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Abstract

Pain management in dairy cattle remains a persistent challenge, hindered by subjective
assessments and inherent observer biases that compromise animal welfare and impose
significant economic burdens due to conditions such as mastitis and lameness. Emerging
artificial intelligence (Al) technologies, integrated with computer vision and mobile platforms,
now offer transformative solutions through objective, automated facial expression analysis.
Advancements in neurobiological research have elucidated the mechanisms underlying bovine
pain expression, enabling the development of robust grimace scales validated by high
sensitivity and specificity (e.g., UCAPS, sensitivity/specificity: 0.78-0.85). Recent Al models
employing advanced architectures such as YOLOv8-Pose (achieving 96.9% mAP in landmark
detection) and transformer-based frameworks (demonstrating 98.36% accuracy in facial
recognition tasks) significantly surpass conventional methodologies in accuracy, reliability,
and scalability. Moreover, multimodal approaches fusing RGB and thermal imaging have
demonstrated remarkable efficacy (81-95% accuracy) in capturing nuanced physiological
indicators of pain. Edge-optimized deployment strategies now enable real-time, field-level
applications, delivering rapid classifications at up to 24 frames per second with classification
accuracies of 94.2%. Yet, substantial challenges persist, particularly in accounting for breed-
specific variability and environmental interferences that limit universal applicability. Critical
future research avenues include transfer learning for improved crossbreed adaptability,
multimodal integration for chronic pain detection, and the advancement of longitudinal
monitoring framewaorks within precision livestock farming. The practical implications of these
technologies are profound, promising significant welfare improvements through timely
interventions, reduced economic losses, and the broader ethical advancement of Al-driven
veterinary partnerships. The integration of automated facial expression-based pain detection in
dairy operations thus holds immense potential to redefine standards in animal welfare and
establish a new paradigm for sustainable and ethically aligned global dairy production.

Keywords: Atrtificial Intelligence in Dairy Farming; Automated Pain Detection; Facial
Expression Analysis; Precision Livestock Farming; Grimace Scales; Computer Vision in
Agriculture.

1. Introduction
The welfare of dairy cattle represents an urgent priority for producers, veterinarians, regulatory

bodies, and consumers worldwide, driven by both ethical responsibilities and significant
economic considerations. Pain-related health issues, notably mastitis and lameness, exact
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profound economic tolls and substantially compromise animal well-being. Traditional
methodologies for assessing pain in dairy cattle - primarily behavioural observations,
physiological indicators, and clinical scoring systems, are hindered by inherent limitations
including observer bias, subjectivity, invasiveness, and insufficient temporal sensitivity. The
advancement of artificial intelligence (Al), computer vision, and mobile technologies offers
new avenues for precise, objective, and scalable pain monitoring, thereby significantly
enhancing animal welfare and economic sustainability in dairy farming through precision
livestock farming (PLF) initiatives.

1.1.  Significance of Pain Management in Dairy Cattle Welfare

Effective pain management is increasingly recognized as a cornerstone of dairy cattle welfare,
significantly influencing both animal well-being and production efficiency. Mastitis, one of the
predominant diseases affecting dairy herds globally, imposes extensive economic
consequences extending far beyond the direct expenses associated with treatment. Recent
studies underscore that mastitis profoundly reduces the net present value (NPV) of dairy
operations due to decreased milk yield, impaired reproductive capabilities, and increased
culling rates [1]. Moreover, the negative economic ramifications of mastitis extend notably into
reproductive outcomes, as cows afflicted with mastitis display substantially reduced conception
rates compared to their healthy counterparts: notably lower first-service (41.7% vs. 58.2%),
third-service (30.2% vs. 45.3%), and cumulative conception rates across multiple services (36.4%
vs. 49.2%)[1].

Lameness is another significant contributor to pain-associated economic losses within dairy
operations. Recent evidence positions lameness as the third most economically damaging
health issue among dairy cattle, preceded only by mastitis and fertility disorders [2]. The
economic impact of lameness manifests clearly through immediate and considerable reductions
in milk production shortly after the onset of symptoms [3]. Beyond direct production losses,
lameness triggers additional financial burdens from increased treatment costs, prolonged
calving intervals, and the necessity of premature culling [2]. Collectively, the multidimensional
nature of pain-related economic impacts underscores the necessity of developing effective,
scalable, and precise methods for timely detection and intervention.

