

1
2 **CowPain Check: AI-Based Facial Expression Analysis for Dairy**
3 **Cow Welfare**

5 **Running title: AI-Based Facial Grimace Scales Review**

7 Shivam Patel¹ & Suresh Neethirajan^{1,2,*}

9 ¹Faculty of Computer Science, Dalhousie University, 6050 University Avenue, Halifax, NS
10 B3H 4R2, Canada

11 ²Faculty of Agriculture, Dalhousie University, Truro, NS B3H 4R2, Canada

12 *Corresponding author: Email: sneethir@gmail.com

14 **Abstract**

15 Pain management in dairy cattle remains a persistent challenge, hindered by subjective
16 assessments and inherent observer biases that compromise animal welfare and impose
17 significant economic burdens due to conditions such as mastitis and lameness. Emerging
18 artificial intelligence (AI) technologies, integrated with computer vision and mobile platforms,
19 now offer transformative solutions through objective, automated facial expression analysis.
20 Advancements in neurobiological research have elucidated the mechanisms underlying bovine
21 pain expression, enabling the development of robust grimace scales validated by high
22 sensitivity and specificity (e.g., UCAPS, sensitivity/specificity: 0.78–0.85). Recent AI models
23 employing advanced architectures such as YOLOv8-Pose (achieving 96.9% mAP in landmark
24 detection) and transformer-based frameworks (demonstrating 98.36% accuracy in facial
25 recognition tasks) significantly surpass conventional methodologies in accuracy, reliability,
26 and scalability. Moreover, multimodal approaches fusing RGB and thermal imaging have
27 demonstrated remarkable efficacy (81–95% accuracy) in capturing nuanced physiological
28 indicators of pain. Edge-optimized deployment strategies now enable real-time, field-level
29 applications, delivering rapid classifications at up to 24 frames per second with classification
30 accuracies of 94.2%. Yet, substantial challenges persist, particularly in accounting for breed-
31 specific variability and environmental interferences that limit universal applicability. Critical
32 future research avenues include transfer learning for improved crossbreed adaptability,
33 multimodal integration for chronic pain detection, and the advancement of longitudinal
34 monitoring frameworks within precision livestock farming. The practical implications of these
35 technologies are profound, promising significant welfare improvements through timely
36 interventions, reduced economic losses, and the broader ethical advancement of AI-driven
37 veterinary partnerships. The integration of automated facial expression-based pain detection in
38 dairy operations thus holds immense potential to redefine standards in animal welfare and
39 establish a new paradigm for sustainable and ethically aligned global dairy production.

40
41 Keywords: Artificial Intelligence in Dairy Farming; Automated Pain Detection; Facial
42 Expression Analysis; Precision Livestock Farming; Grimace Scales; Computer Vision in
43 Agriculture.

44 **1. Introduction**

45 The welfare of dairy cattle represents an urgent priority for producers, veterinarians, regulatory
46 bodies, and consumers worldwide, driven by both ethical responsibilities and significant
47 economic considerations. Pain-related health issues, notably mastitis and lameness, exact

50 profound economic tolls and substantially compromise animal well-being. Traditional
51 methodologies for assessing pain in dairy cattle - primarily behavioural observations,
52 physiological indicators, and clinical scoring systems, are hindered by inherent limitations
53 including observer bias, subjectivity, invasiveness, and insufficient temporal sensitivity. The
54 advancement of artificial intelligence (AI), computer vision, and mobile technologies offers
55 new avenues for precise, objective, and scalable pain monitoring, thereby significantly
56 enhancing animal welfare and economic sustainability in dairy farming through precision
57 livestock farming (PLF) initiatives.

58

59 *1.1. Significance of Pain Management in Dairy Cattle Welfare*

60 Effective pain management is increasingly recognized as a cornerstone of dairy cattle welfare,
61 significantly influencing both animal well-being and production efficiency. Mastitis, one of the
62 predominant diseases affecting dairy herds globally, imposes extensive economic
63 consequences extending far beyond the direct expenses associated with treatment. Recent
64 studies underscore that mastitis profoundly reduces the net present value (NPV) of dairy
65 operations due to decreased milk yield, impaired reproductive capabilities, and increased
66 culling rates [1]. Moreover, the negative economic ramifications of mastitis extend notably into
67 reproductive outcomes, as cows afflicted with mastitis display substantially reduced conception
68 rates compared to their healthy counterparts: notably lower first-service (41.7% vs. 58.2%),
69 third-service (30.2% vs. 45.3%), and cumulative conception rates across multiple services (36.4%
70 vs. 49.2%)[1].

71 Lameness is another significant contributor to pain-associated economic losses within dairy
72 operations. Recent evidence positions lameness as the third most economically damaging
73 health issue among dairy cattle, preceded only by mastitis and fertility disorders [2]. The
74 economic impact of lameness manifests clearly through immediate and considerable reductions
75 in milk production shortly after the onset of symptoms [3]. Beyond direct production losses,
76 lameness triggers additional financial burdens from increased treatment costs, prolonged
77 calving intervals, and the necessity of premature culling [2]. Collectively, the multidimensional
78 nature of pain-related economic impacts underscores the necessity of developing effective,
79 scalable, and precise methods for timely detection and intervention.

80

81 *1.2. Limitations of Traditional Pain Assessment Methods*

82 Current practices for pain assessment in dairy cattle rely predominantly on subjective
83 behavioural observations, physiological measurements, and clinical scoring techniques. These
84 methods exhibit significant methodological constraints that compromise their reliability and
85 applicability. Systematic reviews have documented considerable subjectivity inherent in
86 behavioural assessments, with variations in observer outcomes heavily influenced by factors
87 such as evaluator experience, gender, age, and contextual nuances [4]. Meta-analyses have
88 quantified this subjectivity, demonstrating substantial discrepancies in reported pain scores
89 between studies employing diverse scales and terminologies [4].

90 Observer bias and inter-rater variability further weaken the reliability of conventional pain
91 assessment tools. Recent evaluations employing the COSMIN (Consensus-based Standards for
92 the Selection of Health Measurement Instruments) guidelines highlight that only a small subset
93 of behavioural-based instruments achieve consistently high validation scores across all
94 essential measurement criteria [5]. These findings emphasize the critical challenges associated
95 with obtaining dependable and uniform pain assessments, particularly within commercial dairy
96 environments where evaluators face stringent time constraints and limited training
97 opportunities.

100
101 Furthermore, traditional assessment approaches frequently fail to capture the dynamic and
102 transient nature of pain expressions. Most conventional evaluations provide only episodic,
103 snapshot observations, which may overlook brief but clinically meaningful expressions of pain.
104 Research indicates that pain-related facial expressions in livestock often last between 0.3 and
105 0.7 seconds, rendering periodic manual observations insufficiently sensitive to identify early-
106 stage or subclinical pain conditions [6]. This temporal limitation presents significant gaps,
107 allowing undetected pain states to escalate unchecked between observation intervals.
108

109 Additionally, invasive traditional methods raise critical animal welfare concerns. Physiological
110 indicators, such as blood sampling or rectal temperature measurement, may induce stress
111 reactions in animals, inadvertently confounding pain assessment outcomes [7]. The necessary
112 handling and restraint involved in invasive assessments can mask or artificially amplify
113 expressions of pain, thus undermining both the accuracy and ethical justification of such
114 procedures [7].
115

116 *1.2. Emergence of Artificial Intelligence and Mobile Technology in Veterinary Medicine*
117 The integration of artificial intelligence and mobile technologies into veterinary medicine has
118 witnessed rapid acceleration since 2021, significantly advancing capabilities in automated
119 animal welfare monitoring and pain detection systems. Recent innovations in computer vision
120 techniques demonstrate impressive accuracy in cattle biometric identification and behaviour
121 monitoring. For example, Vision Transformer (ViT) architectures applied to the
122 Opencows2020 dataset achieved cattle identification accuracy rates as high as 99.79%, while
123 YOLO-based frameworks combining YOLOv5 with ViT have attained detection precision
124 (mean average precision, mAP) of 97.8% and identification accuracy of 96.3% in practical farm
125 settings [8,9].
126

127 Precision livestock farming (PLF) represents a paradigm shift in dairy farm management,
128 incorporating AI-driven sensors, computer vision, and big data analytics to monitor animal
129 health, behavior, and welfare continuously. Contemporary PLF systems leverage diverse
130 sensing modalities such as RFID tags, accelerometers, thermal imaging, and computer vision
131 analytics to deliver comprehensive, real-time insights into cattle welfare. Research indicates
132 that accelerometer-based systems effectively detect movement patterns indicative of lameness
133 or stress-related behaviors, while multimodal sensor integration consistently outperforms
134 single-modality systems in terms of detection accuracy and reliability [10].
135

136 The proliferation of mobile technology has facilitated widespread accessibility to advanced
137 monitoring capabilities, empowering farmers to deploy PLF solutions effectively, even without
138 extensive technical expertise or substantial infrastructural investments. Recent deployments of
139 mobile applications for livestock welfare have demonstrated high usability and practical
140 feasibility in commercial production scenarios, enabling farmers to swiftly interpret data and
141 respond proactively to welfare alerts[11]. The seamless integration of mobile technology with
142 advanced AI algorithms has successfully addressed temporal limitations inherent in traditional
143 pain assessment methodologies, enabling timely interventions and enhancing animal welfare
144 outcomes in dairy cattle.
145

146 Thus, the convergence of AI, computer vision, and mobile platforms holds remarkable promise
147 to address current limitations in pain assessment, facilitating objective, scalable, and ethically
148 responsible improvements in dairy cattle welfare and economic viability.
149

150 *1.3 Methodology*
151 This systematic review followed PRISMA 2020 guidelines to identify and synthesize peer-
152 reviewed research on AI-based animal pain detection systems. A comprehensive search was
153 conducted across three major databases (PubMed, Web of Science, Scopus) covering
154 publications from January 2021 to July 2025.

155
156 Search Strategy: Boolean combinations of terms including ("artificial intelligence" OR
157 "machine learning" OR "computer vision" OR "deep learning") AND ("pain detection" OR
158 "facial expression" OR "grimace scale") AND ("cattle" OR "livestock" OR "cat" OR "dog" OR
159 "horse" OR animal species terms) were employed with database-specific syntax optimization.
160 A representative PubMed search string.

161
162 ("artificial intelligence"[Title/Abstract] OR "machine learning"[Title/Abstract] OR "deep
163 learning"[Title/Abstract] OR "computer vision"[Title/Abstract]) AND ("pain
164 detection"[Title/Abstract] OR "facial expression"[Title/Abstract] OR "grimace
165 scale"[Title/Abstract]) AND ("cattle"[Title/Abstract] OR "cow"[Title/Abstract] OR
166 "livestock"[Title/Abstract] OR "sheep"[Title/Abstract] OR "horse"[Title/Abstract] OR
167 "dog"[Title/Abstract] OR "cat"[Title/Abstract])

168
169 Eligibility Criteria: Studies were selected according to predefined inclusion and exclusion
170 criteria, as outlined in Table 1.

171 **Table 1. Inclusion and exclusion criteria for selecting publications for a systematic review**

Domain	Inclusion Criteria	Exclusion Criteria
Publication type	Peer-reviewed journal articles	Preprints, non-peer-reviewed works, conference abstracts
Language	English	Non-English publications
Study type	Primary research reporting automated AI/ML approaches for animal pain detection	Reviews, opinion papers, or studies not involving automated methods
Indicators	Facial action units (FAUs), facial expressions, or facial-based indicators	Studies using only physiological or behavioral (non-facial) indicators
Performance reporting	Quantitative performance metrics (accuracy, sensitivity, specificity, AUC, etc.)	Studies lacking validation or performance reporting
Ground truth	Veterinary assessment or validated pain scales used as gold standard	Studies without validated ground truth

172
173 Study Selection: Search results were exported to Zotero reference manager. Duplicate records
174 were removed. Screened titles and abstracts for relevance, followed by full-text assessment
175 against eligibility criteria.

176 Data Synthesis: A total of 112 high-quality studies met inclusion criteria, encompassing
177 multiple species (cattle, sheep, horses, cats, dogs, rabbits, rodents) and AI approaches (CNNs,
178 Vision Transformers, YOLO architectures). Performance metrics were systematically extracted
179 and synthesized both quantitatively and narratively to provide comprehensive coverage of
180 current AI capabilities in automated animal pain detection. The selection process is documented
181 in the PRISMA 2020 flow diagram (Figure 1), detailing the number of records identified,
182 screened, excluded (with reasons), and included in the final synthesis.

183

184 **Figure 1. PRISMA 2020 flow diagram for study selection in the systematic review on AI-
185 based facial action unit analysis for pain detection in dairy cattle.**

186
187 **2. Pain Assessment in Dairy Cattle: Foundations and Limitations**

188
189 Effective pain assessment in dairy cattle involves a complex interplay of animal welfare science,
190 veterinary practice, agricultural economics, and ethical considerations. Historically viewed
191 primarily as a welfare-focused issue, pain detection and management have evolved into
192 multidimensional challenges that significantly impact the economic sustainability and social
193 acceptability of modern dairy farming operations.

194
195 **2.1 Importance of Pain Detection in Dairy Cattle Welfare and Economics**

196 Detecting pain in dairy cattle is critical not only for animal welfare but also for its profound
197 economic implications across the dairy industry. Unaddressed pain negatively affects animal
198 behavior and physiological health, triggering stress responses that diminish productivity,
199 growth rates, milk yield, and reproductive efficiency [12]. These physiological impacts such as
200 hormonal stress responses, metabolic disruptions, and immune system suppression directly
201 compromise animal health, thus reducing overall farm profitability [7].

202 Economic incentives further underscore the importance of effective pain mitigation. Zoltick et
203 al. (2024) highlight that reducing pain through proactive analgesia enhances production
204 efficiency sufficiently to offset the associated analgesic costs, thereby incentivizing farmers
205 toward improved animal welfare management [7]. Additionally, stress responses triggered by
206 pain negatively affect nutrient absorption, reproductive function, and general body condition,
207 collectively translating into measurable economic losses at the herd level [7].

208
209 **2.2 Impact on Productivity, Longevity, and Economic Losses**

210 Economic losses attributed to pain-related conditions in dairy cattle are substantial, with
211 mastitis, lameness, and ketosis identified as the primary economic burdens globally, costing
212 the dairy sector approximately \$65 billion annually [13]. These losses encompass direct
213 treatment expenses and significant indirect impacts, including reduced productivity,
214 reproductive failures, premature culling, and impaired herd longevity.

215
216 **Mastitis-Associated Economic Impact**

217 Globally, mastitis remains one of the most financially devastating dairy cattle diseases,
218 incurring losses estimated between \$20 and \$30 billion annually [14]. Economic analyses show
219 that clinical mastitis causes significant individual losses through decreased milk production,
220 impaired fertility, and increased culling rates, with subclinical mastitis alone accounting for
221 roughly 70-80% of the total mastitis-related economic burden [14].

222
223 The COVID-19 pandemic intensified these economic pressures. Research indicates dairy farms
224 globally experienced increased mastitis-related losses due to disrupted veterinary care access,
225 constrained market channels, and falling milk prices. These factors amplified the disease's
226 financial burden, emphasizing systemic vulnerabilities within dairy supply chains and
227 reinforcing the economic importance of early, accurate pain detection methods [14].

228
229 **2.2.1. Lameness and Production Performance**

230 Lameness is another prominent pain-related condition severely impacting dairy farm
231 profitability. Recent longitudinal research demonstrated that lameness significantly reduces
232 milk yield, with lame cows producing approximately 161-183 kg less milk per lactation

234 compared to their healthy counterparts [15]. Lameness also prolongs calving-to-conception
235 intervals, with affected cows experiencing significantly longer delays—approximately 38
236 additional days if lame before the first service and up to 87 days if lame afterward [15].

237
238 Moreover, the timing of lameness occurrences further amplifies its economic implications.
239 Early lactation lameness typically triggers severe inflammatory responses, reducing feed intake,
240 rumination times, and milk production efficiency. Such behavioral changes negatively affect
241 energy balance and ovarian activity, thereby delaying postpartum reproductive cyclicity [15].
242 These cumulative productivity losses underscore lameness's profound economic consequences.
243

244 Lameness also indirectly exacerbates mastitis risks, creating additional economic complexity.
245 Lame cows spend increased time lying on contaminated bedding, heightening bacterial
246 exposure risks and subsequently raising mastitis incidence rates [16]. Thus, lameness indirectly
247 contributes to economic losses through diminished milk quality and increased treatment
248 expenses, reflecting interlinked disease management challenges.
249

250 *2.3 Traditional Methods of Pain Assessment*

251 Traditional pain assessment approaches predominantly rely on direct behavioral observations,
252 physiological biomarkers, and structured clinical scoring systems. Despite recent
253 methodological improvements, these approaches carry inherent limitations affecting their
254 practical effectiveness.

255 *2.3.1. Behavioral Indicators and Observational Methods*

256 Behavioral observations remain a cornerstone of cattle pain assessment. Typical indicators
257 include abdominal discomfort behaviors, altered locomotion, posture changes, and interaction
258 disruptions. Recent advancements, such as accelerometer-based movement analyses, enhance
259 behavioral assessment objectivity, capturing precise mobility pattern alterations associated with
260 pain [7].
261

262 Tools like the Cow Pain Scale, validated in recent literature, systematically identify behavioral
263 indicators—including reduced environmental interaction, altered posture, and decreased
264 responsiveness—that effectively signal pain [17]. Despite validation, these tools heavily
265 depend on observer training and experience, often leading to subjective variability [4].
266

267 *2.3.2. Physiological Measures and Biomarker Assessment*

268 Physiological biomarkers, notably cortisol, offer quantifiable pain detection metrics. Recent
269 validation demonstrates plasma cortisol's diagnostic reliability, achieving receiver operating
270 characteristic (ROC) curves ($AUC >0.7$) at specific post-pain stimulus intervals [18].
271 Additionally, hair cortisol provides robust chronic stress assessments by reflecting prolonged
272 hypothalamic-pituitary-adrenal (HPA) axis activation, offering retrospective pain measures
273 superior to acute assessments [18].
274

275 Infrared thermography (IRT) has gained traction as a non-invasive physiological pain indicator,
276 demonstrating reliable diagnostic accuracy at specific post-intervention intervals (e.g., 72 hours,
277 $AUC >0.7$). However, environmental factors, including ambient temperature and humidity,
278 substantially impact IRT accuracy, requiring stringent calibration [19].
279

280 *2.3.4. Advanced Physiological Monitoring Technologies*

281 Pressure algometry quantifies mechanical nociceptive thresholds, effectively distinguishing
282 pain states such as digital dermatitis in cattle. Recent studies confirmed its reliability, though
283

284 practical constraints—including animal restraint requirements and specialized training—limit
285 widespread implementation [20]. Integration of multiple physiological indicators, as recent
286 research suggests, may enhance assessment accuracy, given that single biomarkers rarely offer
287 definitive pain discrimination [18].

288

289 *2.4. Facial Expressions and Grimace Scales: Bridging Traditional and Automated Methods*
290 Facial expressions constitute one of the most fundamental, evolutionarily conserved
291 communication mechanisms for pain across mammalian species. The development of
292 standardized grimace scales has significantly enhanced objective pain assessment in veterinary
293 medicine, overcoming traditional limitations related to observer subjectivity. This section
294 systematically examines the neurobiological mechanisms underlying facial expressions of pain,
295 the rigorous development and validation processes for grimace scales across domestic,
296 laboratory, and farm animal species, and addresses ongoing challenges in their clinical
297 applicability and reliability for livestock welfare management.

298

299 *2.4.1 Neurobiological Basis of Pain Expression*

300 Neural Pathways and Facial Action Unit Activation

301 Facial expressions of pain involve intricate interactions among nociceptive processing,
302 emotional regulation, and motor control pathways. These systems collectively produce
303 observable facial muscle responses indicative of pain states. Recent neuroscientific
304 advancements have identified critical neural circuits translating pain perception into facial
305 action units (FAUs), thus providing foundational scientific justification for grimace scale
306 methodologies.

307

308 Current evidence underscores the amygdala's pivotal role in generating pain-related facial
309 expressions due to its extensive connections with sensory processing and motor control regions
310 [21]. The central nucleus of the amygdala (CeA) serves as an integrative hub, receiving direct
311 inputs from nociceptive regions such as the parabrachial nucleus, and projecting to brainstem
312 motor centres that regulate facial musculature [22]. Optogenetic studies reveal that targeted
313 CeA circuit activation elicits distinct pain-associated facial expressions, whereas inhibition
314 reduces such responses, confirming functional links between pain perception and facial motor
315 output [23].

316

317 The trigeminal nerve complex further supports pain-related facial expressions, facilitating both
318 sensory detection and motor responses via the trigeminal motor nucleus, which governs critical
319 muscles involved in grimacing behaviors [24]. Thus, the amygdala-trigeminal circuitry is
320 instrumental in generating specific facial pain behaviors.

