traithilen U, Juntanam T. Inclusion of fermented cassava top and root with inoculation
593 in total mixed ration silage diets: Ensilage quality and nutrient digestibility of backcrossing crossbred
594 bulls. *Vet Sci.* 2025;12:402. <https://doi.org/10.3390/vetsci12050402>

595 40. Antunes SL, Machado D, Meschiatti MAP, Vicci IF, Gouvêa VN, Tedeschi LO, MacDonald JC,
596 Erickson GE, Santos FAP. Inclusion of dry or wet fiber plus solubles or high protein distillers grains to
597 replace flint corn, whole cottonseed, and soybean meal in diets for finishing Nellore bulls. *Transl Anim
598 Sci.* 2025;txaf079. <https://doi.org/10.1093/tas/txaf079>

599

600

601 **Table 1** Ingredients and chemical composition of fermented total mixed ration (FTMR) used in the
 602 experiment.

Item	1% Sulfur	2% Sulfur	BC10	BF7	Fresh cassava root
Ingredients, % dry matter (DM)					
Rice straw	40	40	40	40	
Fresh cassava root	40	40	40	40	
Soybean meal	5	5	5	5	
Palm kernel meal	3	3	4	4	
Rice bran	4	3	4	4	
Urea	2	2	2	2	
Pure sulfur	1	2	-	-	
Mineral premix	1	1	1	1	
Molasses, liquid	3	3	3	3	
Salt	1	1	1	1	
Chemical composition					
Dry matter, %	26.52	27.39	29.41	28.52	35.20
Organic matter, %DM	90.92	91.20	92.21	91.28	93.93
Ash, %DM	9.08	8.80	7.79	8.72	6.07
Crude protein, %DM	10.74	10.23	10.35	10.42	2.23
Ether extract, %DM	1.47	2.67	1.34	1.82	1.21
Neutral detergent fiber, %DM	38.21	39.29	41.03	34.78	13.40
Acid detergent fiber, %DM	24.10	24.24	22.87	26.97	7.50
pH	3.71	3.77	3.66	3.63	-
HCN content (after 0 days of ensiling), mg/kg DM basis	82.65	78.42	84.19	84.47	190.78
HCN content (after 7 days of ensiling), mg/kg DM basis	51.56	49.95	45.07	41.45	-

BC10= *Enterococcus gallinarum* KKU-BC10; BF7= *Enterococcus faecium* KKU-BF7; HCN=Hydrogen cyanide concentration

603 **Table 2.** Effects of sulfur and cyanide-utilizing bacteria in fermented diets with fresh cassava root on
 604 intake and digestibility in Thai beef cattle.

Item	1% Sulfur	2% Sulfur	BC10	BF7	SEM	p-Value
Dry matter (DM) intake						
Kg/d	4.12	4.45	4.69	4.51	0.14	0.12
%BW	1.63	1.87	1.87	1.89	0.09	0.19
%BW ^{0.75}	6.30	7.96	7.63	7.08	0.67	0.40
Nutrient intake, kg DM /d						
Organic matter	3.63	4.05	4.32	3.96	0.18	0.15
Crude protein	0.43	0.48	0.48	0.46	0.02	0.27
Neutral detergent fiber	1.57 ^b	1.75 ^{ab}	1.92 ^a	1.59 ^b	0.07	0.02
Acid detergent fiber	0.99 ^b	1.07 ^b	1.07 ^b	1.23 ^a	0.03	0.01
Digestibility coefficients						
Dry matter, %	68.04	68.75	64.51	70.89	2.35	0.65
Organic matter, %DM	71.76	72.54	70.97	73.52	1.47	0.86
Crude protein, %DM	68.37	68.20	65.71	59.29	2.50	0.12
Neutral detergent fiber, %DM	56.98	54.72	53.76	52.76	3.65	0.87
Acid detergent fiber, %DM	47.23	48.31	44.23	52.02	3.68	0.77

605 ^{a-b} Different superscript letters within a row indicate significant differences among treatments ($p < 0.05$).