1.2. Limitations of Traditional Pain Assessment Methods

Current practices for pain assessment in dairy cattle rely predominantly on subjective
behavioural observations, physiological measurements, and clinical scoring techniques. These
methods exhibit significant methodological constraints that compromise their reliability and
applicability. Systematic reviews have documented considerable subjectivity inherent in
behavioural assessments, with variations in observer outcomes heavily influenced by factors
such as evaluator experience, gender, age, and contextual nuances [4]. Meta-analyses have
quantified this subjectivity, demonstrating substantial discrepancies in reported pain scores
between studies employing diverse scales and terminologies [4].

Observer bias and inter-rater variability further weaken the reliability of conventional pain
assessment tools. Recent evaluations employing the COSMIN (Consensus-based Standards for
the Selection of Health Measurement Instruments) guidelines highlight that only a small subset
of behavioural-based instruments achieve consistently high validation scores across all
essential measurement criteria [5]. These findings emphasize the critical challenges associated
with obtaining dependable and uniform pain assessments, particularly within commercial dairy
environments where evaluators face stringent time constraints and limited training
opportunities.
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Furthermore, traditional assessment approaches frequently fail to capture the dynamic and
transient nature of pain expressions. Most conventional evaluations provide only episodic,
snapshot observations, which may overlook brief but clinically meaningful expressions of pain.
Research indicates that pain-related facial expressions in livestock often last between 0.3 and
0.7 seconds, rendering periodic manual observations insufficiently sensitive to identify early-
stage or subclinical pain conditions [6]. This temporal limitation presents significant gaps,
allowing undetected pain states to escalate unchecked between observation intervals.

Additionally, invasive traditional methods raise critical animal welfare concerns. Physiological
indicators, such as blood sampling or rectal temperature measurement, may induce stress
reactions in animals, inadvertently confounding pain assessment outcomes [7]. The necessary
handling and restraint involved in invasive assessments can mask or artificially amplify
expressions of pain, thus undermining both the accuracy and ethical justification of such
procedures [7].

1.2.  Emergence of Artificial Intelligence and Mobile Technology in Veterinary Medicine
The integration of artificial intelligence and mobile technologies into veterinary medicine has
witnessed rapid acceleration since 2021, significantly advancing capabilities in automated
animal welfare monitoring and pain detection systems. Recent innovations in computer vision
techniques demonstrate impressive accuracy in cattle biometric identification and behaviour
monitoring. For example, Vision Transformer (VIiT) architectures applied to the
Opencows2020 dataset achieved cattle identification accuracy rates as high as 99.79%, while
YOLO-based frameworks combining YOLOv5 with ViT have attained detection precision
(mean average precision, mAP) of 97.8% and identification accuracy of 96.3% in practical farm
settings [8,9].

Precision livestock farming (PLF) represents a paradigm shift in dairy farm management,
incorporating Al-driven sensors, computer vision, and big data analytics to monitor animal
health, behavior, and welfare continuously. Contemporary PLF systems leverage diverse
sensing modalities such as RFID tags, accelerometers, thermal imaging, and computer vision
analytics to deliver comprehensive, real-time insights into cattle welfare. Research indicates
that accelerometer-based systems effectively detect movement patterns indicative of lameness
or stress-related behaviors, while multimodal sensor integration consistently outperforms
single-modality systems in terms of detection accuracy and reliability [10].

The proliferation of mobile technology has facilitated widespread accessibility to advanced
monitoring capabilities, empowering farmers to deploy PLF solutions effectively, even without
extensive technical expertise or substantial infrastructural investments. Recent deployments of
mobile applications for livestock welfare have demonstrated high usability and practical
feasibility in commercial production scenarios, enabling farmers to swiftly interpret data and
respond proactively to welfare alerts[11]. The seamless integration of mobile technology with
advanced Al algorithms has successfully addressed temporal limitations inherent in traditional
pain assessment methodologies, enabling timely interventions and enhancing animal welfare
outcomes in dairy cattle.