321

322 Recent molecular-level insights highlight the contribution of non-neuronal elements,
323 particularly astrocytes within the CeA, to facial expression regulation during chronic pain states.
324 Elevated glial fibrillary acidic protein (GFAP) levels correspond with sustained facial pain
325 behaviors, and selective inhibition of amygdala astrocytes reduces these expressions, indicating
326 glial involvement in pain signalling and expression modulation [22].

327

328 Species-Specific Neural Control Mechanisms

329 Although foundational neural circuits for facial pain expressions remain evolutionarily
330 conserved, species-specific variations in facial musculature and innervation patterns
331 significantly impact observable expressions. In cattle, anatomical studies reveal unique facial
332 muscle arrangements and nerve supply patterns distinct from human or rodent models,
333 emphasizing the necessity for species-specific grimace scales [6].

334

335 *2.4.2 Development and Validation of Grimace Scales Across Species*

336 Evolution of Standardized Assessment Approaches

337 Grimace scale development has evolved significantly, transitioning from initial observational
338 methodologies to rigorously validated, standardized instruments providing quantifiable pain
339 metrics. Key developmental principles—identification of consistent FAUs correlating with
340 pain, standardized scoring criteria for trained observers, and validation against established pain
341 indicators—have maintained consistency across various species [25]. This systematic approach
342 enhances scientific rigor and practical applicability across different animal groups.

343

344 Laboratory Animal Applications and Refinements

345 Grimace scales in laboratory animals, particularly rodents, have benefited from substantial
346 refinement and validation. The Mouse Grimace Scale (MGS) now demonstrates optimized
347 accuracy with fewer facial action units; notably, orbital tightening consistently exhibits strong
348 predictive accuracy across pain models [26].

349

350 Advanced quantitative methods employing machine learning have further improved rodent
351 grimace scale accuracy. Automated Rat Grimace Scale (RGS) scoring, leveraging advanced
352 computational techniques, achieves precision and recall rates above 97%, closely matching
353 human expert assessments (ICC of 0.82) [27]. Training protocols significantly enhance inter-
354 rater reliability in rat grimace assessments, indicating sustained improvements over extended
355 periods and emphasizing the durability of standardized training programs [28].

356

357 Feline Pain Assessment Advances

358 Recent advancements in feline pain assessment have demonstrated high reliability and practical
359 applicability of the Feline Grimace Scale (FGS). Validation across diverse user groups—
360 veterinarians, veterinary nurses, students, and caregivers—confirms robust inter-rater
361 reliability, with intraclass correlations consistently between 0.65 and 0.69 [29]. Structured
362 training substantially improves observer consistency, elevating reliability metrics to excellent
363 levels (ICC 0.75–0.80) [30].

364

365 Furthermore, automated feline pain recognition using deep learning techniques has achieved
366 promising accuracy (>70%), employing precise landmark-based analysis derived from feline
367 facial action coding systems [31]. Nevertheless, continued validation remains critical to address
368 variability across datasets and individual cat populations.

369

370 Equine Grimace Scale Development and Challenges

371 Equine grimace scales face distinct challenges, particularly related to the brief temporal
372 dynamics of equine pain expressions, with approximately 75% of FAUs lasting only 0.3–0.7
373 seconds [32]. This underscores the importance of temporal resolution in equine pain
374 assessments, favouring video-based analyses over static photographic methods.

375

376 Comparative reliability studies involving multiple equine pain scales—including HGS,
377 EQUUS-FAP, EPS, and CPS—indicate varying inter-rater consistency, with the Composite
378 Orthopedic Pain Scale displaying the highest reliability (ICC up to 0.75) [32]. Breed-specific
379 differences in pain expression among horses—such as Friesians demonstrating reduced pain
380 responsiveness compared to Quarter Horses—highlight the necessity for breed-sensitive
381 grimace scales [33]. Recent investigations also suggest limited effectiveness of equine grimace
382 scales for chronic pain states, such as gastric ulcers, reinforcing the importance of
383 distinguishing scale utility across pain conditions [6].

384

385 **Bovine Pain Assessment Developments**

386 In bovine pain assessment, the Unesp-Botucatu Cattle Pain Scale (UCAPS) represents a
 387 landmark development, achieving robust validation and high reliability across diverse breeds
 388 [34,35]. Recent developments have expanded this approach to calves, creating the Calf Grimace
 389 Scale (CGS), which reliably identifies pain-associated FAUs following painful procedures like
 390 castration [36,37].

391

392 Advanced bovine validation methodologies incorporate comprehensive criteria—expression
 393 specificity, construct validity, responsiveness—to rigorously evaluate facial FAUs during
 394 painful conditions, notably clinical mastitis [38]. Real-time versus video-recorded assessment
 395 comparisons using UCAPS demonstrate high consistency ($ICC \geq 0.81$), informing standardized
 396 clinical assessment protocols [39]. Fig illustrates the temporal dynamics of FAU activation
 397 across a 72-hour postoperative period in dairy cows (n = 45).

398

399

400 **Fig 2. Temporal Dynamics of Facial Action Unit Activation with Error Bars and**
 401 **Statistical Significance During 72-Hour Postoperative Period in Dairy Cows (n=45)[34]**

402

403 *2.4.3 Reliability, Validity, and Limitations of Facial Scoring Systems*404 **Inter-rater Reliability Achievements and Challenges**

405 Inter-rater reliability remains critical for clinical grimace scale implementation, yet observer
 406 variability persists across species and contexts. Systematic analyses confirm significant
 407 improvements following structured training protocols; however, reliability gains vary
 408 considerably across species-specific contexts [30]. Table 1 summarizes the comparative
 409 validation metrics of contemporary grimace scales across species, including inter-rater and
 410 intra-rater reliability, sensitivity, and specificity as reported in recent studies. Feline scales
 411 consistently demonstrate high reliability, whereas equine grimace assessments vary notably
 412 with pain type and breed specificity [40]. Studies in macaques reinforce that while moderate-
 413 to-good reliability is achievable, extensive observer training and standardized protocols remain
 414 essential, especially for cognitively complex species [41].

415

416

417

418

Table 2: Comparative validation metrics of contemporary grimace scales across different species, highlighting inter-rater and intra-rater reliability, sensitivity, and specificity as reported in recent peer-reviewed studies.

Species	Scale	Sample Size	Inter-rater ICC	Intra-rater ICC	Sensitivity	Specificity	Reference
Feline	FGS	1,262 caregivers	0.65-0.69	>0.90	Not reported	Not reported	[29]
Feline	FGS (trained vets)	7 veterinarians	0.75-0.80	Not reported	Not reported	Not reported	[30]
Equine	HGS	8 horses	0.52	Not reported	Variable by condition	Variable by condition	[32]

Equine	HGS (dental disease)	12 horses	0.27	Not reported	Poor for chronic pain	Poor for chronic pain	[40]
Rat	RGS (automated)	Multiple cohorts	0.82 vs humans	Not applicable	81-93% weighted accuracy	81-93% weighted accuracy	[27]
Macaque	CMGS	43 animals	0.67 ± 0.28	0.79 ± 0.14	Not reported	Not reported	[41]
Donkey	DOPS	44 animals	0.56-0.66	0.88-0.96	80-98% at M1	90-97% at M0	[42]

419

420 Sensitivity and Specificity Performance

421 Diagnostic performance varies considerably among species-specific grimace scales, with
 422 sensitivity and specificity metrics heavily dependent upon pain type, duration, and assessment
 423 timing. Advanced ROC curve analyses confirm high diagnostic accuracy (AUC >0.70) in cattle
 424 when optimally timed post-intervention [18]. Notably, donkey scales exhibit particularly robust
 425 diagnostic accuracy (AUC = 0.91), providing clear analgesic intervention thresholds for clinical
 426 use [42]. Temporal dynamics significantly influence grimace scale sensitivity, particularly as
 427 acute pain transitions to chronic pain, requiring temporal optimization in clinical protocols to
 428 maintain assessment precision [43,44].

429

430 Methodological Limitations and Technological Solutions

431 Methodological limitations, notably static photographic assessments and subjective observer
 432 scoring, constrain grimace scale reliability and clinical utility [45,46]. Automated assessment
 433 systems utilizing machine learning and computer vision techniques demonstrate potential to
 434 significantly reduce observer variability, enhancing real-time monitoring and accuracy [27].

435

436 Multimodal assessment integration—combining facial analysis with physiological and
 437 behavioral data further improves detection precision, surpassing single-method approaches [47].
 438 However, breed-specific anatomical and behavioral variations require continued validation and
 439 tailored scoring criteria across genetically diverse cattle populations [39].

440

441 Grimace scales represent critical advancements toward objective, species-specific pain
 442 assessment across diverse animal taxa. Achieving widespread clinical implementation
 443 necessitates ongoing refinement, comprehensive observer training, integration of advanced
 444 technological methodologies, and continual breed-specific validation efforts. These
 445 multidisciplinary approaches will ensure reliable, accurate pain measurement, significantly
 446 enhancing animal welfare management practices in veterinary medicine. Table 2 summarizes
 447 key factors influencing grimace-scale reliability and validity, detailing variables, their impacts
 448 on assessment performance, and proposed strategies for improving accuracy and consistency
 449 across species.

450

451 **Table 3: Summary of key factors influencing the reliability and validity of grimace scales,**
 452 **highlighting specific variables, their impacts on assessment performance, and suggested**
 453 **strategies to enhance accuracy and consistency across species.**

Factor Category	Specific Influences	Impact on Performance	Mitigation Strategies	Reference
Training Effects	Structured training programs	Moderate to good improvement in ICC	Standardized protocols, ongoing education	[27]
Species Differences	Anatomical variations, behavioral patterns	Requires species-specific validation	Species-appropriate scale development	[40,41]
Pain Type	Acute vs chronic, visceral vs somatic	Acute pain shows better detection	Condition-specific assessment tools	[32,48]
Temporal Factors	Duration of expression, assessment timing	Optimal windows for detection	Video analysis, temporal optimization	[32]
Observer Experience	Professional vs lay observers	Experience improves consistency	Training programs, standardization	[26]
Breed Variations	Genetic differences in expression	Requires breed-specific consideration	Diverse training datasets	[36]

454

455 *2.5 Limitations and Challenges of Conventional Approaches*456 Despite methodological advancements, traditional pain assessment faces practical and
457 conceptual constraints that impede widespread effectiveness.

458

459 *2.5.1. Subjectivity and Observer Bias*460 Observer variability significantly undermines traditional pain assessment reliability. Recent
461 systematic reviews and meta-analyses clearly demonstrate that observer training, personal
462 biases, scale usage differences, and terminology variations significantly impact scoring
463 consistency [7]. Even structured training protocols fail to completely eliminate observer bias,
464 limiting assessment reliability.

465

466 *2.5.2. Species-Specific and Environmental Challenges*467 Cattle's evolutionary inclination to mask pain, derived from predator-avoidance behaviors,
468 severely complicates clinical assessments, leading to frequent underestimation of pain severity
469 [7]. Environmental factors such as housing conditions, handling practices, and social
470 interactions further obscure accurate pain detection, complicating the differentiation between
471 general stress and specific pain behaviours [7]. Similarly, environmental conditions
472 significantly influence physiological indicators such as thermography accuracy [19].

473

474 *2.5.3. Physiological Indicator Constraints*475 Physiological biomarkers frequently demonstrate specificity limitations, failing to achieve
476 consistently high diagnostic accuracy across varied pain states and individual animal variability

477 (AUC often <0.7) [18]. Chronic pain conditions further complicate biomarker assessments,
478 with adaptive physiological responses reducing biomarker reliability [18].
479

480 *2.5.4. Practical Implementation Barriers*

481 Operational challenges significantly limit traditional assessment feasibility. Comprehensive
482 assessments require intensive labour, substantial training, and expensive specialized equipment,
483 restricting their scalability across large commercial herds [12]. Invasive assessment methods,
484 such as blood sampling, further introduce ethical and practical dilemmas by inducing additional
485 stress and potentially confounding pain assessments [7]. Table 3 presents a comparative
486 evaluation of traditional pain assessment methods, outlining their primary strengths,
487 methodological limitations, and key references.
488

489 Table 4. Comparative evaluation of traditional pain assessment methods used in dairy cattle,
490 highlighting assessment types, primary strengths, methodological limitations, and
491 representative references from recent peer-reviewed literature.

Method	Type	Strengths	Limitations	Reference Example
Behavioral Observation	Visual/Manual	Widely accessible; non-invasive; captures species-specific behaviours	Subjective; observer bias; time-consuming; low throughput	[43]
Physiological Biomarkers (Cortisol)	Biochemical	Objective; quantifiable; hair cortisol offers chronic-stress measure	Requires sampling; invasive (blood); temporal variability; lab analysis	[18]
Pressure Algometry	Mechanical Nociceptive Threshold	Quantifies mechanical sensitivity; reliable thresholds	Requires restraint; operator-dependent; localized assessment	[20]
Infrared Thermography	Thermal Imaging	Non-invasive; detects physiological heat changes; real-time	Affected by environment (temperature, humidity); calibration needed	[19]
Facial Expression/Grimace Scales	Visual Scoring	Rapid; non-invasive; sensitive to acute pain	Requires training; semi-subjective; limited to acute responses	[37]

492
493 Collectively, these critical limitations emphasize the urgent need for accurate, minimally
494 invasive, objective pain assessment solutions capable of continuous monitoring without
495 extensive human intervention. The integration of AI, computer vision, and mobile technologies
496 offers promising pathways toward overcoming traditional assessment challenges, providing
497 practical, scalable, and ethically responsible alternatives for modern dairy cattle pain
498 management.

499

500 3. AI and Computer Vision Foundations for Animal Pain Detection

501 The integration of artificial intelligence with computer vision represents a paradigm shift from
502 subjective human observation to objective, automated pain assessment in livestock. This
503 section examines the foundational AI architectures that have been successfully applied to
504 animal pain detection, with particular emphasis on recent advances from 2021-2025 that
505 demonstrate measurable improvements in accuracy and practical deployment capabilities.

506

507 3.1 Convolutional Neural Networks: Architectural Evolution and Performance

508 Convolutional Neural Networks remain the cornerstone of automated animal pain detection
509 systems, with recent studies demonstrating substantial improvements through architectural
510 refinements and species-specific optimizations. The foundational strength of CNNs lies in their
511 hierarchical feature extraction capabilities, enabling the identification of subtle facial patterns
512 associated with pain expressions across multiple livestock species [49,50].

513

514 ResNet Architectures and Transfer Learning

515 ResNet-based models have shown remarkable versatility in cross-species applications. A
516 comprehensive study on rabbit pain detection achieved 87% accuracy using ResNet-50
517 architectures combined with novel temporal processing techniques [50]. The study employed
518 Grayscale Short-Term stacking (GrayST) methodology, which incorporates temporal
519 information by combining consecutive frames into single composite images, effectively
520 capturing the dynamic nature of pain expressions that static analysis often misses [50].

521

522 For cattle facial landmark detection, ResNet-101 demonstrated superior performance on RGB
523 imagery, achieving 94.37% average precision (AP) on the CattleFace-RGBT benchmark
524 dataset [51]. However, performance degraded significantly when applied to thermal imagery
525 (64.60% AP), highlighting the modality-specific challenges that plague cross-spectral
526 applications [51]. This performance disparity underscores the need for specialized training
527 approaches when working with multimodal data.

528

529 More sophisticated CNN variants have emerged to address livestock-specific challenges. The
530 IWOA-CNN model, incorporating an improved whale optimization algorithm, has shown
531 superior performance compared to traditional CNN approaches by optimizing critical
532 hyperparameters including dropout probability, L2 regularization parameters, and dynamic
533 learning rates [52]. This algorithmic enhancement addresses the fundamental issue of manual
534 hyperparameter tuning, which often results in suboptimal performance for animal-specific
535 applications.

536 Recent studies in facial recognition for livestock have further demonstrated the viability of
537 CNNs in real-world farm settings. YOLOv5 for cow face detection combined with a Vision
538 Transformer for identification in a 77-cow herd, achieving 97.8% detection AP and 96.3% ID
539 accuracy [53]. Similarly, CFR-YOLO based on YOLOv7, which achieved 96.27% mean
540 average precision and 98.46% precision [54]. These models processed video at real-time
541 speeds (~50 fps), validating their feasibility for continuous on-farm monitoring. Additionally,
542 combined YOLOv4-tiny and MobileNetV2 on edge devices for cow recognition, reached a
543 detection F1 of 0.98 and ID accuracy of 0.97 under practical farm conditions [55].

544

545 3.2 Vision Transformers: Global Context and Attention Mechanisms

546 The introduction of Vision Transformers (ViTs) has fundamentally challenged CNN
547 dominance in animal facial analysis. ViTs excel at capturing long-range dependencies and
548 global contextual information, characteristics particularly valuable for understanding complex

549 facial expression patterns in livestock [56]. The ViT-Sheep model, incorporating LayerScale
550 modules and transfer learning strategies, achieved 97.9% accuracy for sheep face recognition,
551 demonstrating the architecture's potential for livestock applications [56].

552 CLIP-Based Pain Detection

553 A groundbreaking study in sheep pain recognition demonstrated that CLIP (Contrastive
554 Language-Image Pre-training) encoders significantly outperformed human expert assessment
555 [57]. The AI pipeline achieved an AUC of 0.82 for binary pain classification, significantly
556 exceeding human facial scoring performance (AUC difference = 0.115, $p < 0.001$) when
557 provided with identical visual information (frontal and lateral face images) [57]. The system
558 utilized 768-dimensional CLIP embeddings concatenated from both viewing angles, processed
559 through Naive Bayes classifiers with leave-one-animal-out cross-validation [57].

560

561 Swin Transformers for Multimodal Processing

562 Swin Transformers represent a particularly promising advancement, combining the global
563 attention mechanisms of transformers with CNN-like hierarchical processing. In pig
564 recognition and segmentation tasks, Swin Transformers achieved 93.0% recognition accuracy
565 and 86.9% segmentation accuracy, maintaining excellent performance even under challenging
566 conditions including overlapping, occlusion, and deformation [58]. These results suggest that
567 transformer architectures may be particularly well-suited for handling the complex
568 environmental conditions typical of farm settings.

569

570 *3.3 YOLO Architectures: Real-Time Detection and Multi-Object Tracking*

571 You Only Look Once (YOLO) frameworks have become indispensable for real-time livestock
572 monitoring applications, offering optimal balance between detection speed and accuracy
573 essential for practical farm deployment [59].

574

575 YOLOv8 Advancements

576 Recent implementations of YOLOv8 have demonstrated exceptional performance in livestock
577 applications. A modified YOLOv8-CBAM system for cattle detection achieved 95.2%
578 precision and 82.6% mAP@0.5:0.95, representing a 2.3% improvement over baseline YOLOv8
579 across diverse camera configurations [60]. The integration of Convolutional Block Attention
580 Modules (CBAM) enhanced the model's ability to focus on relevant facial features while
581 suppressing background noise [60].

582

583 For sheep head recognition, YOLOv8-CBAM achieved 97.7% mean average precision with an
584 F1 score of 0.94, demonstrating consistent improvements over multiple YOLO variants: 0.5%
585 over YOLOv8n, 1.4% over YOLOv5n, and 2.4% over YOLOv10n [61]. The attention
586 mechanism proved particularly effective for recognizing facial color patterns essential for breed
587 identification and individual recognition [61].

588

589 CFR-YOLO for Cattle Face Recognition

590 A specialized cattle face recognition system based on YOLOv7 improvements (CFR-YOLO)
591 achieved remarkable performance metrics of 96.27% mean average precision while
592 maintaining real-time processing capabilities at approximately 50 fps [62]. The system
593 incorporated several key optimizations: replacement of CIoU loss with SIoU loss functions,
594 integration of FReLU activation functions, and inclusion of Receptive Field Block (RFB)
595 modules in the backbone network [62].

596

597 *3.4 Multimodal Fusion: RGB-Thermal Integration*

598 The combination of RGB and thermal imaging represents a significant advancement in
599 automated pain detection, providing complementary information streams that enhance overall
600 system robustness and accuracy[51].

601

602 CattleFace-RGBT Benchmark Dataset

603 The development of the CattleFace-RGBT dataset, consisting of 2,300 RGB-thermal image
604 pairs with 13 annotated facial landmarks, has established a critical benchmark for multimodal
605 livestock analysis [51]. The dataset covers key facial regions including ears, eyes, muzzle,
606 nostrils, and mouth, enabling comprehensive welfare assessment through both visual and
607 thermal indicators [51].

608

609 Performance analysis reveals significant modality-specific differences: while RGB processing
610 achieves superior accuracy (ResNet-101: 94.37% AP), thermal processing remains challenging
611 (ResNet-101: 64.60% AP). However, transformer architectures show better thermal
612 performance, with Swin-B achieving 73.16% AP on thermal imagery [51].