606 BW = body weight; BW^{0.75} = metabolic body weight; BC10= *Enterococcus gallinarum* KKU-BC10; BF7=

607 *Enterococcus faecium* KKU-BF7; SEM=standard error of mean.

608

609

610 **Table 3.** Effects of sulfur and cyanide-utilizing bacteria in fermented cassava based diets on rumen
 611 fermentation, cyanide degradation, and blood urea in Thai beef cattle.

Item	1% Sulfur	2% Sulfur	BC10	BF7	SEM	p-Value
Ruminal pH						
0 h post feeding	6.83	7.02	6.92	7.13	0.24	0.95
4 h post feeding	6.88	6.94	6.85	6.81	0.09	0.83
Mean	6.85	6.98	6.88	6.97	0.12	0.99
Ammonia-nitrogen concentration, mg/dL						
0 h post feeding	8.59	11.21	11.63	11.49	0.75	0.27
4 h post feeding	16.62	15.83	14.85	16.11	1.29	0.39
Mean	12.61	13.52	13.24	13.80	0.79	0.64
Protozoa, $\times 10^6$ cell/mL						
0 h post feeding	14.50	12.33	12.50	14.00	1.72	0.77
4 h post feeding	23.00	19.67	19.50	24.00	3.34	0.84
Mean	18.75	16.00	16.00	19.00	0.83	0.27
Degradation efficiency of cyanide in the rumen (%)						
0 h post feeding	82.91	81.11	83.23	83.80	2.43	0.87
4 h post feeding	85.50	85.78	86.11	83.38	1.61	0.65
Mean	84.21	83.45	84.67	83.59	1.00	0.81
Blood urea-nitrogen concentration, mg/dL						
0 h post feeding	9.63	8.75	7.50	6.25	0.95	0.16
4 h post feeding	11.00 ^a	10.70 ^a	8.50 ^{ab}	6.50 ^b	0.26	0.04
Mean	10.32	9.73	8.00	6.38	1.01	0.07

612 ^{a-b} Different superscript letters within a row indicate significant differences among treatments ($p < 0.05$).

613 BC10= *Enterococcus gallinarum* KKU-BC10; BF7= *Enterococcus faecium* KKU-BF7; SEM=standard error of
 614 mean.

615

616 **Table 4.** Effects of sulfur and cyanide-utilizing bacteria in fermented cassava based diets on volatile
 617 fatty acids in the rumen of Thai beef cattle.

Item	1% Sulfur	2% Sulfur	BC10	BF7	SEM	<i>p</i> -Value
Total volatile fatty acid, mmol/L						
0 h post feeding	108.20	105.75	103.35	112.09	8.94	0.49
4 h post feeding	112.54	104.88	105.36	117.43	6.46	0.51
Mean	110.37	103.58	106.50	111.75	8.90	0.63
Volatile fatty acid profiles, %						
Acetic acid						
0 h post feeding	63.69	62.41	62.76	62.09	1.59	0.90
4 h post feeding	62.24	63.90	59.90	62.92	1.56	0.39
Mean	62.96	63.16	61.33	62.50	1.43	0.81
Propionic acid						
0 h post feeding	21.58	22.19	21.39	22.04	1.50	0.98
4 h post feeding	23.24	20.55	23.40	21.24	0.88	0.14
Mean	22.41	21.37	22.39	21.64	1.07	0.86
Butyric acid						
0 h post feeding	14.73	15.41	15.86	15.87	0.90	0.79
4 h post feeding	14.52	15.55	16.69	15.84	1.07	0.58
Mean	14.62	15.48	16.27	15.85	0.94	0.66
Acetic acid: propionic acid						
0 h post feeding	2.96	2.85	2.98	2.87	0.28	0.98
4 h post feeding	2.70	3.20	2.60	3.00	0.21	0.25
Mean	2.83	3.03	2.79	2.93	0.20	0.83

618 BC10= *Enterococcus gallinarum* KKU-BC10; BF7= *Enterococcus faecium* KKU-BF7; SEM=standard error of

619 mean.

620