Thus, the convergence of Al, computer vision, and mobile platforms holds remarkable promise
to address current limitations in pain assessment, facilitating objective, scalable, and ethically
responsible improvements in dairy cattle welfare and economic viability.
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1.3 Methodology

This systematic review followed PRISMA 2020 guidelines to identify and synthesize peer-
reviewed research on Al-based animal pain detection systems. A comprehensive search was
conducted across three major databases (PubMed, Web of Science, Scopus) covering
publications from January 2021 to July 2025.

Search Strategy: Boolean combinations of terms including (“artificial intelligence” OR
"machine learning” OR "computer vision"” OR "deep learning") AND ("pain detection” OR
"facial expression” OR "grimace scale™) AND ("cattle” OR "livestock™ OR "cat" OR "dog" OR
"horse" OR animal species terms) were employed with database-specific syntax optimization.
A representative PubMed search string.

("artificial intelligence"[Title/Abstract] OR "machine learning"[Title/Abstract] OR "deep
learning"[Title/Abstract] OR  "computer vision"[Title/Abstract]) AND ("pain
detection”[Title/Abstract] OR  "facial  expression"[Title/Abstractf OR  "grimace
scale"[Title/Abstract]) AND (“cattle"[Title/Abstract] OR "cow"[Title/Abstract] OR
"livestock"[Title/Abstract] OR “sheep"[Title/Abstract] OR ™“horse"[Title/Abstract] OR
"dog"[Title/Abstract] OR "cat"[Title/Abstract])

Eligibility Criteria: Studies were selected according to predefined inclusion and exclusion
criteria, as outlined in Table 1.
Table 1. Inclusion and exclusion criteria for selecting publications for a systematic review

Domain Inclusion Criteria Exclusion Criteria
Publication type | Peer-reviewed journal articles Preprints, non-peer-reviewed
4 4 works, conference abstracts
Language English g 4 Non-English publications
Study type Primary research reporting | Reviews, opinion papers, or
automated - Al/ML approaches for | studies not involving automated
animal pain detection methods
Indicators Facial action units (FAUs), facial | Studies using only physiological
expressions, or facial-based | or  behavioral  (non-facial)
indicators indicators
Performance . Quantitative performance metrics @ Studies lacking validation or
reporting (accuracy, sensitivity, specificity, = performance reporting
‘_AUC, etc.)
Ground truth Veterinary assessment or validated | Studies without validated ground
pain scales used as gold standard truth

Study Selection: Search results were exported to Zotero reference manager. Duplicate records
were removed. Screened titles and abstracts for relevance, followed by full-text assessment
against eligibility criteria.

Data Synthesis: A total of 112 high-quality studies met inclusion criteria, encompassing
multiple species (cattle, sheep, horses, cats, dogs, rabbits, rodents) and Al approaches (CNNSs,
Vision Transformers, YOLO architectures). Performance metrics were systematically extracted
and synthesized both quantitatively and narratively to provide comprehensive coverage of
current Al capabilities in automated animal pain detection. The selection process is documented
in the PRISMA 2020 flow diagram (Figure 1), detailing the number of records identified,
screened, excluded (with reasons), and included in the final synthesis.



184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

Figure 1. PRISMA 2020 flow diagram for study selection in the systematic review on Al-
based facial action unit analysis for pain detection in dairy cattle.

2. Pain Assessment in Dairy Cattle: Foundations and Limitations

Effective pain assessment in dairy cattle involves a complex interplay of animal welfare science,
veterinary practice, agricultural economics, and ethical considerations. Historically viewed
primarily as a welfare-focused issue, pain detection and management have evolved into
multidimensional challenges that significantly impact the economic sustainability and social
acceptability of modern dairy farming operations.