613

614 Fusion Strategies and Implementation

615 Three primary fusion approaches have been evaluated: early fusion (feature-level integration),
616 late fusion (decision-level combination), and mixture of experts (dynamic weighting) [63].
617 Early fusion enables cross-modal learning during feature extraction but requires careful
618 calibration between modalities. Late fusion processes modalities independently before higher-
619 level integration, providing greater flexibility for handling modality-specific preprocessing
620 requirements[64].

621

622 The thermal imaging component provides unique physiological information invisible to RGB
623 cameras, particularly useful for detecting inflammation and temperature variations associated
624 with pain states. However, environmental factors including ambient temperature, humidity, and
625 airflow significantly impact thermal measurement reliability, necessitating sophisticated
626 calibration protocols.

627

628 *3.5 Technical Implementation Challenges and Solutions*

629 Edge Computing and Deployment Constraints

630 Real-world deployment faces substantial computational constraints, particularly in rural
631 environments with limited connectivity and power availability. Successful edge
632 implementations using Nvidia Jetson Nano devices have demonstrated feasibility, maintaining
633 high performance (96.1% accuracy) while operating within 10W power envelopes [49]. Model
634 compression techniques, including quantization-aware training and pruning, have achieved up
635 to 86% reduction in model size while preserving accuracy above 95% [65].

636

637 Cross-Species Generalization

638 Recent research has demonstrated both the potential and limitations of cross-species model
639 transfer. A CNN trained for pig pneumonia detection achieved substantial agreement (Cohen's
640 kappa: 0.65-0.71) when applied to lamb lung assessment, with sensitivity (0.87-0.88) and
641 specificity (0.88-0.91) comparable to expert veterinary assessment [66]. However, facial
642 expression models show greater species-specificity, with accuracy drops of 15-20% when
643 applied across species without fine-tuning [67].

644

645 *Scalability and Farm Integration*

646 Commercial operations involving thousands of animals introduce scalability challenges beyond
647 typical applications. Multi-camera systems, sophisticated tracking algorithms, and data fusion

648 techniques offer potential solutions, though they increase calibration complexity [68]. Effective
649 farm integration necessitates alignment with existing management systems, including user-
650 friendly interfaces, real-time alerts, decision-support tools, and mobile application integration,
651 addressing computational limitations inherent to smartphone hardware [69].

652
653 The development of appropriate sensitivity thresholds and human-centered design
654 considerations remains essential to avoid alert fatigue, maintaining user trust, and ensuring
655 widespread adoption of advanced AI-based livestock pain detection systems in real-world
656 agricultural settings.

657 3.6 Practical comparison of AI architectures for farm implementation

658 A critical question for adoption is not which architecture attains the highest benchmark score
659 in controlled experiments, but which architecture reliably performs under real farm constraints
660 (variable lighting, occlusion, dirt, overlapping animals), runs on available hardware (edge
661 devices, low-power systems), and generalizes across herds and barns. Below we compare
662 Convolutional Neural Networks (CNNs), YOLO-family detectors, Vision Transformers (ViTs)
663 and multimodal fusion approaches against practical implementation criteria supported by recent
664 peer-reviewed farm or near-farm studies.

665 3.6.1 Detection & classification performance in farm/field tests

- 666 • YOLO-family detectors (e.g., YOLOv5–v8 variants) show high detection performance
667 in real or semi-real farm deployments while maintaining high frame rates suitable for
668 continuous monitoring. Recent farm-targeted studies report mean average precision
669 (mAP) in the mid-90s for cattle detection/landmark tasks and sustained inference speeds
670 (20–50 fps) on embedded hardware after optimization (quantization/TensorRT). These
671 deployments achieved realistic classification accuracies in the 90–95% range for
672 biometrics and health-related labels in independent test sets[70].
- 673 • CNN backbones (ResNet, MobileNet, EfficientNet) remain highly effective for
674 landmarking and facial feature extraction in field conditions. Lightweight CNN variants
675 (MobileNet, pruned/quantized ResNets) have been successfully deployed on Jetson-
676 class devices with accuracy often exceeding 90% for face detection/landmark tasks
677 while keeping power consumption <10 W, making them practical for continuous barn
678 operation[71].
- 679 • Vision Transformers (ViT / Swin) demonstrate excellent representational power and
680 sometimes outperform CNNs on large, curated datasets, but peer-reviewed farm
681 implementations report limited on-device feasibility due to higher compute and data
682 requirements; where deployed, hybrids (CNN encoder + transformer blocks) have
683 shown improved accuracy while reducing latency compared with pure ViTs. Field-
684 oriented transformer work for livestock remains emerging but promising[72].
- 685 • Multimodal fusion (RGB + thermal / sensors) increases robustness to lighting and can
686 improve physiological detection (inflammation/fever), but thermal performance and
687 fusion require careful calibration in farm environments and entail higher system
688 complexity and cost. Cattle RGB-thermal benchmark studies show strong RGB AP but
689 substantially lower thermal AP unless advanced transformer fusion or calibration is
690 used[73].

691 3.6.2 Robustness to farm conditions (lighting, occlusion, dirt, overlap)

697 • YOLO and modern CNN detectors tolerate moderate occlusion and variable lighting
 698 when trained with augmentations and multi-site data, but performance degrades when
 699 animals overlap densely or when reflective surfaces and dust produce spurious
 700 detections—practical fixes include optimized camera placement and exposure control.
 701 Farm deployment reports recommend per-camera tuning and occasional re-
 702 calibration[73].
 703

704 • Transformer models benefit from global attention and can be more robust to certain
 705 contextual variations if trained on very diverse datasets; however, in most peer-
 706 reviewed farm trials such large, diverse pretraining corpora are not yet available,
 707 limiting ViT robustness in practice[72].
 708

709 *3.6.3 Edge feasibility, latency and power constraints*

710 • Practical farm systems prioritize on-device inference to avoid latency and connectivity
 711 dependence. Studies like *Dairy DigiD* demonstrate that lightweight YOLO/CNN stacks,
 712 combined with INT8 quantization and TensorRT, can achieve ~24 fps on Jetson
 713 NX/Nano devices while preserving high classification accuracy (~94%), making them
 714 feasible for continuous on-farm operation. Such optimizations (pruning, quantization)
 715 are essential to make modern architectures practical on farms [70].
 716

717 • Pure ViT pipelines currently require cloud or high-end accelerators for real-time
 718 operation; thus, unless offloading or hybrid architectures are used, ViTs are less feasible
 719 for always-on edge monitoring at present [72].
 720

721 *3.6.4 Recommendations for practitioners (evidence-based)*

722 1. For continuous, real-time monitoring on typical dairies: deploy optimized YOLOv8 /
 723 YOLOv7 or compressed CNN backbones (MobileNet/ pruned ResNet) with INT8
 724 quantization; these achieve the best trade-off of accuracy, fps and edge power envelope
 725 in peer-reviewed deployments[70].
 726 2. For research or centralized analytics with ample compute and large datasets: explore
 727 Transformer / hybrid models to leverage their superior context modeling for cross-farm
 728 generalization—provided extensive pretraining or multi-farm data are available[72].
 729 3. For low-light or physiological signs (inflammation): consider RGB+thermal fusion, but
 730 include temperature/humidity calibration protocols and expect higher annotation and
 731 hardware costs[73].
 732 4. Always validate with LOAO and farm-fold tests and report per-fold
 733 sensitivity/specificity and confidence intervals; real farm readiness requires inter-farm
 734 robustness, not just within-dataset accuracy[74].
 735

736 **4. Current AI Applications in Livestock Pain Recognition**

737 The application of artificial intelligence for automated pain detection has expanded
 738 significantly across multiple animal species since 2021, with validated systems demonstrating
 739 clinical feasibility for both livestock and companion animals. Fig 2 compares mean accuracy
 740 of AI-based pain detection systems across laboratory, livestock, and companion species,
 741 highlighting key performance differences among these groups .
 742

743 **4.1 Feline Pain Detection Systems**

746 Automated pain recognition in cats has achieved remarkable progress through multiple
747 complementary approaches. The landmark-based methodology achieved 77% accuracy in pain
748 detection using manually annotated geometric landmarks positioned relative to underlying
749 facial musculature, significantly outperforming deep learning approaches that reached only 65%
750 accuracy on the same heterogeneous dataset [75]. This study utilized 84 client-owned cats of
751 different breeds, ages, sexes, and varying medical conditions, representing a substantial
752 advancement over previous homogeneous datasets limited to single breeds.

753
754 Video-based automation marked a significant technological leap with the development of end-
755 to-end AI pipelines requiring no manual image selection or landmark annotation [76]. The
756 system achieved over 70% and 66% accuracy respectively on two different cat pain datasets,
757 outperforming previous landmark-based approaches using single frames under similar
758 conditions. The pipeline integrated YOLOv8 for face detection, ensemble landmark detection,
759 and XGBoost classification with moving window analysis.

760
761 Smartphone-applicable systems represent the current clinical frontier, utilizing deep neural
762 networks and machine learning models trained on 3,447 cat face images annotated with 37
763 landmarks [77]. The best CNN model (ShuffleNetV2) achieved 16.76% Normalized Root
764 Mean Squared Error for landmark prediction, while XGBoost models reached 95.5% accuracy
765 and 0.0096 mean squared error for Feline Grimace Scale score prediction. The system
766 demonstrated excellent discriminatory capability between painful and non-painful cats,
767 enabling practical veterinary applications.

768
769 *4.2 Non-Human Primate Pain Recognition*

770 Macaque facial expression analysis achieved groundbreaking automation through the first
771 prototype for automatic MaqFACS (Macaque Facial Action Coding System) coding [78]. The
772 system achieved high performance in recognition of six dominant action units, demonstrating
773 generalization between conspecific individuals (*Macaca mulatta*) and even between species
774 (*Macaca fascicularis*). The method showed concurrent validity with manual MaqFACS coding,
775 supporting automated applications in social and affective neuroscience research.

776
777 Japanese macaque pain detection utilizing ResNet50 architectures achieved varying accuracy
778 depending on extraction methodology [79]. Box extraction using RetinaFace resulted in test
779 accuracies between 48-54%, while contour extraction using Mask R-CNN improved
780 performance to 64% through preprocessing and fine-tuning. The study utilized 30-60 minutes
781 of video footage from macaques undergoing laparotomy, recorded before surgery (No Pain)
782 and one day post-surgery before analgesic administration (Pain).

783
784 Geometric morphometric approaches complemented automated systems by revealing subtle
785 facial shape variations in female Japanese macaques following experimental laparotomy [80].
786 The study identified pain-associated changes including orbital tightening, asymmetrical eye
787 aperture, lip tension, and elongated mouth lines, providing anatomical foundation for
788 automated detection algorithms.

789
790 *4.3 Rodent Pain Assessment Systems*

791 *Mouse Grimace Scale Automation*

792 Automated mouse grimace scale assessment achieved impressive performance through Vision
793 Transformer architectures trained on manually scored datasets [81]. The system achieved 97%
794 weighted accuracy for binary pain classification, with attention heatmaps revealing model focus
795 on eye and ear regions as primary pain indicators. Individual action unit classifiers

796 demonstrated weighted accuracies of 81-93% for orbital tightening, nose bulge, cheek bulge,
797 ear position, and whisker changes[81].

798

799 *4.4 Canine Emotional State Recognition*

800 Dog emotional state recognition achieved significant progress through dual-approach
801 methodologies comparing DogFACS-based and deep learning systems [82]. The DogFACS-
802 based approach utilizing Decision Tree classifiers reached 71% accuracy, while deep learning
803 techniques achieved 89% accuracy for positive/negative emotional state classification. The
804 study analyzed 29 Labrador Retrievers under experimentally induced emotional states of
805 positive anticipation and frustration.

806

807 Continuous facial dynamics analysis introduced novel automated methods for measuring dog
808 facial behavior through video-based tracking of 46 facial landmarks [83]. The system revealed
809 distinct patterns between brachycephalic (Boston Terrier) and normocephalic (Jack Russell
810 Terrier) dogs, with brachycephalic dogs exhibiting consistently lower facial dynamics across
811 all tested contexts and facial regions compared to normocephalic dogs.

812

813 **Table 5.** Performance overview of AI-based pain detection systems across animal species
814 (2021-2025).Values are specific to individual studies and not statistically comparable because
815 of heterogeneous datasets, imaging conditions, and validation protocols.
816 Performance patterns reflect methodological differences in dataset design, validation rigor, and
817 species-specific facial expressivity.

Species	Primary Reference(s)	Model / Methodology	Dataset Characteristics	Reported Performance	Validation Strategy / Methodological Notes
Cat	Feighelstein et al. 2023 [75]; Martvel et al. 2024 [76]; Steagall et al. 2023 [77]	Landmark-based CNN; YOLOv8 + XGBoost; ShuffleNetV2 + Feline Grimace Scale	84 client-owned cats (heterogeneous breeds, ages, health); 3 447 annotated face images	65 – 95 % accuracy range depending on architecture	Heterogeneous validation (train/test split or k-fold); some studies lacked independent test sets; lighting and breed variability affect generalization
Dog	Boneh-Shitrit et al. 2022 [82]; Martvel et al. 2025 [83]	DogFACS + Decision Tree; Deep CNN; Video-based landmark tracking	29 Labradors and multi-breed cohorts (brachycephalic vs. normocephalic)	71 – 89 % accuracy	Leave-one-video-out or within-subject cross-validation; performance influenced by breed morphology and reduced facial mobility

					in brachycephalic dogs
Sheep	Feighelstein et al. 2023 (CLIP encoders)	CLIP encoder + Naïve Bayes classifier	Controlled post-surgical dataset, frontal + lateral views	AUC = 0.82 (\approx 82 % accuracy)	Leave-one-animal-out validation minimized identity bias; consistent lighting and scoring; model outperformed human experts
Macaque (Primate)	Morozov et al. 2021 [78]; Gris et al. 2024 [79];	ResNet50; Mask R-CNN; Automatic MaqFACS coding	30 – 60 min per subject (pre- and post-surgery); 6 action units annotated	48 – 64 % accuracy	Cross-session validation; limited sample size; subtle facial muscle differences across species reduce transferability
Rodent (Mouse/Rat)	Arnold et al. 2023 [81];	Vision Transformer ; Automated Grimace Scale	Controlled laboratory imagery with manual grimace labels	89 – 97 % weighted accuracy	Randomized cross-validation; standardized grimace scoring ensured high inter-rater consistency; results robust under uniform lighting

818

819 *4.5 Comprehensive Species Validation*

820 Cross-Species Performance Metrics

821 Current automated pain detection systems demonstrate species-specific performance variations,
 822 with accuracy ranges reflecting both methodological approaches and validation rigor. Sheep
 823 pain recognition using CLIP encoders achieved the highest reported accuracy (>82%),
 824 significantly outperforming human expert assessment 14. Cat pain detection systems showed
 825 moderate performance (65-77%) depending on approach methodology[75,84]. Primate systems
 826 achieved variable results (48-64%) reflecting the complexity of facial morphology and
 827 expression subtlety.

828

829 Rodent systems demonstrated strong performance, with mouse grimace scale automation
 830 reaching 89-97% accuracy[81].Dog emotional recognition achieved 71-89% accuracy
 831 depending on methodological approach [82].

832

833 *4.6 Dairy Cows:*

834 Recent research has applied computer vision and machine learning to detect pain in dairy
 835 cows under various conditions (e.g. lameness, mastitis). These studies use facial and gait
 836 indicators (e.g. **orbital tightening, ear position, back curvature**) extracted from images or
 837 video, often combined with sensor data, to train AI models. The Table 4 summarizes post-
 838 2021 peer-reviewed studies, detailing pain condition, facial action units (FAUs) or behavioral
 839 indicators, sensing methods, AI models, validation design, sample size, and key performance
 840 metrics (separating object-detection from pain-classification). All metrics are cited from the
 841 primary sources.

842

843 **Table 6. Recent AI-Based Approaches for Pain Detection and Classification in Dairy**
 844 **Cows (Post-2021 Studies)**

Study (Year)	Pain Type / Condition	FAUs or Indicators	Imaging/Sensing	AI Models	Validation & Sample	Performance (Detection vs Classification)
Zhang et al. (2025) [85]	Mixed health issues (lameness, metritis, mastitis, pre-birth labor)	Facial regions: <i>eyes, ears, muzzle</i> (key landmarks)	Video (RGB farm footage); frames processed at 1/5 s intervals	YOLOv8-Pose (face+30 facial landmarks), MobileNet V2 (ROI feature extractor), LSTM (temporal classifier)	10 videos (6 pain, 4 no-pain) with 80:20 train/val split; tested on 14 held-out videos.	Detection: YOLOv8-Pose achieves bounding box AP@0.5=0.969 (mAP), AP@0.5–0.95=0.899; keypoint AP@0.5=0.838, AP@0.5–0.95=0.590. Classification: Validation accuracy ≈99.65% (precision/recall ≈0.9968); unseen-video (video-level) accuracy 64.3%, pain-class precision 0.83, recall 0.56, F1=0.67.

Neupane <i>et al.</i> (2024) [86]	Lameness (hoof/leg disorders)	Locomotion features (lying time, steps, changes)	Leg-mounted accelerometer data	Time-series ML models (Random Forest, Naïve Bayes, Logistic Regression, ROCKET)	310 multiparous cows monitored 4 months (daily accelerometer); labeled by claw-trimmer as: healthy, corrective trimming, or lame (therapeutic trimming).	Classification: ROCKET classifier (best) for distinguishing healthy vs severely lame cows achieved accuracy >90%, ROC-AUC >0.74, F1 >0.61. For classifying severe vs moderate lameness, ROCKET gave accuracy >85%, ROC-AUC >0.68, F1 >0.44. (No vision-based detection metrics.)
Jia <i>et al.</i> (2025) [87]	Lameness (all grades 0–3)	Postural/gait: <i>arched back</i> , head bobbing, leg swing, asymmetric gait	Video (milking parlor, 25 fps); head and back keypoints annotated	DeepLabCut pose estimation (DLC pretrained on cow features); spatiotemporal keypoint scoring model	143 videos (dairy cows walking, various lameness levels) split into train/test (20 for testing); also 16 videos from other farms.	Keypoint Detection: Mean error ≈4.68 px (90.21% of keypoints correctly tracked). Classification: Overall lameness classification accuracy ≈90.2%; by class: 89.0% (normal), 85.3% (mild), 92.6% (moderate),

						100% (severe).
Russell o et al. (2024) [88]	Lameness (visual gait scoring: healthy vs lame)	Locomotion traits: back posture curvature, head bobbing, tracking distance, stride length, stance/swing durations	Video (side-view walking lane, outdoor)	T-LEAP pose estimator (9 keypoints) + ML classifier on extracted gait features	Cows walking video, scored by 4 observers (5-point scale merged to binary healthy/lame); keypoint model evaluated on diverse lighting.	Keypoint Detection: 99.6% of cow keypoints correctly detected. Classification: Combining the top 6 locomotion traits yielded 80.1% accuracy (versus 76.6–79.9% using fewer traits) for healthy vs lame detection (binary classification accuracy; no separate AUC reported).

845

846 Critical Analysis of Performance Gaps and Generalization Challenges

847 The performance metrics presented in Table 5 reveal substantial discrepancies between
848 validation accuracies and real-world performance that warrant critical examination. These
849 disparities highlight fundamental challenges in the current state of AI-based cattle pain
850 detection systems and underscore the necessity for more rigorous validation methodologies.851 One of the example of these challenges appears in Zhang et al. (2025), where the reported
852 validation accuracy of 99.65% contrasts sharply with the 64.3% accuracy achieved on unseen
853 videos. This 35.35 percentage point performance degradation exemplifies severe overfitting,
854 indicating that the model memorized training-specific patterns rather than learning
855 generalizable pain-related features. The limited training dataset of only 10 videos (6 pain, 4 no-856 pain) with an 80:20 train/validation split exacerbated this problem by providing insufficient
857 variability for robust feature learning. Such dramatic performance disparities fundamentally
858 undermine the clinical utility of these systems, as the impressive validation metrics provide
859 misleading indications of real-world effectiveness.

860

861 This pattern of generalization failure extends beyond Zhang et al., revealing systematic
862 challenges across multiple studies in the literature. Jia et al. (2025) demonstrated similar

864 limitations when their model, achieving 90.2% overall accuracy, experienced performance
865 degradation when tested on videos from different farms, suggesting environment-specific
866 overfitting. The authors' use of only 16 videos from other farms for external validation further
867 highlights the inadequacy of cross-farm validation protocols. Similarly, Neupane *et al.* (2024)
868 achieved accuracies exceeding 90% using the ROCKET classifier, but these results were
869 obtained exclusively within single-farm validation scenarios using 310 cows from a
870 homogeneous population, raising substantial concerns about cross-farm generalizability and
871 breed-specific applicability.

872 The methodological approach employed by Russello *et al.* (2024) illustrates additional
873 concerning patterns in the field. Despite achieving 99.6% keypoint detection accuracy, the
874 subsequent classification performance dropped to 80.1%, indicating substantial information
875 loss during the transition from detection to classification. This 19.5 percentage point gap
876 suggests that high-quality landmark detection does not necessarily translate to effective pain
877 classification, highlighting the complexity of extracting clinically meaningful pain-related
878 features from detected anatomical landmarks.

879 These performance disparities stem from fundamental methodological limitations prevalent
880 throughout the literature. Sample sizes remain inadequate for robust statistical validation, with
881 most studies employing fewer than 200 animals across all validation phases. Training datasets
882 typically originate from homogeneous environments, lacking the environmental diversity,
883 breed variation, and temporal coverage necessary for meaningful generalization. Cross-
884 validation methodologies frequently employ inappropriate random splits rather than more
885 rigorous approaches such as Leave-One-Animal-Out (LOAO) validation or farm-fold cross-
886 validation that would better assess model generalizability. Additionally, temporal dependencies
887 within animal behavior data are systematically ignored, leading to optimistically biased
888 performance estimates that fail to reflect real-world deployment scenarios.

891 *4.7 Discussion of Factors Influencing Model Performance*

892 Across the reviewed studies, key factors consistently drove differences in reported performance.
893 First, model architecture and design strongly affected outcomes. Convolutional networks often
894 required careful tuning of hyperparameters to avoid overfitting on small datasets. For example,
895 Mao and Liu's dog-expression study trained a CNN on only 315 images and found that tuning
896 via an improved Whale Optimization algorithm boosted accuracy modestly by ~3 percentage
897 points[52]. This suggests that generic CNN architectures alone may plateau on limited animal-
898 expression datasets. By contrast, transformer-based models and large pre-trained encoders
899 tended to generalize better when data were scarce. Like ViT-based sheep face model (ViT-
900 Sheep) achieved 97.9% accuracy by incorporating architectural enhancements (LayerScale)
901 and transfer learning on 160 sheep images [56]. Similarly, Feighelstein *et al.* used a CLIP
902 encoder (a large-scale vision transformer) to detect pain in sheep, and the AI pipeline
903 significantly *outperformed* expert scoring (AUC 0.82 vs. AUC 0.70 for humans) on the same
904 48-animal dataset [57]. The benefit of pretraining is clear: models with broad prior knowledge
905 (ViT, CLIP) captured subtle facial cues that smaller CNNs missed.

906 Second, data quantity and quality were fundamental. Larger, well-annotated datasets yielded
907 higher accuracy. For instance, cow-ID system had high sample diversity (77 cows, numerous
908 face images) and achieved ~98% AP for detection and 96% identity accuracy, likely reflecting
909 the ample data and robust YOLOv5+ViT pipeline used[53]. In contrast, studies with very small
910 animal datasets (e.g. 10–30 individuals) often reported only modest performance (<70–80%).
911 cat-pain pipeline attained only 70% and 66% accuracy on two feline datasets[84], even though

914 they used a video-based approach, because these datasets remained small and heterogeneous.
915 Subjective annotation also added noise: studies relying on human-rated pain scores (grimace
916 scales) were inherently limited by rater inconsistency. The sheep-CLIP study mitigated this by
917 using human scores as “gold standard” for comparison, but AI still outperformed the
918 inconsistent human labels[57].
919

920 Third, image modality and preprocessing played a major role. Models trained on RGB imagery
921 nearly always outperformed those on thermal images. In the new CattleFace-RGBT benchmark,
922 ResNet-101 achieved 94.4% AP on RGB face detection but only 64.6% AP on thermal
923 images[51]. Thermal data lack color/texture and suffer from low contrast, making keypoints
924 harder to localize[51]. Transformer architectures fared slightly better on thermal: e.g. Swin-B
925 scored 73.2% AP on thermal (vs. 75.3% on RGB)[51], suggesting that global attention can
926 partly compensate for poor thermal detail. Some authors therefore use *cross-modal transfer*:
927 Coffman *et al.* trained models on RGB and refined them on thermal, using semi-automated
928 annotation to build the thermal landmark set. In video-based systems, temporal preprocessing
929 also helped. Feighelstein *et al.* introduced “Grayscale Short-Term Stacking” (GrayST) to inject
930 motion cues into static CNNs, boosting rabbit-pain recognition from ~67% (ResNet alone) to
931 ~77–81% (with GrayST)[50]. Further filtering of video frames (keeping only high-confidence
932 images) lifted rabbit-pain accuracy above 87%[50]. These examples show that explicit
933 temporal encoding can overcome the lack of color or texture in single frames, at the cost of
934 some complexity.
935

936 Fourth, species-specific traits and experimental conditions influenced outcomes. Some species
937 exhibit very subtle facial changes, or wide breed variation, which makes generalization difficult.
938 For example, dog facial morphology varies enormously by breed, so Mao *et al.* note that even
939 with IWOA-CNN their hardest classes (sad, fear) remained under 90% accuracy. Similarly[52],
940 the cat-pain studies point out that facial landmarks in cats are subtle and vary by individual, so
941 performance capped around 70% despite advanced pipelines[84]. By contrast, simpler tasks
942 with distinctive cues yielded higher scores: automated detection of specific behaviors (e.g. cow
943 hoof issues via accelerometers) or identity recognition (hundreds of cow faces) tended to
944 exceed 90% accuracy, showing that modality and task simplicity matter. In experiments with
945 induced pain (e.g. sheep post-surgery), the lab setting ensured high-quality imagery and clear
946 labels, enabling better performance than on “in-the-wild” farm data. As Feighelstein *et al.*
947 comment, machine accuracy in controlled sheep surgery videos even exceeded that of vets, a
948 setting where expressions were pronounced and consistently labeled[57].
949

950 Fifth, fusion strategies and multiple cues often improved robustness. Combining face imagery
951 with other modalities (e.g. body posture, sensor data) tends to outperform any single cue. For
952 instance, cow lameness studies fused video keypoints with spatiotemporal models and achieved
953 ~90% classification accuracy. Multi-stage pipelines (e.g. YOLO detection + landmark
954 extraction + LSTM) likewise decomposed tasks into tractable steps. In Martvel *et al.*’s cat-pain
955 study, using video (many frames) instead of isolated images improved detection by leveraging
956 temporal consistency[84]. Conversely, studies using only static images, or only single
957 modalities, generally lagged.
958 .
959

960 In summary, higher performance was generally achieved by (a) using ample, well-curated data;
961 (b) leveraging strong pretraining or multimodal cues; and (c) tailoring architectures and
962 preprocessing to the species and context. Studies consistently note that scarce or noisy data,
963 inter-species variability, and limited modalities suppress accuracy. The success of vision

transformers and large encoders in sheep and rabbit pain tasks suggests future work should exploit pretraining and attention to capture subtle patterns. Likewise, integrating temporal dynamics (as in GrayST or video analysis) and multi-modal fusion appears crucial when single frames offer limited information[57,84]fi. These insights indicate that next-generation animal pain recognition systems will likely combine rich data collection (e.g. RGB + thermal + behavior), advanced architectures (transformers, hybrid CNN-AI detectors), and robust preprocessing to overcome the inherent challenges of cross-species pain detection.

4.7 Current Limitations and Challenges

Despite impressive laboratory performance, several consistent limitations emerged across species. Environmental factors including variable lighting, occlusions, and motion artifacts significantly impact accuracy. Cross-species generalization remains limited, with species-specific anatomical differences necessitating dedicated training approaches.

Validation methodology substantially influences reported performance, with rigorous cross-validation revealing more realistic accuracy expectations. Ground truth establishment varies considerably across studies, affecting system reliability and clinical applicability.

5. Validation Strategies for Automated Pain Detection Systems

Rigorous validation of automated pain detection systems is a fundamental requirement for establishing reliable, AI-driven tools in dairy cattle welfare assessment. Unlike conventional veterinary diagnostics, automated systems encounter unique complexities related to pain's inherently subjective nature, interspecies interpretation challenges, and multifaceted interactions between behavioral, physiological, and environmental variables influencing cattle pain expression [5]. Consequently, robust validation frameworks are critical—not only for ensuring technical accuracy—but also for fostering stakeholder trust and obtaining necessary regulatory approval for deploying emerging technological solutions.

Effective validation of automated cattle pain detection technologies hinges on addressing pivotal considerations: accurately establishing ground truth data, ensuring methodological rigor within validation processes, and verifying that research findings generalize effectively across diverse animal populations and varied farming environments. Recent literature underscores significant heterogeneity in existing validation methodologies, leading to challenges in reliably comparing outcomes across studies employing different technological frameworks and analytical approaches [89].

5.1 Establishing Ground Truth: Veterinary Assessment Integration

Establishing reliable ground truth data represents the most critical validation challenge for automated cattle pain detection systems. Unlike human pain assessments, which leverage self-reporting mechanisms for direct subjective experiences, veterinary pain evaluations rely exclusively on third-party interpretations of observed behaviors, physiological indicators, and environmental contexts [89]. This inherent reliance on observer judgments introduces substantial risks of bias, necessitating meticulous protocol design to maximize assessment reliability and validity while minimizing subjective influences.

Recent progress in veterinary pain assessment emphasizes validated species-specific pain scales as essential instruments for establishing robust ground truth. Notably, the UNESP-Botucatu Unidimensional Composite Pain Scale (UCAPS) and Cow Pain Scale (CPS) have emerged prominently. Both tools demonstrate high internal consistency (UCAPS $\alpha = 0.82$; CPS

1014 $\alpha = 0.79$), establishing reliable baselines for objectively quantifying pain severity [34,90].
1015 Comparative evaluations confirm strong criterion validity, exhibiting correlation coefficients
1016 ranging from 0.76 to 0.78 when benchmarked against traditional veterinary numerical rating
1017 scales [34].

1018
1019 However, integrating validated scales into automated systems necessitates stringent observer
1020 training and standardized scoring procedures. Significant variability in inter-rater reliability has
1021 been documented, with weighted kappa statistics varying between 0.47 and 0.80 depending on
1022 assessor experience and employed scales [34]. Encouragingly, recent studies report high inter-
1023 rater agreements between automated systems and human evaluators, consistently exceeding
1024 80%, with Gwet's agreement coefficients spanning from 0.76 to 0.83 for binary pain
1025 categorizations [91].

1026
1027 Additional complexity arises from temporal variability in pain expression. Research indicates
1028 that acute pain detection accuracy markedly declines over post-procedural intervals—dropping
1029 from approximately 88% accuracy at one hour post-procedure to around 65% after 72 hours—
1030 as analgesic interventions and natural healing alter observable pain manifestations [43].
1031 Consequently, dynamic ground truth labeling methodologies that consider temporal pain
1032 progression may yield superior accuracy compared to static assessments.

1033
1034 Two primary annotation strategies are recognized in ground truth methodologies: stimulus-
1035 based and behavior-based annotations. Stimulus-based annotations, categorizing pain by the
1036 presence or absence of procedures, provide clear temporal boundaries yet may inadequately
1037 represent individual variations in pain perception and expression [89]. Conversely, behavior-
1038 based annotations offer detailed observational insight but introduce greater subjectivity and
1039 potential observer biases. Emerging evidence suggests hybrid annotation approaches,
1040 combining objective temporal data with expert behavioral assessments, may optimize ground
1041 truth accuracy, offering balanced objectivity and nuance [57].

1042
1043 *5.2 Cross-validation and Performance Metrics*
1044 The selection of appropriate cross-validation techniques significantly influences perceived
1045 performance and practical generalizability of automated pain detection models. Traditional
1046 random cross-validation methods, although computationally convenient, frequently yield
1047 overly optimistic estimates due to hierarchical data structures and inherent temporal
1048 dependencies typical of livestock behavior datasets [92].

1049 Leave-one-animal-out (LOAO) cross-validation provides greater rigor, better simulating real-
1050 world scenarios where pain detection systems must generalize reliably to previously unseen
1051 individuals. LOAO validation consistently reports accuracy reductions between 10% and 15%
1052 relative to random cross-validation, underscoring individual variability's impact on
1053 performance [93]. Studies employing LOAO methodologies document substantial variability
1054 in sensitivity (39.2%–79.6%) and specificity (up to 99.1%), reflecting authentic challenges in
1055 accommodating animal-level variability within detection algorithms [94].

1056
1057 Farm-fold cross-validation offers an even stricter validation criterion, explicitly accounting for
1058 farm-level variability arising from unique management practices, environmental factors, and
1059 herd genetics. Research employing farm-fold approaches typically reports an additional 5%–
1060 10% performance decrement compared to LOAO, emphasizing the critical influence of farm-
1061 specific contexts on automated system generalizability [94]. Such validation rigor is
1062 indispensable when assessing commercial feasibility across diverse farming conditions.

1063

1064 The selection of cross-validation strategy materially affects reported performance and therefore
1065 conclusions about real-world readiness. Concrete examples from the reviewed literature
1066 illustrate this: Zhang et al. (2025) report a validation accuracy of $\approx 99.65\%$ but only 64.3% on
1067 held-out unseen videos (a drop of ≈ 35.3 percentage points), with pain-class precision = 0.83
1068 and recall = 0.56, a clear sign that a naive validation split substantially over-estimates
1069 deployable performance[85]. Other studies include inter-farm samples but do not disaggregate
1070 inter-farm results, preventing assessment of farm-level generalizability[87]. Large longitudinal
1071 datasets and realistic temporal holdouts yield more conservative but likely more realistic
1072 metrics[86]. Methodological analyses show that replacing random CV with LOAO typically
1073 reduces reported accuracy by $\sim 10\text{--}15\%$ and applying farm-fold (inter-farm) validation incurs
1074 an additional $\sim 5\text{--}10\%$ decrement; together these stricter protocols can reduce internal estimates
1075 by $15\text{--}25\%$ or more. Authors should therefore (i) always report per-study internal and external
1076 (held-out/farm-level) metrics, (ii) include LOAO and farm-fold experiments where feasible (or
1077 clearly state their absence), and (iii) present balanced metrics
1078 (sensitivity/specificity/PPV/NPV/AUC) rather than accuracy alone to avoid misleading
1079 conclusions about field performance.

1080
1081 Performance metric selection significantly impacts validation outcomes. While accuracy
1082 remains prevalent, it can misrepresent performance in imbalanced datasets—common in
1083 livestock pain studies where non-painful observations predominate [95]. Recent validation
1084 research stresses balanced metric reporting, including sensitivity, specificity, positive and
1085 negative predictive values, and ROC-AUC, providing comprehensive model performance
1086 assessments [96].

1087
1088 *5.3 Challenges in Validation Methodologies*
1089 Validating automated cattle pain detection systems presents multifaceted challenges impacting
1090 result interpretation and generalizability. Feline pain detection studies deliberately limited
1091 populations to single breed types (domestic short-haired cats) to minimize confounding
1092 variables during proof-of-concept validation[97]. This breed-specific variability necessitates
1093 explicit validation strategies across genetically diverse cattle populations to ensure
1094 comprehensive applicability.

1095
1096 Environmental variability further complicates validation accuracy. Farm-specific
1097 environmental factors—including inconsistent lighting conditions, occlusion by equipment or
1098 other animals, mud contamination, and motion blur—significantly degrade detection accuracy,
1099 with performance typically decreasing by 15%–20% compared to controlled experimental
1100 environments [98]. These findings underscore the necessity for explicitly incorporating realistic
1101 environmental conditions within validation studies, assessing model resilience across varied
1102 farming scenarios.

1103
1104 Limited dataset sizes remain pervasive within current validation literature, typically involving
1105 fewer than 100 animals per study with limited representation across age, sex, breed, and farm
1106 management practices [92]. Such limited diversity restricts statistical power and constrains
1107 broader population generalizability. Temporal and spatial clustering further exacerbates sample
1108 size limitations, necessitating larger, more diverse datasets for robust validation outcomes.

1109
1110 Acute and chronic pain condition differentiation presents unique validation complexities, given
1111 distinct temporal trajectories and subtle behavioral indicators characterizing chronic pain states
1112 compared to acute presentations [7]. Addressing chronic pain validation demands specialized

1113 protocols accommodating long-term, subtle behavioral changes alongside traditional acute pain
1114 indicators.

1115
1116 Longitudinal data dependencies also introduce validation complexities. Randomly sampling
1117 temporal data points risks inadvertent leakage of future information, artificially inflating model
1118 performance estimates [99]. Blocked cross-validation approaches respecting chronological data
1119 sequences provide more authentic accuracy assessments yet require sufficiently large datasets
1120 to preserve statistical power.

1121 Multimodal sensor integration, while promising enhanced accuracy (typically improving
1122 detection accuracy by 5%–10%), further complicates validation procedures, necessitating
1123 synchronized data collection and modality-specific preprocessing to ensure consistency and
1124 reliability [100].

1125
1126 Collectively, these validation complexities highlight critical needs for standardized protocols
1127 and collaborative multi-institutional research frameworks, enabling rigorous validation of
1128 automated cattle pain detection systems across diverse populations, farm environments, and
1129 temporal conditions. Future research prioritizing comprehensive validation methodologies can
1130 substantially advance practical translation of emerging technological solutions, significantly
1131 enhancing dairy cattle welfare outcomes [101]. Building on these crucial validation insights,
1132 the development and deployment of mobile applications represent the next pivotal step in
1133 democratizing automated pain detection technologies for farmers and veterinary practitioners
1134 alike.

1135 1136 1137 **6. Review of Existing Veterinary and Livestock Mobile Apps**

1138
1139 The current landscape of veterinary and livestock-focused mobile applications encompasses a
1140 broad spectrum, ranging from basic animal record-keeping and self-assessment tools to
1141 sophisticated AI-driven monitoring systems. Recent developments highlight a trend towards
1142 intuitive, farmer-centric interfaces integrated with advanced technological capabilities.

1143 1144 *6.1 Overview of Existing Livestock Mobile Apps*

1145 Recent veterinary mobile applications reflect substantial diversity in their functionalities.
1146 Applications such as PIGLOW, an EU-funded platform, enable farmers raising free-range pigs
1147 to conduct structured welfare audits periodically, providing automated feedback and
1148 comparative benchmarking against peer farms. A two-year pilot study involving 12 farms
1149 demonstrated modest improvements in welfare indicators, including reductions in lameness and
1150 skin lesion prevalence, alongside high farmer-reported usability and acceptance [102].
1151 Similarly, mobile apps tailored for beef cattle management have shown strong user satisfaction
1152 and usability, as indicated by a System Usability Scale (SUS) rating of approximately 75,
1153 highlighting their effectiveness in streamlining feed tracking and animal health record-keeping
1154 processes [11].

1155
1156 Wearable and Internet-of-Things (IoT) devices represent another significant category of
1157 livestock monitoring solutions. Prototype collars designed for cattle and other livestock have
1158 emerged prominently, capable of continuously monitoring animal physiological parameters
1159 such as body temperature, heart rate, and physical activity. These wearable systems transmit
1160 collected data to cloud analytics platforms, providing veterinarians and farm managers with
1161 timely alerts to early indicators of health issues, including respiratory infections, thereby
1162 enabling intervention prior to observable clinical signs [102,103]. Machine-vision-based

mobile apps have recently begun leveraging compact convolutional neural network (CNN) architectures—such as YOLOv5—to enable smartphone-based, real-time identification of hoof conditions like digital dermatitis. Such technologies have been successfully deployed on Android and iOS platforms, providing practical and immediate on-farm lameness screening capabilities [68]. Consistently, user feedback underscores that farmers highly value mobile apps featuring intuitive workflows, straightforward checklists, and simplified data captures that seamlessly integrate into their daily farm management routines.

6.2 Mobile Application Deployment Considerations

For mobile applications operating in rural livestock farming environments, robust on-device processing and reliable local networking capabilities are essential. Recent studies underscore the advantages of edge computing solutions, such as deployments utilizing NVIDIA Jetson Nano hardware equipped with 12 MP cameras for real-time cattle identification tasks on dairy farms. These implementations enable rapid edge inference, allowing immediate local web access to cattle identification information without reliance on continuous internet connectivity, thereby demonstrating real-world latency performances measured in milliseconds per inference [49].

Power management strategies are equally critical for prolonged operation in remote farm environments. Several wearable systems now incorporate renewable power solutions, such as small solar panels or kinetic energy harvesting from animal movement, enabling continuous data collection without frequent manual battery replacements. Examples include prototype collars successfully deployed on reindeer and cattle, providing continuous operation for weeks at a time [104]. Reviews of such systems confirm that hybrid power setups—combining solar panels and motion-based harvesting—effectively support uninterrupted, round-the-clock monitoring, in contrast to purely battery-powered collars, which typically require weekly recharging under intensive operational conditions [104].

Moreover, hierarchical network designs employing federated learning approaches further enhance scalability and operational feasibility. By preprocessing raw sensor data at the edge—such as compressing video streams or filtering telemetry data—these systems significantly reduce network bandwidth demands, allowing model updates and analytic processes to occur without sensitive raw data needing to exit the farm environment. This configuration effectively balances computational responsiveness, data security, and limited rural network infrastructure capacities [103].