2.1 Importance of Pain Detection in Dairy Cattle Welfare and Economics

Detecting pain in dairy cattle is critical not only for animal welfare but also for its profound
economic implications across the dairy industry. Unaddressed pain negatively affects animal
behavior and physiological health, triggering stress responses that diminish productivity,
growth rates, milk yield, and reproductive efficiency [12]. These physiological impacts such as
hormonal stress responses, metabolic disruptions, and immune system suppression directly
compromise animal health, thus reducing overall farm profitability [7].

Economic incentives further underscore the importance of effective pain mitigation. Zoltick et
al. (2024) highlight that reducing pain through proactive analgesia enhances production
efficiency sufficiently to offset the associated analgesic costs, thereby incentivizing farmers
toward improved animal welfare management [7]. Additionally, stress responses triggered by
pain negatively affect nutrient absorption, reproductive function, and general body condition,
collectively translating into measurable economic losses at the herd level [7].

2.2 Impact on Productivity, Longevity, and Economic Losses

Economic losses attributed to pain-related conditions in dairy cattle are substantial, with
mastitis, lameness, and ketosis identified as the primary economic burdens globally, costing
the dairy sector approximately $65 billion annually [13]. These losses encompass direct
treatment expenses and significant indirect impacts, including reduced productivity,
reproductive failures, premature culling, and impaired herd longevity.

Mastitis-Associated Economic Impact

Globally, mastitis remains one of the most financially devastating dairy cattle diseases,
incurring losses estimated between $20 and $30 billion annually [14]. Economic analyses show
that clinical mastitis causes significant individual losses through decreased milk production,
impaired fertility, and increased culling rates, with subclinical mastitis alone accounting for
roughly 70-80% of the total mastitis-related economic burden [14].

The COVID-19 pandemic intensified these economic pressures. Research indicates dairy farms
globally experienced increased mastitis-related losses due to disrupted veterinary care access,
constrained market channels, and falling milk prices. These factors amplified the disease's
financial burden, emphasizing systemic vulnerabilities within dairy supply chains and
reinforcing the economic importance of early, accurate pain detection methods [14].

2.2.1. Lameness and Production Performance

Lameness is another prominent pain-related condition severely impacting dairy farm
profitability. Recent longitudinal research demonstrated that lameness significantly reduces
milk yield, with lame cows producing approximately 161-183 kg less milk per lactation
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compared to their healthy counterparts [15]. Lameness also prolongs calving-to-conception
intervals, with affected cows experiencing significantly longer delays—approximately 38
additional days if lame before the first service and up to 87 days if lame afterward [15].

Moreover, the timing of lameness occurrences further amplifies its economic implications.
Early lactation lameness typically triggers severe inflammatory responses, reducing feed intake,
rumination times, and milk production efficiency. Such behavioral changes negatively affect
energy balance and ovarian activity, thereby delaying postpartum reproductive cyclicity [15].
These cumulative productivity losses underscore lameness's profound economic consequences.

Lameness also indirectly exacerbates mastitis risks, creating additional economic complexity.
Lame cows spend increased time lying on contaminated bedding, heightening bacterial
exposure risks and subsequently raising mastitis incidence rates [16]. Thus, lameness indirectly
contributes to economic losses through diminished milk quality and increased treatment
expenses, reflecting interlinked disease management challenges.

2.3 Traditional Methods of Pain Assessment

Traditional pain assessment approaches predominantly rely on direct behavioral observations,
physiological biomarkers, and structured clinical scoring systems. Despite recent
methodological improvements, these approaches carry inherent limitations affecting their
practical effectiveness.

2.3.1. Behavioral Indicators and Observational Methods

Behavioral observations remain a cornerstone of cattle pain assessment. Typical indicators
include abdominal discomfort behaviors, altered locomotion, posture changes, and interaction
disruptions. Recent advancements, such as accelerometer-based movement analyses, enhance
behavioral assessment objectivity, capturing precise mobility pattern alterations associated with
pain [7].

Tools like the Cow Pain Scale, validated in recent literature, systematically identify behavioral
indicators—including reduced environmental interaction, altered posture, and decreased
responsiveness—that effectively signal pain [17]. Despite validation, these tools heavily
depend on observer training and experience, often leading to subjective variability [4].