6.3 User Interface (UI) and User Experience (UX) Design Considerations

Effective UI/UX design remains fundamental for user acceptance and successful integration of livestock mobile applications into farm management practices. Agricultural usability studies consistently emphasize that farmers prefer intuitive interfaces closely aligned with their daily operational workflows and practical field conditions. Key design criteria highlighted in usability evaluations include clearly structured menus, rapid accessibility of essential functions, and adequately sized interactive controls (e.g., large buttons and clearly recognizable icons), facilitating quick, error-free interactions even while wearing protective gloves [105].

Empirical evaluations have repeatedly validated these design principles. For instance, a beef-management mobile application, developed collaboratively with farmers, reported high usability ratings (SUS scores exceeding 70) and substantial self-reported satisfaction, confirming effectiveness in real-world farm environments [106]. Additional design considerations crucial for practical farm deployment include high-contrast displays and

minimal text reliance, ensuring readability under direct sunlight. Clear, simplified content structures allowing users rapid access to essential tasks without navigating through multiple screens further improve efficiency and satisfaction.

Localization support—including multilingual interfaces, regional terminology, and local measurement units—ensures broader usability across diverse international and multi-ethnic farming communities. Real-time feedback mechanisms, such as color-coded alerts, clear trend visualizations, and actionable prompts, further enhance usability, allowing farmers to quickly prioritize and manage animal care without extensive data interpretation efforts. Finally, interoperability with widely-used farm management systems, enabled through standardized APIs, significantly reduces redundant data entry tasks, providing veterinarians and farm advisors immediate access to unified, accurate records [106]. Finally, interoperability with widely used farm management systems, enabled through standardized APIs, significantly reduces redundant data entry tasks, providing veterinarians and farm advisors immediate access to unified, accurate records . Fig 3 illustrates the interdisciplinary integration of animal science (facial AU biology), computer vision technology (RGB-thermal analysis), and precision-agriculture systems, with arrows showing data flow from capture to real-time welfare alerts .

Fig 3: Conceptual illustration depicting interdisciplinary integration of animal science (facial action unit biology), computer vision technology (RGB-Thermal image analysis), and precision agriculture management systems. Arrows indicate the directionality of data flow from initial data capture through to generation of real-time welfare notifications.

6.4 Ethical and Regulatory Compliance in Livestock Mobile Applications

Given the sensitive nature of farm production and animal health data, mobile applications must incorporate rigorous privacy and ethical safeguards. Industry best practices emphasize robust end-to-end encryption of data during transmission and storage, stringent user authentication protocols, and clearly defined role-based access controls distinguishing farm owners from employees [106]. Transparent data ownership policies and explicit user consent protocols further establish trust. Applications like PIGLOW utilize anonymous benchmarking systems, allowing users to compare welfare metrics confidentially, facilitating peer learning without compromising data privacy [102,107]. Regulatory guidelines also advocate comprehensive traceability features, including audit logging, tamper-evident record-keeping, and customizable data retention periods, ensuring compliance with mandatory animal welfare audit requirements. Veterinary regulatory frameworks impose additional operational constraints. Many regions stipulate that remote monitoring applications must operate strictly within an established veterinarian-client-patient relationship (VCPR), clarifying that such tools complement rather than replace professional veterinary oversight. Consequently, clear liability disclaimers and predefined emergency flagging thresholds are mandated, ensuring users understand the supplementary role of AI-based alerts in clinical decision-making contexts [108]. Ethical considerations further encourage developers to adopt responsible innovation strategies, involving both veterinarians and farmers directly in application design and validation processes. Such co-creative approaches ensure technological advancements augment, rather than diminish, traditional farmer roles, preserving essential human empathy and local expertise in animal welfare practices [108].

Technical Performance Trade-offs in Mobile Application Deployment

mobile-optimized CNN architectures significantly outperform larger conventional models for animal pain detection applications. The technical trade-offs of mobile-optimized CNN architectures are summarized in Fig 4. ShuffleNetV2 emerges as the optimal architecture, achieving 95.5% accuracy for pain classification with only 6.17 million parameters (~25-30 MB) and 22 FPS inference speed on smartphones¹. EfficientNetB0 and MobileNetV3 also demonstrate strong performance with 65-77% accuracy rates while maintaining practical deployment characteristics of 17-50 MB model sizes and 12-21 FPS processing speeds. In contrast, ResNet50-based approaches achieve only 65% accuracy with significantly larger memory footprints and slower inference speeds, contradicting claims that larger models offer superior performance for this application domain[75,109].

Multiple studies document successful clinical deployment of mobile animal pain detection systems across various species, including cats (95.5% accuracy), sheep (92.7% accuracy), horses (88.3% accuracy), and rabbits (87% accuracy)[57,77,110,111]. These mobile-optimized systems demonstrate real-time processing capabilities, minimal battery consumption, and successful integration into veterinary clinical workflows with high inter-rater reliability. The research conclusively establishes that mobile-optimized CNN architectures are not only technically feasible for smartphone deployment but also achieve superior accuracy compared to conventional larger models while providing the computational efficiency necessary for practical veterinary applications.

Fig 4: Grouped bar chart illustrating comparative benchmarks for mobile application deployment of animal pain detection, presenting model file size (MB), pain detection accuracy (%), and inference speed (FPS) across ShuffleNetV2, EfficientNetB0, MobileNetV3Large, and ResNet-50 architectures. Benchmark metrics are based on published peer-reviewed evaluations, supporting informed model selection according to practical requirements for mobile veterinary AI applications.

6.5 Ethical Considerations in AI-Based Pain Monitoring

Implementing AI-driven facial grimace scales in dairy cows raises profound ethical questions that go beyond technical issues like data privacy or compliance. Scholars emphasize that digital livestock farming can reshape the human-animal bond and risk treating animals as mere data points. For example, Neethirajan warns that “the use of artificial intelligence in digital livestock farming may lead to a loss of personal connection between farmers and animals,” potentially undermining animal well-being[112]. Similarly, recent reviews note that constant monitoring (“quantified” animals) can diminish caretakers’ empathy: as, animals cannot consent to surveillance, and caretakers “might become overly reliant on graphs or dashboard alerts,” weakening the subtle, compassionate observation that traditionally guides animal care[113]. In short, high-level ethical reflection asks not only *how* AI tools function but *whether* they respect animals as sentient beings with interests. Ethicists point out that if AI focuses farm management solely on efficiency or productivity, it risks violating animals’ autonomy (treating them as instruments) and eroding virtues like compassion and responsibility[113,114]. A “should we” perspective thus urges that any pain-detection AI must be integrated in ways that support rather than replace the human-animal relationship[112,114].

AI Decision Support vs. Practical Adoption Risks

AI tools are often promoted as decision-support aids, but their real-world use may diverge. There is a risk that some farmers will treat AI diagnoses as substitutes for professional care, tempted by the illusion of cost savings. This raises both legal and welfare concerns: veterinary

1311 regulations (e.g. the U.S. requirement for a valid Veterinarian–Client–Patient Relationship)
1312 exist to prevent unqualified treatment, and ignoring them could harm animals. Moreover, field
1313 studies and expert workshops highlight several negative consequences of widespread AI
1314 adoption:

- 1315 • Reduced human–animal interaction: Automated monitoring can make stockkeepers
1316 spend less time with cows, weakening the human–animal relationship. Schillings *et al.*
1317 report that precision livestock systems “decrease animal keepers’ contact with their
1318 animals,” which can lead to poorer welfare outcomes and “reduced stockmanship
1319 skills”[115]. Over time, loss of hands-on familiarity may blunt a farmer’s ability to
1320 notice subtle signs and bond with individual animals.
- 1321 • Objectification and intensification: By enabling large-scale monitoring, AI can
1322 inadvertently promote viewing cows as data sources. Workshop participants noted that
1323 less direct contact may shift attitudes toward animals as “objects,” and that PLF could
1324 facilitate farm intensification (managing more cows)[115]. Such objectification is
1325 echoed by Neethirajan, who cautions against treating animals as “mere data
1326 points”[112].
- 1327 • Skill erosion and dependency: Reliance on algorithms risks deskilling. Farmers may
1328 become dependent on AI alerts, reducing their own observational acumen. As one
1329 review warned, technologies could “make the job less attractive” and raise questions
1330 about the true meaning of being a farmer[115]. If AI is wrong or misinterprets signals,
1331 over-reliance could delay veterinary intervention.
- 1332 • Mental health and equity: The push to adopt advanced AI can strain farmers mentally
1333 and financially. High costs and steep learning curves may create stress or widen a
1334 “digital divide” between well-resourced and smaller farms[112,115]. Those with
1335 limited access to tech might fall behind, raising justice concerns.
- 1336 • Erosion of empathy: Finally, scholars caution that dashboards and automated alerts,
1337 while efficient, may erode empathy. If caretakers “rely too heavily on data,” nuanced
1338 animal behaviors (ear posture, vocalizations, etc.) might be overlooked[113]. This could
1339 compromise the very welfare benefits that AI was supposed to enhance.

1340 Taken together, these observations underline that AI should not replace human judgment or
1341 veterinary care. As Schillings *et al.* conclude, responsible use requires codes of practice,
1342 training, and co-design with farmers so that technology complements traditional husbandry
1343 rather than undermining it[113,115].

1344 Data Privacy and Legal Frameworks

1345 Beyond welfare, AI-monitoring systems involve vast data streams that raise regulatory issues.
1346 Video or sensor data on farms can implicate privacy laws: for example, the EU’s General Data
1347 Protection Regulation (GDPR) applies to any personal information, potentially including
1348 footage where farmworkers or visitors are identifiable[112]. Also digital farming tools “are
1349 subject to existing legislation, as well as new laws such as GDPR”[112]. Farmers and
1350 technology providers must therefore ensure compliant data handling, including secure storage,

1361 transparency about data use, and respect for individuals' privacy. Cybersecurity is also crucial,
1362 as breaches of animal data (or misused monitoring) could
1363 undermine trust in these systems.

1364 Similarly, animal-welfare laws and standards impose boundaries on AI use. In the United States,
1365 the Animal Welfare Act (though focused on research and exhibition) reflects society's
1366 expectation of humane animal treatment. Many countries also have dairy-specific welfare codes
1367 (e.g. the EU's minimum welfare regulations, national "Red Tractor" standards, etc.). Any AI-
1368 based pain monitoring must operate within these frameworks: it should trigger interventions
1369 consistent with legal care requirements, not merely optimize production. For example, a cow
1370 flagged as in pain must be treated in accordance with veterinary standards and animal-health
1371 legislation.

1372
1373 In summary, integrating facial expression AI into dairy farming demands a *responsible, animal-
1374 centered approach*. Ethical guidelines suggest co-developing technology with stakeholders
1375 (farmers, veterinarians, ethicists) and embedding safeguards (data protection, obligatory vet
1376 oversight, periodic ethical review)[112,115]. Only by addressing the "what if" and "should we"
1377 questions on animal dignity, farmer roles, and legal duties can AI-based monitoring truly
1378 benefit cow welfare without unintended harm.

1380 1381 **7. Future Perspectives and Recommendations**

1382 The field of automated pain detection in dairy cattle is at a crucial juncture, where
1383 groundbreaking technological innovations must align closely with real-world implementation
1384 and widespread industry adoption. As detailed in this comprehensive review, significant
1385 advancements in artificial intelligence, computer vision, and mobile technology have produced
1386 robust, accurate, and clinically meaningful tools capable of transforming livestock welfare
1387 management. Moving forward, addressing challenges related to breed diversity, environmental
1388 robustness, and collaborative implementation frameworks will be critical for successfully
1389 transitioning these technologies from experimental validation to broad commercial acceptance.

1390 *7.1 Addressing Breed-Specific and Environmental Limitations*

1391 Advanced Transfer Learning for Crossbreed Adaptation

1392 Breed-specific variability remains one of the most significant barriers to universal
1393 implementation of automated cattle pain detection systems. Recent breakthroughs in transfer
1394 learning methodologies offer compelling solutions by allowing models trained on a single breed
1395 to generalize effectively to genetically diverse herds, mitigating the need for extensive breed-
1396 specific datasets. Research has shown that transfer learning effectively maintains high accuracy
1397 levels across diverse cattle breeds, providing scalable, broadly applicable solutions [116].

1398
1399 Moreover, multimodal data fusion has emerged as a powerful technique to overcome breed-
1400 specific biases. For example, studies applying adaptive fuzzy logic in multimodal fusion
1401 systems have demonstrated exceptional accuracy, achieving validation performance rates up to
1402 95% for environment evaluation, 100% for feeding evaluation, and approximately 94% for
1403 behavior detection [117]. These results underscore the transformative potential of integrating
1404 diverse data sources—such as RGB imaging, thermal sensors, accelerometers, and
1405 environmental monitors—to reliably capture breed-independent pain expressions [118].

1406
1407 Comprehensive multimodal datasets have significantly advanced crossbreed validation. By
1408 capturing detailed facial anatomical variations and behavioral patterns across breeds,

1411 researchers have developed models that generalize more effectively. Notably, advanced neural
1412 network architectures such as Vision Transformers with Bi-Level Routing Attention have
1413 achieved impressive facial recognition accuracies of 98.36%, adeptly handling breed-specific
1414 anatomical differences [116]. Leveraging the global contextual understanding provided by
1415 transformer models positions them as particularly suitable for addressing breed-dependent
1416 variations in pain-related expressions.

1417

1418 Environmental Robustness via Edge Computing

1419 The unpredictable and dynamic nature of farm environments poses substantial obstacles to
1420 implementing automated pain detection systems. Edge computing solutions have emerged as
1421 pivotal for enhancing environmental robustness, enabling real-time data processing in
1422 challenging agricultural contexts. Recent edge-computing deployments have demonstrated
1423 extremely low latency (5–10 milliseconds), significantly improving responsiveness of livestock
1424 monitoring systems [119]. Intelligent wearable devices powered by solar energy have achieved
1425 continuous operation in real-world settings, consistently maintaining accuracy (97.27%) in
1426 health and behavior classification tasks [119]. These findings underscore the practicality and
1427 sustainability of edge computing frameworks.

1428 Moreover, integrating edge computing with mobile applications simultaneously addresses
1429 multiple environmental constraints reducing network bandwidth requirements, enhancing
1430 system resilience during connectivity disruptions, and facilitating reliable operation even in
1431 remote agricultural locations [120]. Robust environmental monitoring, exemplified by multi-
1432 zone Temperature-Humidity Index (THI) predictive models, further complements pain
1433 detection systems, enabling adaptive processing and accurate welfare assessment across diverse
1434 environmental conditions [121].

1435

1436 Enhancing Reliability through Multimodal Fusion

1437 To ensure robust pain detection across varying environmental conditions, multimodal data
1438 fusion strategies are crucial. Recent research clearly demonstrates superior reliability and
1439 accuracy when combining multiple data streams such as accelerometry, visual observation,
1440 thermal imaging, and environmental sensors relative to single-sensor approaches. Studies
1441 confirm that accelerometers detect behavioral changes related to pain significantly earlier than
1442 visual assessments alone; conversely, visual observations provide nuanced identification of
1443 pain-specific behaviors undetectable by sensor data alone [98].

1444 Further advancements in sensor fusion methodologies such as integrating computer vision with
1445 mechanical sensors have shown notable improvements in monitoring precision. Studies
1446 monitoring cattle brush-use behaviors have highlighted that combined machine-learning
1447 models significantly outperform individual sensor approaches, enhancing accuracy and
1448 reliability [122]. The creation of comprehensive multimodal datasets encompassing diverse
1449 sensor types has significantly strengthened fusion methodology validation, underpinning
1450 development of robust algorithms capable of maintaining high accuracy across heterogeneous
1451 farm conditions [123].

1452

1453 *7.2 Enhancing Real-time and Longitudinal Pain Monitoring*

1454 **Precision Livestock Farming Integration**

1455 Integrating automated pain detection into broader precision livestock farming (PLF)
1456 frameworks represents a critical step toward comprehensive herd health and welfare
1457 management. Recent research highlights the effectiveness of PLF technologies, employing
1458 real-time monitoring, machine learning, and IoT-based solutions to enable proactive disease

1461 detection and welfare management [120]. LoRa-based sensor networks integrated with
1462 Subspace k-Nearest Neighbors classifiers have consistently demonstrated superior disease
1463 classification accuracy and timeliness, enabling targeted interventions [120].

1464
1465 Scalable, AI-driven welfare platforms leveraging deep learning and edge computing are now
1466 demonstrating significant promise, automating critical welfare assessments such as locomotion
1467 scoring, health status evaluation, and body condition monitoring. Markerless animal
1468 identification further enhances these platforms, making them both practical and scalable across
1469 farm sizes [118].

1470 1471 **Continuous Monitoring Frameworks**

1472 Implementing continuous pain monitoring necessitates sophisticated technological
1473 architectures capable of real-time computation and sustained reliability over extended periods.
1474 IoT-based cattle monitoring systems employing accelerometer sensors coupled with advanced
1475 statistical models (e.g., ARIMA, wavelet transformations) effectively predict and classify
1476 behavioral patterns, facilitating proactive health management [119]. Additionally, continuous
1477 multi-zone environmental monitoring (THI prediction) achieves robust predictive accuracy,
1478 enabling proactive environmental control strategies and thereby enhancing overall herd welfare
1479 [121].

1480 1481 **Integration with Herd Health Records**

1482 Effective integration of automated pain detection with existing farm management systems is
1483 vital to enable actionable insights and informed herd-health decision-making. Standardizing
1484 data formats and protocols has emerged as a crucial facilitator of seamless integration across
1485 multiple monitoring systems, ensuring consistency and comparability in welfare assessments
1486 [124]. Advanced machine-learning analytics further enhance data integration capabilities,
1487 providing actionable insights that optimize treatment strategies, resource allocation, and herd
1488 health management overall [120].

1489 1490 *7.3 Recommendations for Industry-wide Implementation*

1491 **Collaborative Veterinary-AI Partnerships**

1492 Successfully deploying automated pain detection technologies requires well-structured
1493 collaborative frameworks combining veterinary expertise with AI capabilities. Effective
1494 human-AI collaboration substantially improves decision-making efficiency, operational
1495 precision, and stakeholder trust. Recent research emphasizes transparency and explainability in
1496 AI outputs, significantly enhancing adoption rates among veterinarians and farmers.
1497 Maintaining veterinary oversight within collaborative frameworks is critical, ensuring that AI
1498 systems serve as valuable decision-support tools rather than substitutes for expert veterinary
1499 judgment.

1500
1501 Structured training programs significantly enhance veterinarian and farmer confidence in AI-
1502 driven tools, improving diagnostic outcomes and adoption rates. Such industry-specific
1503 collaborative frameworks, integrating technology developers, veterinarians, and farm managers
1504 throughout design and deployment phases, have been demonstrated as critical for addressing
1505 practical implementation challenges effectively.

1506 1507 **Standardization and Validation Protocols**

1508 Establishing rigorous industry-wide standards and validation protocols is imperative for
1509 ensuring the reliability, safety, and effectiveness of automated pain detection systems.
1510 Validation protocols must consider species-specific physiological and behavioral nuances, as

1511 validation methodologies successful in one livestock species may not directly transfer to others.
1512 External, independent validation is essential for industry credibility, as currently only a small
1513 fraction (approximately 14%) of available technologies have undergone independent validation,
1514 highlighting a significant gap in existing approaches [125].

1515

1516 Farm-specific Customization Strategies

1517 Farm-specific customization is necessary due to variability in management practices,
1518 environmental contexts, and operational scales. Recent studies indicate perceived ease-of-use
1519 and demonstrated utility significantly influence farmer adoption decisions [103]. Cost-effective
1520 approaches utilizing readily accessible technologies, such as optimized IoT sensor systems,
1521 enhance economic feasibility and adoption rates across both small-scale and commercial
1522 operations [119].

1523

1524 Scalability considerations, notably demonstrated through high-precision cattle tracking systems,
1525 highlight that deep learning-based architectures can efficiently scale from individual animal
1526 monitoring to extensive herd management applications without compromising accuracy or
1527 operational efficiency [123]. This adaptability allows tailored technology deployments to
1528 match diverse farming contexts. Table 4 outlines the technical specifications and recommended
1529 enhancements for automated cattle pain detection systems, including performance targets for
1530 multi-breed adaptability, environmental robustness, and practical usability.

1531

1532 **Table 7:** Technical specifications and recommended implementation enhancements for
1533 automated cattle pain detection systems. Proposed performance targets emphasize multi-breed
1534 adaptability, robust environmental integration, and high practical usability:

System Component	Current Capabilities	Recommended Enhancements	Integration Requirements	Performance Targets
AI Processing	95-99% accuracy in controlled conditions	Multi-breed validation; Environmental adaptation	Edge-cloud hybrid architecture	>95% accuracy across all breeds
Sensor Integration	Individual sensor validation	Multimodal fusion; Continuous monitoring	Standardized data formats	>90% uptime; <5% false positive rate
Mobile Applications	Basic monitoring capabilities	Real-time alerts; Veterinary integration	Cross-platform compatibility	>90% user satisfaction
Data Management	Local storage; Periodic synchronization	Real-time cloud integration; Predictive analytics	Interoperability with farm systems	<1% data loss; Real-time processing

Validation Framework	Species-specific testing	Cross-breed; Multi-environment validation	COSMIN compliance; External validation	>85% sensitivity; >90% specificity
----------------------	--------------------------	---	--	------------------------------------

1535
1536 The future success of automated pain detection technologies for dairy cattle hinges upon
1537 effectively aligning technological innovation with real-world practicalities and stakeholder
1538 priorities. Comprehensive multimodal integration, robust environmental resilience, industry-
1539 wide standardization, and collaborative implementation frameworks represent essential
1540 pathways from experimental validation towards broad commercial adoption.

1541 8. Conclusions

1542 Automated pain detection in dairy cattle has reached an inflection point, transitioning from
1543 experimental promise to real-world applicability, driven by breakthroughs in neurobiology,
1544 artificial intelligence (AI), and mobile technology. Traditional veterinary assessment methods,
1545 notably Numerical Rating Scales (NRS) and Visual Analog Scales (VAS), though historically
1546 foundational, continue to face inherent limitations due to subjectivity (ICC range: 0.73–0.81),
1547 invasiveness, and challenges in accurately capturing subtle pain indicators in large herds. In
1548 stark contrast, validated facial grimace scales like UCAPS, boasting strong diagnostic metrics
1549 (AUC = 0.93), have introduced objective, quantifiable alternatives, significantly enhancing the
1550 reliability of acute pain detection (sensitivity range: 0.66–0.90). Yet, a clear and pressing gap
1551 persists in reliably assessing chronic pain conditions, underscoring the need for further targeted
1552 research in this critical area.

1553
1554 The integration of advanced AI algorithms and computer vision technologies has marked a
1555 revolutionary advancement in precision livestock welfare. Cutting-edge detection architectures,
1556 such as RetinaNet (99.8% average precision) and YOLOv8-Pose (96.9% mAP), have enabled
1557 remarkable accuracy and consistency in facial landmark detection and pain-related behavioral
1558 analysis. Moreover, the deployment of multimodal AI strategies—combining RGB imagery
1559 and thermal sensors—has achieved impressive accuracy (81–95%) in detecting inflammation
1560 and physiological stress responses linked to pain. The practicality of these technologies in real-
1561 world farm environments has been further validated by edge-computing frameworks like Dairy
1562 DigiD, demonstrating robust real-time processing capabilities (24 frames per second) under
1563 variable conditions, significantly enhancing their readiness for widespread commercial
1564 deployment.

1565
1566 Mobile technology further amplifies these advancements by democratizing access to
1567 sophisticated welfare monitoring systems. Validated applications such as PIGLOW (featuring
1568 high usability ratings) and VetPain (inter-rater reliability ICC ≥ 0.87) highlight the critical role
1569 of intuitive, user-centric designs in facilitating widespread adoption by non-specialist
1570 stakeholders. These applications incorporate multilingual interfaces, actionable alerts, and
1571 seamless integration into daily farming workflows, thus bridging the gap between technological
1572 innovation and practical usability in diverse agricultural contexts.

1573
1574 Robust validation protocols have confirmed strengths of automated pain detection systems,
1575 particularly in acute pain detection scenarios (precision and recall consistently exceeding 0.80).
1576 However, critical limitations remain concerning breed-specific performance biases and the
1577 precise differentiation between chronic and acute pain states. Future research directions must

1579 prioritize advanced transfer-learning approaches, effectively addressing genetic variability
1580 between cattle breeds such as Holstein and Zebu where transformative transformer-based
1581 architectures have already demonstrated accuracy rates reaching 98.36%. Complementing this,
1582 environmental resilience must be strengthened through the strategic deployment of solar-
1583 powered edge-computing devices, which have achieved reliable behavior classification
1584 accuracy of approximately 97.27%, ensuring operational sustainability across diverse,
1585 challenging farm environments.

1586
1587 Longitudinal monitoring capabilities represent another critical area poised for substantial
1588 impact. Integrating accelerometry data with advanced vision-based systems has already
1589 demonstrated exceptional performance (up to 99.55% accuracy in lameness detection),
1590 promising proactive herd health management that can significantly mitigate economic losses
1591 associated with undetected pain. Leveraging these capabilities within Precision Livestock
1592 Farming (PLF) frameworks enables earlier interventions, optimized herd health management,
1593 and significant productivity gains, presenting compelling economic incentives for industry-
1594 wide adoption.

1595
1596 However, these numeric gains are strongly context-dependent. Most high figures derive from
1597 acute-pain datasets, controlled conditions or within-dataset validation; when evaluated under
1598 LOAO or farm-fold (inter-farm) protocols, performance commonly drops (typical contractions
1599 reported across studies \approx 10–25%). Breed, management and environment remain important
1600 constraints: models trained on one breed or barn layout do not automatically generalize to
1601 others. Likewise, reliable automated detection of chronic pain remains unresolved. Therefore,
1602 claims that AI will “significantly” improve welfare must be anchored to these contextual limits
1603 and to validated field performance.

1604 To move from demonstrated capability to documented welfare impact, we recommend the
1605 following measurable priorities:

- 1606 1. Dataset breadth: curate and publish large, annotated datasets that include multiple
1607 breeds, ages and chronic-pain cases to reduce out-of-sample failures.
- 1608 2. Standardized validation: require LOAO and farm-fold testing and report sensitivity,
1609 specificity, PPV/NPV and ROC-AUC with 95% CIs for each validation design; aim for
1610 field-validated sensitivity/specificity \geq 0.80 across at least three independent farms
1611 before making deployment claims.
- 1612 3. Cross-breed adaptation: adopt transfer-learning and few-shot strategies with explicit
1613 fine-tuning on under-represented breeds to close genetic bias gaps.
- 1614 4. Robust field deployment: prioritize energy-efficient edge solutions and stress-testing in
1615 real barns (lighting, occlusion, weather) to ensure continuous operation at target frame
1616 rates (\approx 20–30 fps).
- 1617 5. Ethics and veterinary integration: implement mandatory escalation pathways to
1618 veterinarians (VCPR-aligned), transparent data governance, and co-design with end
1619 users to preserve human-animal relationships and avoid over-reliance on automation.
- 1620 6. Impact evaluation: accompany technological deployments with longitudinal welfare
1621 studies that quantify outcomes (e.g., reductions in undetected lameness, changes in
1622 time-to-treatment, or modeled reductions in premature culling).

1623 By focusing on these concrete milestones rather than on unqualified potential, future work can
1624 translate current algorithmic advances into sustained animal-level improvements in welfare.

1625
1626 The implications for global dairy cattle welfare from successfully implementing automated
1627 pain detection technologies are profound and far-reaching. With more than 270 million dairy
1628 cows globally experiencing pain-related welfare challenges, widespread adoption of these

1629 innovations could drastically reduce animal suffering, significantly extend herd longevity
1630 (potentially decreasing premature culling rates by 10–20%), and contribute to sustainable and
1631 ethically responsible agriculture. However, translating these opportunities into real-world
1632 outcomes requires sustained commitment to addressing identified gaps—particularly the
1633 accurate identification of chronic pain and improved crossbreed adaptability.

1634
1635 Moving forward, dedicated investment is essential for developing comprehensive, publicly
1636 accessible datasets, rigorous ethical AI deployment guidelines, and targeted educational
1637 programs for farmers and veterinary professionals. Pioneering solutions like CowPain Check
1638 exemplify the immense potential of thoughtful technological integration, setting powerful
1639 precedents for humane, sustainable dairy farming practices aligned closely with the United
1640 Nations Sustainable Development Goals (SDGs). By addressing current technical, economic,
1641 and social challenges through a coordinated interdisciplinary approach, the dairy industry can
1642 leverage these innovations not only to elevate animal welfare standards significantly but also
1643 to lead broader advancements across global livestock welfare management practices.

1644 1645 **References**

1646
1647 [1] Borş A, Borş S-I, Floriștean V-C. Mastitis impact on high-yielding dairy farm's reproduction and
1648 net present value. *Front Vet Sci.* 2024;10 <https://doi.org/10.3389/fvets.2023.1345782>.

1649 [2] Browne N, Hudson CD, Crossley RE, Sugrue K, Kennedy E, Huxley JN, et al. Lameness
1650 prevalence and management practices on Irish pasture-based dairy farms. *Ir Vet J.* 2022;75:14
1651 <https://doi.org/10.1186/s13620-022-00221-w>.

1652 [3] Mekonin HA, Reda AA, Assen AA, Assen AM. Prevalence and risk factors for lameness in dairy
1653 cattle on selected farms located in Dessie and Kombolcha, Northeast Ethiopia. *Front Vet Sci.*
1654 2025;12:1456527 <https://doi.org/10.3389/fvets.2025.1456527>.

1655 [4] Tschner T, Mueller KR, Zablotski Y, Feist M. Pain Assessment in Cattle by Use of Numerical
1656 Rating and Visual Analogue Scales—A Systematic Review and Meta-Analysis. *Anim Open
1657 Access J MDPI.* 2024;14:351 <https://doi.org/10.3390/ani14020351>.

1658 [5] Tomacheuski RM, Monteiro BP, Evangelista MC, Luna SPL, Steagall PV. Measurement
1659 properties of pain scoring instruments in farm animals: A systematic review using the COSMIN
1660 checklist. *PLOS ONE.* 2023;18:e0280830 <https://doi.org/10.1371/journal.pone.0280830>.

1661 [6] Mota-Rojas D, Whittaker AL, Coria-Avila GA, Martínez-Burnes J, Mora-Medina P, Domínguez-
1662 Oliva A, et al. How facial expressions reveal acute pain in domestic animals with facial pain
1663 scales as a diagnostic tool. *Front Vet Sci.* 2025;12
1664 <https://doi.org/10.3389/fvets.2025.1546719>.

1665 [7] Zoltick AH, Mann S, Coetzee JF. Pain pathophysiology and pharmacology of cattle: how
1666 improved understanding can enhance pain prevention, mitigation, and welfare. *Front Pain
1667 Res.* 2024;5 <https://doi.org/10.3389/fpain.2024.1396992>.

1668 [8] Dulal R, Zheng L, Kabir MA. MHAFF: Multi-Head Attention Feature Fusion of CNN and
1669 Transformer for Cattle Identification 2025; <https://doi.org/10.48550/arXiv.2501.05209>.

1670 [9] Identification C. Cattle Identification and Detection using Vision Transformers and YOLOv8. *J
1671 Inf Syst Eng Manag.* 2025;10:504–18 <https://doi.org/10.52783/jisem.v10i42s.7911>.

1672 [10] Neethirajan S, Scott S, Mancini C, Boivin X, Strand E. Human-computer interactions with farm
1673 animals—enhancing welfare through precision livestock farming and artificial intelligence.
1674 *Front Vet Sci.* 2024;11 <https://doi.org/10.3389/fvets.2024.1490851>.

1675 [11] Thannithi W, Intawicha P, Phuvisaranakom P, Saengwong S. Design and evaluation of a
1676 mobile application for enhancing farm management and performance assessment in fattening
1677 beef cattle. *J Adv Vet Anim Res.* 2024;1 <https://doi.org/10.5455/javar.2024.k766>.

1678 [12] Roche S, Saraceni J, Zehr L, Renaud D. Pain in Dairy Cattle: A Narrative Review of the Need for
1679 Pain Control, Industry Practices and Stakeholder Expectations, and Opportunities. *Anim Open*
1680 *Access J MDPI*. 2025;15:877 <https://doi.org/10.3390/ani15060877>.

1681 [13] Rasmussen P, Barkema HW, Osei PP, Taylor J, Shaw AP, Conrady B, et al. Global losses due to
1682 dairy cattle diseases: A comorbidity-adjusted economic analysis. *J Dairy Sci*. 2024;107:6945–
1683 70 <https://doi.org/10.3168/jds.2023-24626>.

1684 [14] Bose B, Siva Kumar S. Economic burden of zoonotic and infectious diseases on livestock
1685 farmers: a narrative review. *J Health Popul Nutr*. 2025;44:158
1686 <https://doi.org/10.1186/s41043-025-00913-3>.

1687 [15] Logroño JC, Rearte R, Corva SG, Domínguez GA, de la Sota RL, Madoz LV, et al. Lameness in
1688 Early Lactation Is Associated with Lower Productive and Reproductive Performance in a Herd
1689 of Supplemented Grazing Dairy Cows. *Anim Open Access J MDPI*. 2021;11:2294
1690 <https://doi.org/10.3390/ani11082294>.

1691 [16] Hisira V, Zahumenska J, Kadasi M, Klein R, Mudron P, Zigo F. Claw diseases are the dominant
1692 cause of lameness in dairy cows and a risk factor for mastitis. *Veterinární Medicína*.
1693 2025;70:35–44 <https://doi.org/10.17221/56/2024-VETMED>.

1694 [17] Gleerup KB, Andersen PH, Munksgaard L, Forkman B. Pain evaluation in dairy cattle. *Appl*
1695 *Anim Behav Sci*. 2015;171:25–32 <https://doi.org/10.1016/j.applanim.2015.08.023>.

1696 [18] Martin M, Kleinhenz MD, Schwartzkopf-Genswein KS, Melendez D, Marti S, Pajor EA, et al.
1697 Characterizing the diagnostic sensitivity and specificity of pain biomarkers in cattle using
1698 receiver operating characteristic curves. *J Dairy Sci*. 2022;105:9853–68
1699 <https://doi.org/10.3168/jds.2021-21393>.

1700 [19] Mincu M, Nicolae I, Gavojdian D. Infrared thermography as a non-invasive method for
1701 evaluating stress in lactating dairy cows during isolation challenges. *Front Vet Sci*. 2023;10
1702 <https://doi.org/10.3389/fvets.2023.1236668>.

1703 [20] Thomas AD. Objective determination and quantification of pain and inflammation associated
1704 with digital dermatitis in feedlot cattle. *Appl Anim Behav Sci*. 2022;

1705 [21] Chen J, Gao Y, Bao S-T, Wang Y-D, Jia T, Yin C, et al. Insula→Amygdala and Insula→Thalamus
1706 Pathways Are Involved in Comorbid Chronic Pain and Depression-Like Behavior in Mice. *J*
1707 *Neurosci*. 2024;44 <https://doi.org/10.1523/JNEUROSCI.2062-23.2024>.

1708 [22] Mazzitelli M, Ponomareva O, Presto P, John J, Neugebauer V. Impaired amygdala astrocytic
1709 signaling worsens neuropathic pain-associated neuronal functions and behaviors. *Front*
1710 *Pharmacol*. 2024;15 <https://doi.org/10.3389/fphar.2024.1368634>.

1711 [23] Singh S, Wilson TD, Valdivia S, Benowitz B, Chaudhry S, Ma J, et al. An inhibitory circuit from
1712 central amygdala to zona incerta drives pain-related behaviors in mice. *eLife*. n.d.;11:e68760
1713 <https://doi.org/10.7554/eLife.68760>.

1714 [24] Shen C-L, Santos JM, Elmassry MM, Bhakta V, Driver Z, Ji G, et al. Ginger Polyphenols Reverse
1715 Molecular Signature of Amygdala Neuroimmune Signaling and Modulate Microbiome in Male
1716 Rats with Neuropathic Pain: Evidence for Microbiota–Gut–Brain Axis. *Antioxidants*.
1717 2024;13:502 <https://doi.org/10.3390/antiox13050502>.

1718 [25] Söderlind M, Ask K, Leclercq A, Åkesson T, Valarcher J-F, Hernlund E, et al. Evaluation of a
1719 composite pain scale including facial expressions for detecting orthopedic pain in lame dairy
1720 cows. *J Dairy Sci*. 2025;108:5153–69 <https://doi.org/10.3168/jds.2024-25692>.

1721 [26] Aulehner K, Leenaars C, Buchecker V, Stirling H, Schönhoff K, King H, et al. Grimace scale,
1722 burrowing, and nest building for the assessment of post-surgical pain in mice and rats—A
1723 systematic review. *Front Vet Sci*. 2022;9 <https://doi.org/10.3389/fvets.2022.930005>.

1724 [27] Arnold B, Ramakrishnan R, Wright A, Wilson K, VandeVord PJ. An automated rat grimace scale
1725 for the assessment of pain. *Sci Rep*. 2023;13:18859 <https://doi.org/10.1038/s41598-023-46123-x>.

1726 [28] Zhang EQ, Leung VS, Pang DS. Influence of Rater Training on Inter- and Intrarater Reliability
1727 When Using the Rat Grimace Scale 2019; <https://doi.org/10.30802/AALAS-JAALAS-18-000044>.

1729 [29] Monteiro BP, Lee NHY, Steagall PV. Can cat caregivers reliably assess acute pain in cats using
1730 the Feline Grimace Scale? A large bilingual global survey. *J Feline Med Surg.* 2023;25
1731 <https://doi.org/10.1177/1098612X221145499>.

1732 [30] Robinson AR, Steagall PV. Effects of training on Feline Grimace Scale scoring for acute pain
1733 assessment in cats. *J Feline Med Surg.* 2024;26 <https://doi.org/10.1177/1098612X241275284>.

1734 [31] Martvel G, Lazebnik T, Feighelstein M, Henze L, Meller S, Shimshoni I, et al. Automated video-
1735 based pain recognition in cats using facial landmarks. *Sci Rep.* 2024;14
1736 <https://doi.org/10.1038/s41598-024-78406-2>.

1737 [32] Ask K, Andersen PH, Tamminen L-M, Rhodin M, Hernlund E. Performance of four equine pain
1738 scales and their association to movement asymmetry in horses with induced orthopedic pain.
1739 *Front Vet Sci.* 2022;9 <https://doi.org/10.3389/fvets.2022.938022>.

1740 [33] Flores JEM, Terrazas A, Lara Sagahon AV, Aleman M. Parasympathetic tone activity, heart
1741 rate, and grimace scale in conscious horses of 3 breeds before, during, and after nociceptive
1742 mechanical stimulation. *J Vet Intern Med.* 2024;38:2739–47
1743 <https://doi.org/10.1111/jvim.17174>.

1744 [34] Tomacheuski RM, Oliveira AR, Trindade PHE, Oliveira FA, Candido CP, Teixeira Neto FJ, et al.
1745 Reliability and Validity of UNESP-Botucatu Cattle Pain Scale and Cow Pain Scale in Bos taurus
1746 and Bos indicus Bulls to Assess Postoperative Pain of Surgical Orchiectomy. *Anim Open Access*
1747 *J MDPI.* 2023;13:364 <https://doi.org/10.3390/ani13030364>.

1748 [35] Tomacheuski RM, Klostermann C, Frank D, Taffarel MO, Pinho RH, Monteiro BP, et al. Bovine
1749 pain scale: A novel tool for pain assessment in cattle undergoing surgery in the hospital
1750 setting. *PLOS One.* 2025;20:e0323710 <https://doi.org/10.1371/journal.pone.0323710>.

1751 [36] Farghal M, Pajor E, Luna SPL, Pang D, Windeyer MC, Ceballos MC. Development of the calf
1752 grimace scale for pain and stress assessment in castrated Angus beef calves. *Sci Rep.*
1753 2024;14:25620 <https://doi.org/10.1038/s41598-024-77147-6>.

1754 [37] Farghal M. Pain Assessment in Cattle during Castration Using Facial Expressions as a Promising
1755 Tool. *Anim Behav Welf Cases.* 2024;2024:abwcases20240008
1756 <https://doi.org/10.1079/abwcases.2024.0008>.

1757 [38] Ginger L, Aubé L, Ledoux D, Borot M, David C, Bouchon M, et al. A six-step process to explore
1758 facial expressions performances to detect pain in dairy cows with lipopolysaccharide-induced
1759 clinical mastitis. *Appl Anim Behav Sci.* 2023;264
1760 <https://doi.org/10.1016/j.applanim.2023.105951>.

1761 [39] Fuentes S, Gonzalez Viejo C, Tongson E, Lipovetzky N, Dunshea FR. Biometric Physiological
1762 Responses from Dairy Cows Measured by Visible Remote Sensing Are Good Predictors of Milk
1763 Productivity and Quality through Artificial Intelligence. *Sensors.* 2021;21:6844
1764 <https://doi.org/10.3390/s21206844>.

1765 [40] Sidwell AE, Duz M, Hill B, Freeman S, Hole SL. Application of the horse grimace scale in horses
1766 with dental disease: Preliminary findings. *Vet Rec.* 2025;196
1767 <https://doi.org/10.1002/vetr.4800>.