2.3.2. Physiological Measures and Biomarker Assessment

Physiological biomarkers, notably cortisol, offer quantifiable pain detection metrics. Recent
validation demonstrates plasma cortisol's diagnostic reliability, achieving receiver operating
characteristic (ROC) curves (AUC >0.7) at specific post-pain stimulus intervals [18].
Additionally, hair cortisol provides robust chronic stress assessments by reflecting prolonged
hypothalamic-pituitary-adrenal (HPA) axis activation, offering retrospective pain measures
superior to acute assessments [18].

Infrared thermography (IRT) has gained traction as a non-invasive physiological pain indicator,
demonstrating reliable diagnostic accuracy at specific post-intervention intervals (e.g., 72 hours,
AUC >0.7). However, environmental factors, including ambient temperature and humidity,
substantially impact IRT accuracy, requiring stringent calibration [19].

2.3.4. Advanced Physiological Monitoring Technologies
Pressure algometry quantifies mechanical nociceptive thresholds, effectively distinguishing
pain states such as digital dermatitis in cattle. Recent studies confirmed its reliability, though
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practical constraints—including animal restraint requirements and specialized training—Ilimit
widespread implementation [20]. Integration of multiple physiological indicators, as recent
research suggests, may enhance assessment accuracy, given that single biomarkers rarely offer
definitive pain discrimination [18].

2.4. Facial Expressions and Grimace Scales: Bridging Traditional and Automated Methods
Facial expressions constitute one of the most fundamental, evolutionarily conserved
communication mechanisms for pain across mammalian species. The development of
standardized grimace scales has significantly enhanced objective pain assessment in veterinary
medicine, overcoming traditional limitations related to observer subjectivity. This section
systematically examines the neurobiological mechanisms underlying facial expressions of pain,
the rigorous development and validation processes for grimace scales across domestic,
laboratory, and farm animal species, and addresses ongoing challenges in their clinical
applicability and reliability for livestock welfare management.

2.4.1 Neurobiological Basis of Pain Expression

Neural Pathways and Facial Action Unit Activation

Facial expressions of pain involve intricate interactions among nociceptive processing,
emotional regulation, and motor control pathways. These systems collectively produce
observable facial muscle responses indicative of pain states. Recent neuroscientific
advancements have identified critical neural circuits translating pain perception into facial
action units (FAUSs), thus providing foundational scientific justification for grimace scale
methodologies.

Current evidence underscores the amygdala’s pivotal role in generating pain-related facial
expressions due to its extensive connections with sensory processing and motor control regions
[21]. The central nucleus of the amygdala (CeA) serves as an integrative hub, receiving direct
inputs from nociceptive regions such as the parabrachial nucleus, and projecting to brainstem
motor centres that regulate facial musculature [22]. Optogenetic studies reveal that targeted
CeA circuit activation elicits distinct pain-associated facial expressions, whereas inhibition
reduces such responses, confirming functional links between pain perception and facial motor
output [23].

The trigeminal nerve complex further supports pain-related facial expressions, facilitating both
sensory detection and motor responses via the trigeminal motor nucleus, which governs critical
muscles involved in grimacing behaviors [24].Thus, the amygdala-trigeminal circuitry is
instrumental in generating specific facial pain behaviors.

Recent molecular-level insights highlight the contribution of non-neuronal elements,
particularly astrocytes within the CeA, to facial expression regulation during chronic pain states.
Elevated glial fibrillary acidic protein (GFAP) levels correspond with sustained facial pain
behaviors, and selective inhibition of amygdala astrocytes reduces these expressions, indicating
glial involvement in pain signalling and expression modulation [22].