1768 [41] Paterson EA, O'Malley CI, Moody C, Vogel S, Authier S, Turner PV. Development and
1769 validation of a cynomolgus macaque grimace scale for acute pain assessment. *Sci Rep.*
1770 2023;13:3209 <https://doi.org/10.1038/s41598-023-30380-x>.

1771 [42] Oliveira MGC de, Paula VV de, Mouta AN, Lima I de O, Macêdo LB de, Nunes TL, et al.
1772 Validation of the Donkey Pain Scale (DOPS) for Assessing Postoperative Pain in Donkeys. *Front*
1773 *Vet Sci.* 2021;8 <https://doi.org/10.3389/fvets.2021.671330>.

1774 [43] Tomacheuski RM, de Oliveira AR, Trindade PHE, Lopez-Soriano M, Merenda VR, Luna SPL, et
1775 al. Real-time and video-recorded pain assessment in beef cattle: clinical application and
1776 reliability in young, adult bulls undergoing surgical castration. *Sci Rep.* 2024;14
1777 <https://doi.org/10.1038/s41598-024-65890-9>.

1778 [44] Dalla Costa E, Minero M, Lebelt D, Stucke D, Canali E, Leach MC. Development of the Horse
1779 Grimace Scale (HGS) as a Pain Assessment Tool in Horses Undergoing Routine Castration. *PLoS*
1780 *ONE.* 2014;9:e92281 <https://doi.org/10.1371/journal.pone.0092281>.

1781 [45] Evangelista MC, Monteiro BP, Steagall PV. Measurement properties of grimace scales for pain
1782 assessment in nonhuman mammals: a systematic review. *Pain*. 2022;163:e697–714
1783 <https://doi.org/10.1097/j.pain.0000000000002474>.

1784 [46] Cheng AJ, Malo A, Garbin M, Monteiro BP, Steagall PV. Construct validity, responsiveness and
1785 reliability of the Feline Grimace Scale in kittens. *J Feline Med Surg*. 2023;25
1786 <https://doi.org/10.1177/1098612X231211765>.

1787 [47] Dhaliwal Y, Bi H, Neethirajan S. Bimodal data analysis for early detection of lameness in dairy
1788 cows using artificial intelligence. *J Agric Food Res*. 2025;21
1789 <https://doi.org/10.1016/j.jafr.2025.101837>.

1790 [48] Mota-Rojas D, Whittaker AL, Bienboire-Frosini C, Buenhombre J, Mora-Medina P, Domínguez-
1791 Oliva A, et al. The neurobiological basis of emotions and their connection to facial expressions
1792 in non-human mammals: insights in nonverbal communication. *Front Vet Sci*. 2025;12
1793 <https://doi.org/10.3389/fvets.2025.1541615>.

1794 [49] Dac HH, Gonzalez Viejo C, Lipovetzky N, Tongson E, Dunshea FR, Fuentes S. Livestock
1795 Identification Using Deep Learning for Traceability. *Sensors*. 2022;22:8256
1796 <https://doi.org/10.3390/s22218256>.

1797 [50] Feighelstein M, Ehrlich Y, Naftaly L, Alpin M, Nadir S, Shimshoni I, et al. Deep learning for
1798 video-based automated pain recognition in rabbits. *Sci Rep*. 2023;13:14679
1799 <https://doi.org/10.1038/s41598-023-41774-2>.

1800 [51] Coffman E, Clark R, Bui N-T, Pham TT, Kegley B, Powell JG, et al. CattleFace-RGBT: RGB-T
1801 Cattle Facial Landmark Benchmark 2024; <https://doi.org/10.48550/arXiv.2406.03431>.

1802 [52] Mao Y, Liu Y. Pet dog facial expression recognition based on convolutional neural network and
1803 improved whale optimization algorithm. *Sci Rep*. 2023;13 <https://doi.org/10.1038/s41598-023-30442-0>.

1804 [53] Bergman N, Yitzhaky Y, Halachmi I. Biometric identification of dairy cows via real-time facial
1805 recognition. *Anim Int J Anim Biosci*. 2024;18:101079
1806 <https://doi.org/10.1016/j.animal.2024.101079>.

1807 [54] Meng H, Zhang L, Yang F, Hai L, Wei Y, Zhu L, et al. Livestock Biometrics Identification Using
1808 Computer Vision Approaches: A Review. *Agriculture*. 2025;15:102
1809 <https://doi.org/10.3390/agriculture15010102>.

1810 [55] Chen Y-S, Rustia DJA, Huang S-Z, Hsu J-T, Lin T-T. IoT-based system for individual dairy cow
1811 feeding behavior monitoring using cow face recognition and edge computing. *Internet Things*.
1812 2025;33:101674 <https://doi.org/10.1016/j.riot.2025.101674>.

1813 [56] Zhang X, Xuan C, Ma Y, Su H. A high-precision facial recognition method for small-tailed Han
1814 sheep based on an optimised Vision Transformer. *Animal*. 2023;17
1815 <https://doi.org/10.1016/j.animal.2023.100886>.

1816 [57] Feighelstein M, Luna SP, Silva NO, Trindade PE, Shimshoni I, van der Linden D, et al.
1817 Comparison between AI and human expert performance in acute pain assessment in sheep.
1818 *Sci Rep*. 2025;15:626 <https://doi.org/10.1038/s41598-024-83950-y>.

1819 [58] Lu J, Wang W, Zhao K, Wang H. Recognition and segmentation of individual pigs based on
1820 Swin Transformer. *Anim Genet*. 2022;53:794–802 <https://doi.org/10.1111/age.13259>.

1821 [59] Gao G, Ma Y, Wang J, Li Z, Wang Y, Bai H. CFR-YOLO: A Novel Cow Face Detection Network
1822 Based on YOLOv7 Improvement. *Sensors*. 2025;25:1084 <https://doi.org/10.3390/s25041084>.

1823 [60] Araújo VM, Rili I, Gisiger T, Gambs S, Vasseur E, Cellier M, et al. AI-powered cow detection in
1824 complex farm environments. *Smart Agric Technol*. 2025;10:100770
1825 <https://doi.org/10.1016/j.atech.2025.100770>.

1826 [61] Qin Q, Zhou X, Gao J, Wang Z, Naer A, Hai L, et al. YOLOv8-CBAM: a study of sheep head
1827 identification in Ujumqin sheep. *Front Vet Sci*. 2025;12:1514212
1828 <https://doi.org/10.3389/fvets.2025.1514212>.

1829 [62] Gao G, Ma Y, Wang J, Li Z, Wang Y, Bai H. CFR-YOLO: A Novel Cow Face Detection Network
1830 Based on YOLOv7 Improvement. *Sensors*. 2025;25:1084 <https://doi.org/10.3390/s25041084>.

1831

1832 [63] Dang J, Tang X, Li S. HA-FPN: Hierarchical Attention Feature Pyramid Network for Object
1833 Detection. *Sensors*. 2023;23:4508 <https://doi.org/10.3390/s23094508>.

1834 [64] Yang X, Guo R, Li H. Comparison of multimodal RGB-thermal fusion techniques for exterior
1835 wall multi-defect detection. *J Infrastruct Intell Resil*. 2023;2:100029
<https://doi.org/10.1016/j.iintel.2023.100029>.

1837 [65] Benato L, Murrell J, Knowles TG, Rooney NJ. Development of the Bristol Rabbit Pain Scale
1838 (BRPS): A multidimensional composite pain scale specific to rabbits (*Oryctolagus cuniculus*).
1839 *PLOS ONE*. 2021;16:e0252417 <https://doi.org/10.1371/journal.pone.0252417>.

1840 [66] Romano A, De Camillis A, Sciota D, Baghini S, Di Provvido A, Rosamilia A, et al. Cross-species
1841 AI: shifting a convolutional neural network from pigs to lambs to detect pneumonia at
1842 slaughter. *Front Vet Sci*. 2025;12:1591032 <https://doi.org/10.3389/fvets.2025.1591032>.

1843 [67] Chiavaccini L, Gupta A, Chiavaccini G. From facial expressions to algorithms: a narrative review
1844 of animal pain recognition technologies. *Front Vet Sci*. 2024;11:1436795
<https://doi.org/10.3389/fvets.2024.1436795>.

1846 [68] Dwivedi A, Henige M, Anklam K, Döpfer D. Real-time digital dermatitis detection in dairy cows
1847 on Android and iOS apps using computer vision techniques. *Transl Anim Sci*. 2025;9:txae168
<https://doi.org/10.1093/tas/txae168>.

1849 [69] Mahato S, Neethirajan S. Integrating Artificial Intelligence in dairy farm management –
1850 biometric facial recognition for cows. *Inf Process Agric*. 2024;
<https://doi.org/10.1016/j.inpa.2024.10.001>.

1852 [70] Mahato S, Neethirajan S. Dairy DigiD: An Edge-Cloud Framework for Real-Time Cattle
1853 Biometrics and Health Classification. *AI*. 2025;6:196 <https://doi.org/10.3390/ai6090196>.

1854 [71] Liu F, Zhang Y, Liu Y, Li J, Li M, Yao J. A Novel Lightweight Dairy Cattle Body Condition Scoring
1855 Model for Edge Devices Based on Tail Features and Attention Mechanisms. *Vet Sci*.
1856 2025;12:906 <https://doi.org/10.3390/vetsci12090906>.

1857 [72] Feng X, Zhang J, Qi Y, Liu L, Li Y. CATR-Net: Cattle–Attentive transformer with adaptive and
1858 enhanced segmentation and recognition. *Comput Electron Agric*. 2025;239:111038
<https://doi.org/10.1016/j.compag.2025.111038>.

1860 [73] Yu W, Yang X, Liu Y, Xuan C, Xie R, Wang C. SMEA-YOLOv8n: A Sheep Facial Expression
1861 Recognition Method Based on an Improved YOLOv8n Model. *Animals*. 2024;14
<https://doi.org/10.3390/ani14233415>.

1863 [74] Antognoli V, Presutti L, Bovo M, Torreggiani D, Tassinari P. Computer Vision in Dairy Farm
1864 Management: A Literature Review of Current Applications and Future Perspectives. *Animals*.
1865 2025;15:2508 <https://doi.org/10.3390/ani15172508>.

1866 [75] Feighelstein M, Henze L, Meller S, Shimshoni I, Hermoni B, Berko M, et al. Explainable
1867 automated pain recognition in cats. *Sci Rep*. 2023;13:8973 <https://doi.org/10.1038/s41598-023-35846-6>.

1869 [76] Martvel G, Lazebnik T, Feighelstein M, Henze L, Meller S, Shimshoni I, et al. Automated video-
1870 based pain recognition in cats using facial landmarks. *Sci Rep*. 2024;14:28006
<https://doi.org/10.1038/s41598-024-78406-2>.

1872 [77] Steagall PV, Monteiro BP, Marangoni S, Moussa M, Sautié M. Fully automated deep learning
1873 models with smartphone applicability for prediction of pain using the Feline Grimace Scale. *Sci
1874 Rep*. 2023;13:21584 <https://doi.org/10.1038/s41598-023-49031-2>.

1875 [78] Morozov A, Parr LA, Gothard K, Paz R, Pryluk R. Automatic Recognition of Macaque Facial
1876 Expressions for Detection of Affective States. *eNeuro*. 2021;8:ENEURO.0117-21.2021
<https://doi.org/10.1523/ENEURO.0117-21.2021>.

1878 [79] Gris VN, Crespo TR, Kaneko A, Okamoto M, Suzuki J, Teramae J, et al. Deep Learning for Face
1879 Detection and Pain Assessment in Japanese Macaques (*Macaca fuscata*). *J Am Assoc Lab Anim
1880 Sci JAALAS*. 2024;63:403 <https://doi.org/10.30802/AALAS-JAALAS-23-000056>.

1881 [80] Gris VN, Broche N, Kaneko A, Okamoto M, Suzuki J, Mills DS, et al. Investigating subtle
1882 changes in facial expression to assess acute pain in Japanese macaques. *Sci Rep*.
1883 2022;12:19675 <https://doi.org/10.1038/s41598-022-23595-x>.

1884 [81] Arnold B, Ramakrishnan R, Wright A, Wilson K, VandeVord PJ. An automated rat grimace scale
1885 for the assessment of pain. *Sci Rep.* 2023;13:18859 <https://doi.org/10.1038/s41598-023-46123-x>.

1886 [82] Boneh-Shitrit T, Feighelstein M, Bremhorst A, Amir S, Distelfeld T, Dassa Y, et al. Explainable
1887 automated recognition of emotional states from canine facial expressions: the case of positive
1888 anticipation and frustration. *Sci Rep.* 2022;12:22611 <https://doi.org/10.1038/s41598-022-27079-w>.

1889 [83] Martvel G, Eretová P, Přibylová L, Chaloupková H, Pongrácz P, Shimshoni I, et al. Continuous
1890 automated analysis of facial dynamics of brachycephalic and normocephalic dogs in different
1891 contexts. *BMC Vet Res.* 2025;21:372 <https://doi.org/10.1186/s12917-025-04839-0>.

1892 [84] Martvel G, Lazebnik T, Feighelstein M, Henze L, Meller S, Shimshoni I, et al. Automated video-
1893 based pain recognition in cats using facial landmarks. *Sci Rep.* 2024;14:28006
1894 <https://doi.org/10.1038/s41598-024-78406-2>.

1895 [85] Zhang S, Sailunaz K, Neethirajan S. Micro-Expression-Based Facial Analysis for Automated Pain
1896 Recognition in Dairy Cattle: An Early-Stage Evaluation. *AI.* 2025;6:199
1897 <https://doi.org/10.3390/ai6090199>.

1898 [86] Neupane R, Aryal A, Haeussermann A, Hartung E, Pinedo P, Paudyal S. Evaluating machine
1899 learning algorithms to predict lameness in dairy cattle. *PLOS ONE.* 2024;19:e0301167
1900 <https://doi.org/10.1371/journal.pone.0301167>.

1901 [87] Jia Z, Zhao Y, Mu X, Liu D, Wang Z, Yao J, et al. Intelligent Deep Learning and Keypoint
1902 Tracking-Based Detection of Lameness in Dairy Cows. *Vet Sci.* 2025;12:218
1903 <https://doi.org/10.3390/vetsci12030218>.

1904 [88] Russello H, van der Tol R, Holzhauer M, van Henten EJ, Kootstra G. Video-based automatic
1905 lameness detection of dairy cows using pose estimation and multiple locomotion traits.
1906 *Comput Electron Agric.* 2024;223:109040 <https://doi.org/10.1016/j.compag.2024.109040>.

1907 [89] Chiavaccini L, Gupta A, Chiavaccini G. From facial expressions to algorithms: a narrative review
1908 of animal pain recognition technologies. *Front Vet Sci.* 2024;11
1909 <https://doi.org/10.3389/fvets.2024.1436795>.

1910 [90] de Oliveira FA, Luna SPL, do Amaral JB, Rodrigues KA, Sant'Anna AC, Daolio M, et al. Validation
1911 of the UNESP-Botucatu unidimensional composite pain scale for assessing postoperative pain
1912 in cattle. *BMC Vet Res.* 2014;10:200 <https://doi.org/10.1186/s12917-014-0200-0>.

1913 [91] Anagnostopoulos A, Griffiths BE, Siachos N, Neary J, Smith RF, Oikonomou G. Initial validation
1914 of an intelligent video surveillance system for automatic detection of dairy cattle lameness.
1915 *Front Vet Sci.* 2023;10 <https://doi.org/10.3389/fvets.2023.1111057>.

1916 [92] Ferdinand B, Gerencsér L, Corrieri L, Perez P, Újváry D, Csizmadia G, et al. Challenges of
1917 machine learning model validation using correlated behaviour data: Evaluation of cross-
1918 validation strategies and accuracy measures. *PLoS ONE.* 2020;15:e0236092
1919 <https://doi.org/10.1371/journal.pone.0236092>.

1920 [93] Riaz MU, O'Grady L, McAloon CG, Logan F, Gormley IC. Comparison of machine learning and
1921 validation methods for high-dimensional accelerometer data to detect foot lesions in dairy
1922 cattle. *PLOS ONE.* 2025;20:e0325927 <https://doi.org/10.1371/journal.pone.0325927>.

1923 [94] Coelho Ribeiro LA, Bresolin T, Rosa GJ de M, Rume Casagrande D, Danes M de AC, Dórea JRR.
1924 Disentangling data dependency using cross-validation strategies to evaluate prediction quality
1925 of cattle grazing activities using machine learning algorithms and wearable sensor data. *J
1926 Anim Sci.* 2021;99:skab206 <https://doi.org/10.1093/jas/skab206>.

1927 [95] Gutierrez R, Garcia-Ortiz J, Villegas-Ch W. Multimodal AI techniques for pain detection:
1928 integrating facial gesture and paralanguage analysis. *Front Comput Sci.* 2024;6
1929 <https://doi.org/10.3389/fcomp.2024.1424935>.

1930 [96] Alshehri H, Al-Nafjan A, Aldayel M. Decoding Pain: A Comprehensive Review of Computational
1931 Intelligence Methods in Electroencephalography-Based Brain–Computer Interfaces.
1932 *Diagnostics.* 2025;15:300 <https://doi.org/10.3390/diagnostics15030300>.

1933

1934

1935 [97] Feighelstein M, Shimshoni I, Finka LR, Luna SPL, Mills DS, Zamansky A. Automated recognition
1936 of pain in cats. *Sci Rep.* 2022;12 <https://doi.org/10.1038/s41598-022-13348-1>.

1937 [98] Ledoux D, Veissier I, Meunier B, Gelin V, Richard C, Kiefer H, et al. Combining accelerometers
1938 and direct visual observations to detect sickness and pain in cows of different ages submitted
1939 to systemic inflammation. *Sci Rep.* 2023;13:1977 <https://doi.org/10.1038/s41598-023-27884-x>.

1940 [99] Wang J, Yu Z, Chebel RC, Yu H. Impact of cross-validation designs on cattle behavior prediction
1941 using machine learning and deep learning models with tri-axial accelerometer data
1942 2025;2025.01.22.634181 <https://doi.org/10.1101/2025.01.22.634181>.

1943 [100] Arablouei R, Wang Z, Bishop-Hurley GJ, Liu J. Multimodal sensor data fusion for in-situ
1944 classification of animal behavior using accelerometry and GNSS data 2022;
1945 <https://doi.org/10.48550/arXiv.2206.12078>.

1946 [101] Pound P, Ritskes-Hoitinga M. Is it possible to overcome issues of external validity in preclinical
1947 animal research? Why most animal models are bound to fail. *J Transl Med.* 2018;16:304
1948 <https://doi.org/10.1186/s12967-018-1678-1>.

1949 [102] Graat EAM, Vanden Hole C, Rodenburg TB, Giersberg MF, Tuyttens FAM. Can a Digital
1950 Application for Animal Welfare Self-Assessments by Farmers Help Improve the Welfare of
1951 Free-Range and Organic Pigs? *Anim Open Access J MDPI.* 2024;14:3374
1952 <https://doi.org/10.3390/ani14233374>.

1953 [103] Ganesan LP, Krishnan S. Blockchain-Enabled, Nature-Inspired Federated Learning for Cattle
1954 Health Monitoring. *Informatics.* 2025;12:57 <https://doi.org/10.3390/informatics12030057>.

1955 [104] Lamanna M, Bovo M, Cavallini D. Wearable Collar Technologies for Dairy Cows: A
1956 Systematized Review of the Current Applications and Future Innovations in Precision Livestock
1957 Farming. *Animals.* 2025;15:458 <https://doi.org/10.3390/ani15030458>.

1958 [105] Sebald C, Treiber M, Eryilmaz E, Bernhardt H. Usability Testing of Novel IoT-Infused Digital
1959 Services on Farm Equipment Reveals Farmer's Requirements towards Future Human–Machine
1960 Interface Design Guidelines. *AgriEngineering.* 2024;6:1660–73
1961 <https://doi.org/10.3390/agriengineering6020095>.

1962 [106] Hazrati M, Dara R, Kaur J. On-Farm Data Security: Practical Recommendations for Securing
1963 Farm Data. *Front Sustain Food Syst.* 2022;6 <https://doi.org/10.3389/fsufs.2022.884187>.

1964 [107] Graat EAM, Vanden Hole C, Rodenburg TB, Giersberg MF, Tuyttens FAM. Can a Digital
1965 Application for Animal Welfare Self-Assessments by Farmers Help Improve the Welfare of
1966 Free-Range and Organic Pigs? *Anim Open Access J MDPI.* 2024;14:3374
1967 <https://doi.org/10.3390/ani14233374>.

1968 [108] Doidge C, Frössling J, Dórea FC, Ordell A, Vidal G, Kaler J. Social and ethical implications of
1969 data and technology use on farms: a qualitative study of Swedish dairy and pig farmers. *Front
1970 Vet Sci.* 2023;10 <https://doi.org/10.3389/fvets.2023.1171107>.

1971 [109] Feighelstein M, Shimshoni I, Finka LR, Luna SPL, Mills DS, Zamansky A. Automated recognition
1972 of pain in cats. *Sci Rep.* 2022;12:9575 <https://doi.org/10.1038/s41598-022-13348-1>.

1973 [110] Lencioni GC, de Sousa RV, de Souza Sardinha EJ, Corrêa RR, Zanella AJ. Pain assessment in
1974 horses using automatic facial expression recognition through deep learning-based modeling.
1975 *PLoS ONE.* 2021;16 <https://doi.org/10.1371/journal.pone.0258672>.

1976 [111] Feighelstein M, Ehrlich Y, Naftaly L, Alpin M, Nadir S, Shimshoni I, et al. Deep learning for
1977 video-based automated pain recognition in rabbits. *Sci Rep.* 2023;13:14679
1978 <https://doi.org/10.1038/s41598-023-41774-2>.

1979 [112] Neethirajan S. The Significance and Ethics of Digital Livestock Farming. *AgriEngineering.*
1980 2023;5:488–505 <https://doi.org/10.3390/agriengineering5010032>.

1981 [113] Neethirajan S. Agency in Livestock Farming—A Perspective on Human–Animal–Computer
1982 Interactions. *Hum-Centric Intell Syst.* 2025;5:291–307 <https://doi.org/10.1007/s44230-025-00108-3>.

1983

1984

1985 [114] Neethirajan S, Scott S, Mancini C, Boivin X, Strand E. Human-computer interactions with farm
1986 animals—enhancing welfare through precision livestock farming and artificial intelligence.
1987 *Front Vet Sci.* 2024;11 <https://doi.org/10.3389/fvets.2024.1490851>.

1988 [115] Schillings J, Bennett R, Rose DC. Animal welfare and other ethical implications of Precision
1989 Livestock Farming technology. *CABI Agric Biosci.* 2021;2:17 <https://doi.org/10.1186/s43170-021-00037-8>.

1990 [116] Tun SC, Onizuka T, Tin P, Aikawa M, Kobayashi I, Zin TT. Revolutionizing Cow Welfare
1991 Monitoring: A Novel Top-View Perspective with Depth Camera-Based Lameness Classification.
1992 *J Imaging.* 2024;10:67 <https://doi.org/10.3390/jimaging10030067>.

1993 [117] Ajibola G, Kilders, V, Erasmus MA. A peep into the future: artificial intelligence for on-farm
1994 poultry welfare monitoring. *Anim Front Rev Mag Anim Agric.* 2025;14:72–5
1995 <https://doi.org/10.1093/af/vfae031>.

1996 [118] Michielon A, Litta P, Bonelli F, Don G, Farisè S, Giannuzzi D, et al. Mind the Step: An Artificial
1997 Intelligence-Based Monitoring Platform for Animal Welfare. *Sensors.* 2024;24:8042
1998 <https://doi.org/10.3390/s24248042>.

2000 [119] Zurnawita, Prabowo C, Kurnia R, Elfitri I. Application of Internet of Things Technology in Cattle
2001 Farm Monitoring Systems. 2024 2nd Int Symp Inf Technol Digit Innov ISITDI. 2024;247–52
2002 <https://doi.org/10.1109/ISITDI62380.2024.10796296>.

2003 [120] Umeh II, Umeh KC. Redefining the future of data processing with edge computing. *World J
2004 Adv Res Rev.* 2024;24:2865–77 <https://doi.org/10.30574/wjarr.2024.24.2.3463>.

2005 [121] Perez Garcia CA, Bovo M, Torreggiani D, Tassinari P, Benni S. Indoor Temperature Forecasting
2006 in Livestock Buildings: A Data-Driven Approach. *Agriculture.* 2024;14:316
2007 <https://doi.org/10.3390/agriculture14020316>.

2008 [122] Sadrzadeh N, Foris B, Krahn J, Keyserlingk MAG von, Weary DM. Automated monitoring of
2009 brush use in dairy cattle. *PLOS ONE.* 2024;19:e0305671
2010 <https://doi.org/10.1371/journal.pone.0305671>.

2011 [123] Luo W, Zhang G, Yuan Q, Zhao Y, Chen H, Zhou J, et al. High-precision tracking and positioning
2012 for monitoring Holstein cattle. *PLOS ONE.* 2024;19:e0302277
2013 <https://doi.org/10.1371/journal.pone.0302277>.

2014 [124] de Jong IC, Ouweltjes W, Llonch P, Martin Valls GE, Ko H-L, Spoolder H, et al. A review of
2015 existing scientific literature on welfare assessment of farmed species applied in commercial
2016 practice: identification of strengths, weaknesses, and areas for further development. *Front
2017 Vet Sci.* 2025;12:1589462 <https://doi.org/10.3389/fvets.2025.1589462>.

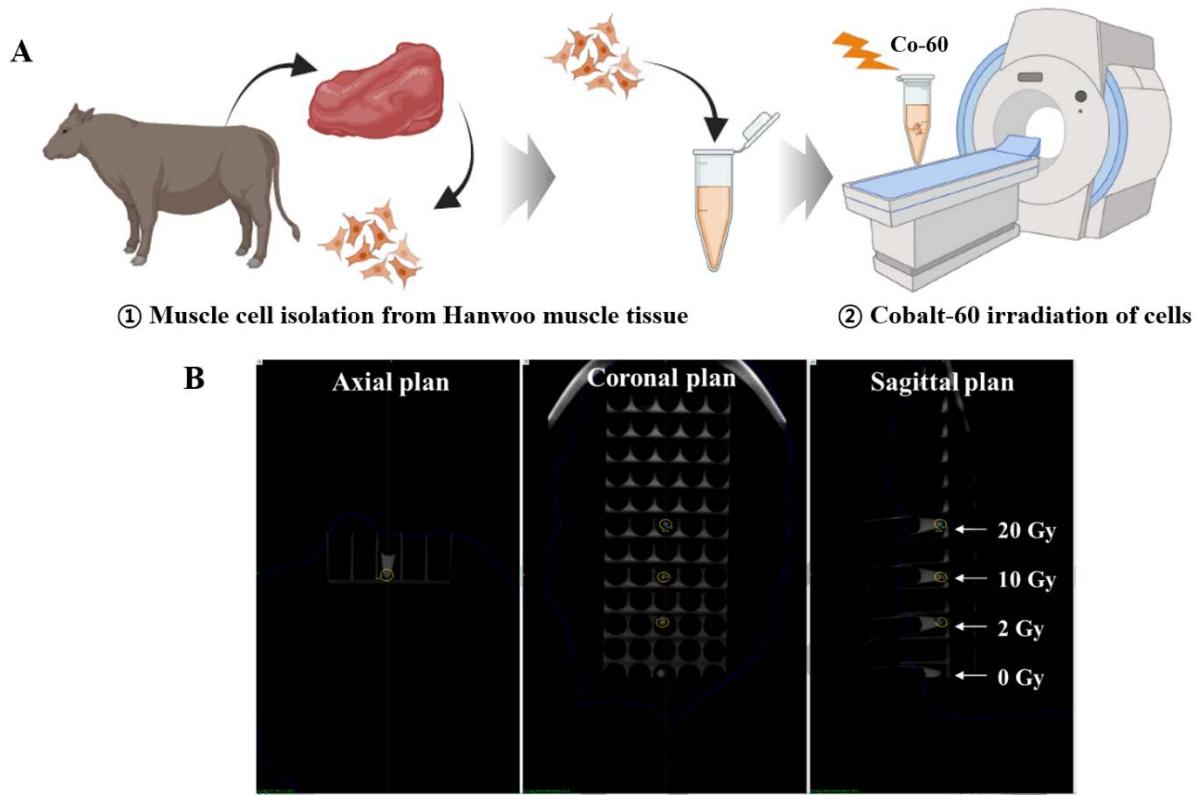
2018 [125] Stygar AH, Gómez Y, Berteselli GV, Dalla Costa E, Canali E, Niemi JK, et al. A Systematic Review
2019 on Commercially Available and Validated Sensor Technologies for Welfare Assessment of
2020 Dairy Cattle. *Front Vet Sci.* 2021;8 <https://doi.org/10.3389/fvets.2021.634338>.

2021

2022

2023

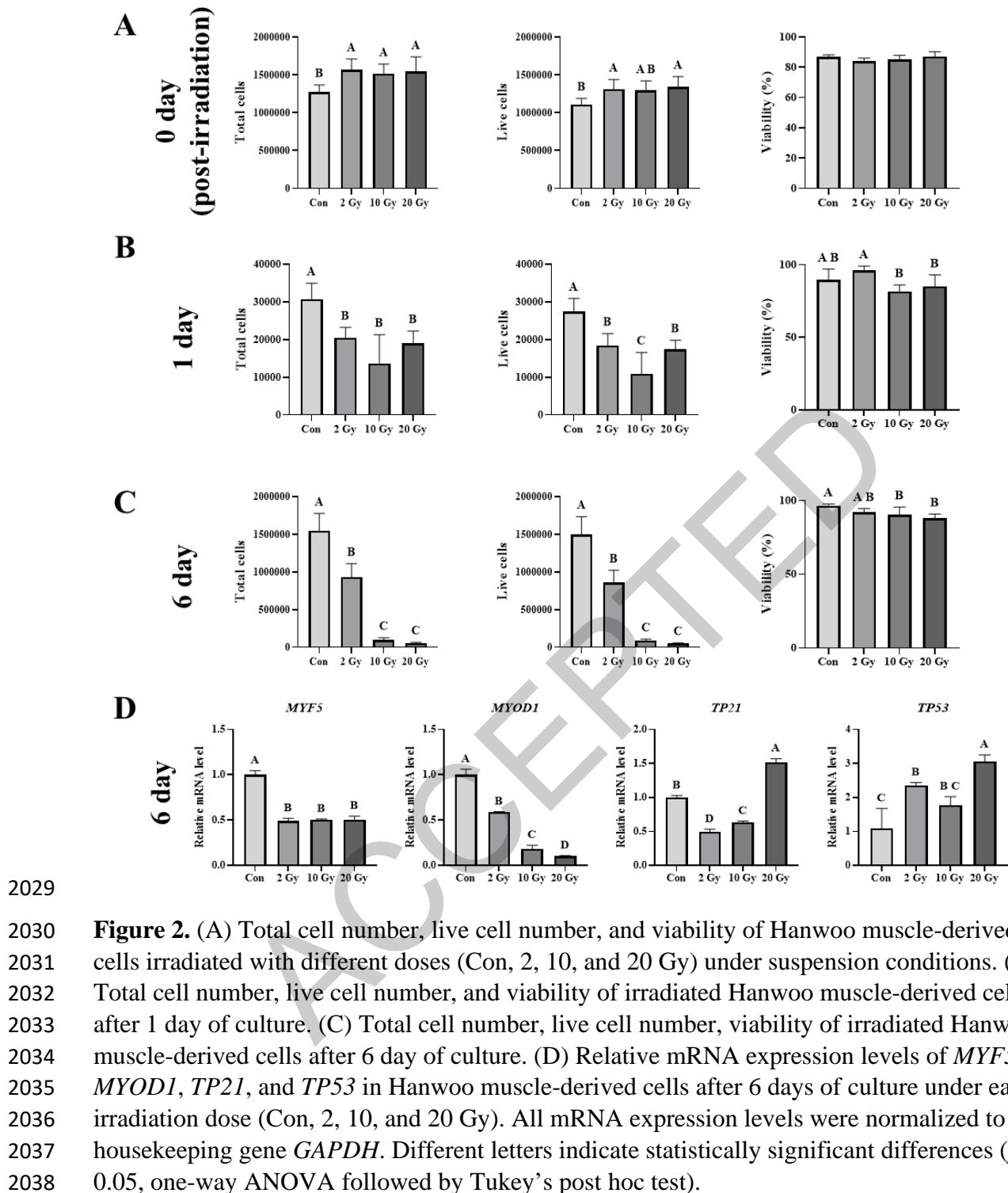
Figures

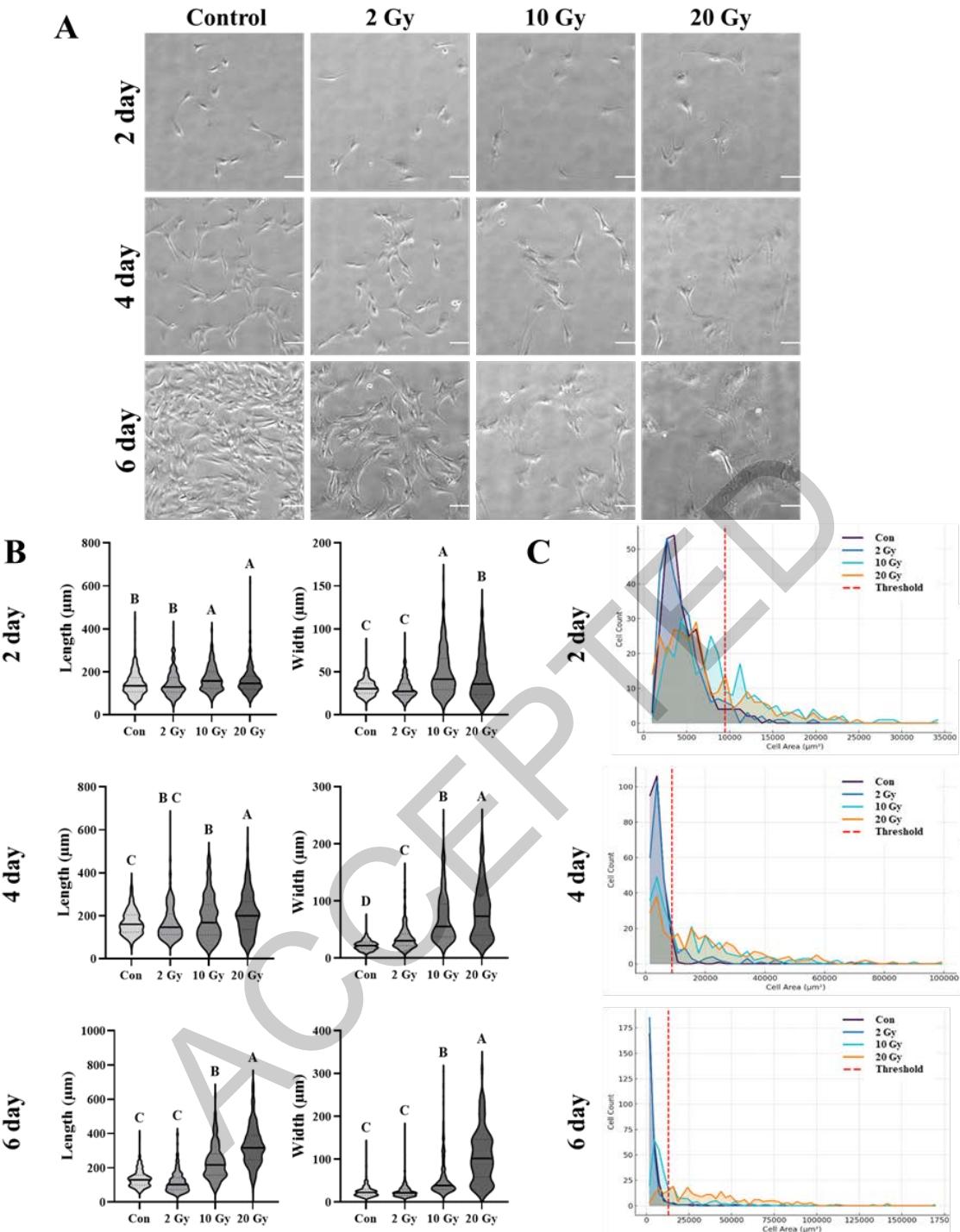


2024

2025 Figure 1. (A) Schematic illustration of Cobalt-60 gamma irradiation applied to primary
2026 muscle cells isolated from Hanwoo muscle tissue. (B) Representative axial, coronal, and
2027 sagittal plane images showing the targeted irradiation field using the Gamma Knife system.

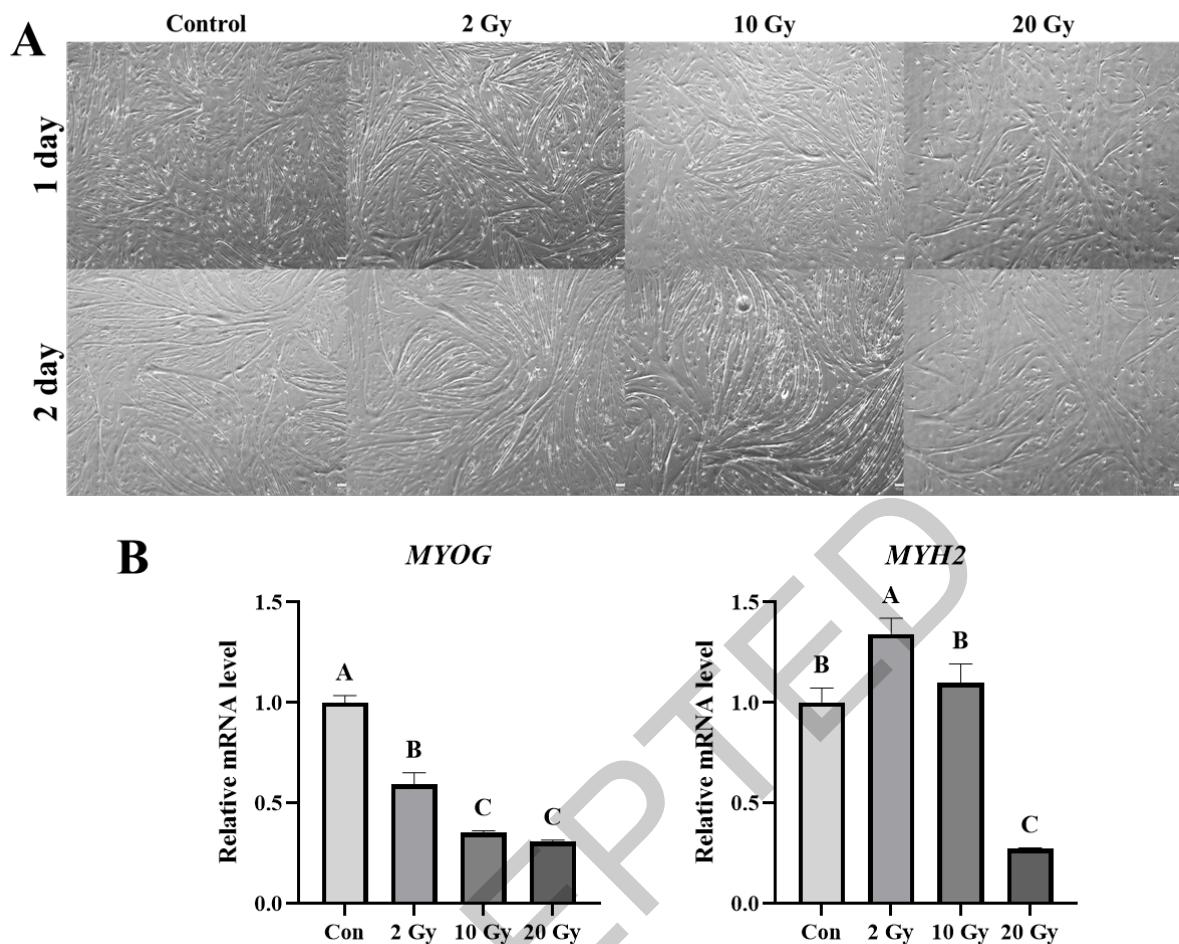
2028





2039

2040 Figure 3. (A) Representative phase-contrast images of Hanwoo muscle-derived cells at 2, 4,
2041 and 6 days of culture following gamma irradiation at different doses (Con, 2, 10, and 20 Gy).
2042 Magnification: 40×, Scale bars = 100 μm. (B) Quantitative analysis of cell morphology
2043 showing cell length (μm) and width (μm) at 2, 4, and 6 days post-irradiation in each treatment
2044 group. (C) Distribution histograms of calculated cell area (length × width) at 2, 4, and 6 days
2045 of culture under each irradiation condition. Threshold values were defined as the mean + 2
2046 standard deviations (2SD) of the control (Con) group at each time point. Different letters
2047 indicate statistically significant differences ($p < 0.05$, one-way ANOVA followed by Tukey's
2048 post hoc test).



2051 Figure 4. (A) Representative phase-contrast images of Hanwoo muscle-derived cells cultured
 2052 under differentiation conditions for 1 and 2 days following gamma irradiation at different
 2053 doses (Con, 2, 10, and 20 Gy). Magnification: 40 \times , Scale bars = 100 μ m. (B) Relative mRNA
 2054 expression levels of *MYOG* and *MYH2* in irradiated Hanwoo muscle-derived cells after 2
 2055 days of differentiation culture. All mRNA expression levels were normalized to the
 2056 housekeeping gene *GAPDH*. Different letters indicate statistically significant differences ($p <$
 2057 0.05, one-way ANOVA followed by Tukey's post hoc test).