Species-Specific Neural Control Mechanisms

Although foundational neural circuits for facial pain expressions remain evolutionarily
conserved, species-specific variations in facial musculature and innervation patterns
significantly impact observable expressions. In cattle, anatomical studies reveal unique facial
muscle arrangements and nerve supply patterns distinct from human or rodent models,
emphasizing the necessity for species-specific grimace scales [6].
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2.4.2 Development and Validation of Grimace Scales Across Species

Evolution of Standardized Assessment Approaches

Grimace scale development has evolved significantly, transitioning from initial observational
methodologies to rigorously validated, standardized instruments providing quantifiable pain
metrics. Key developmental principles—identification of consistent FAUs correlating with
pain, standardized scoring criteria for trained observers, and validation against established pain
indicators—have maintained consistency across various species [25]. This systematic approach
enhances scientific rigor and practical applicability across different animal groups.

Laboratory Animal Applications and Refinements

Grimace scales in laboratory animals, particularly rodents, have benefited from substantial
refinement and validation. The Mouse Grimace Scale (MGS) now demonstrates optimized
accuracy with fewer facial action units; notably, orbital tightening consistently exhibits strong
predictive accuracy across pain models [26].

Advanced quantitative methods employing machine learning have further improved rodent
grimace scale accuracy. Automated Rat Grimace Scale (RGS) scoring, leveraging advanced
computational techniques, achieves precision and recall rates above 97%, closely matching
human expert assessments (ICC of 0.82) [27]. Training protocols significantly enhance inter-
rater reliability in rat grimace assessments, indicating sustained improvements over extended
periods and emphasizing the durability of standardized training programs [28].

Feline Pain Assessment Advances

Recent advancements in feline pain assessment have demonstrated high reliability and practical
applicability of the Feline Grimace Scale (FGS). Validation across diverse user groups—
veterinarians, veterinary nurses, students, and caregivers—confirms robust inter-rater
reliability, with intraclass correlations consistently between 0.65 and 0.69 [29]. Structured
training substantially improves observer consistency, elevating reliability metrics to excellent
levels (ICC 0.75-0.80) [30].

Furthermore, automated feline pain recognition using deep learning techniques has achieved
promising accuracy (>70%), employing precise landmark-based analysis derived from feline
facial action coding systems [31]. Nevertheless, continued validation remains critical to address
variability across datasets and individual cat populations.

Equine Grimace Scale Development and Challenges

Equine grimace scales face distinct challenges, particularly related to the brief temporal
dynamics of equine pain expressions, with approximately 75% of FAUs lasting only 0.3-0.7
seconds [32]. This underscores the importance of temporal resolution in equine pain
assessments, favouring video-based analyses over static photographic methods.

Comparative reliability studies involving multiple equine pain scales—including HGS,
EQUUS-FAP, EPS, and CPS—indicate varying inter-rater consistency, with the Composite
Orthopedic Pain Scale displaying the highest reliability (ICC up to 0.75) [32]. Breed-specific
differences in pain expression among horses—such as Friesians demonstrating reduced pain
responsiveness compared to Quarter Horses—highlight the necessity for breed-sensitive
grimace scales [33]. Recent investigations also suggest limited effectiveness of equine grimace
scales for chronic pain states, such as gastric ulcers, reinforcing the importance of
distinguishing scale utility across pain conditions [6].
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Bovine Pain Assessment Developments

In bovine pain assessment, the Unesp-Botucatu Cattle Pain Scale (UCAPS) represents a
landmark development, achieving robust validation and high reliability across diverse breeds
[34,35]. Recent developments have expanded this approach to calves, creating the Calf Grimace
Scale (CGS), which reliably identifies pain-associated FAUs following painful procedures like
castration [36,37].

Advanced bovine validation methodologies incorporate comprehensive criteria—expression
specificity, construct validity, responsiveness—to rigorously evaluate facial FAUs during
painful conditions, notably clinical mastitis [38]. Real-time versus video-recorded assessment
comparisons using UCAPS demonstrate high consistency (ICC >0.81), informing standardized
clinical assessment protocols [39]. Fig illustrates the temporal dynamics of FAU activation
across a 72-hour postoperative period in dairy cows (n = 45).

Fig 2. Temporal Dynamics of Facial Action Unit Activation with Error Bars and
Statistical Significance During 72-Hour Postoperative Period in Dairy Cows (n=45)[34]

2.4.3 Reliability, Validity, and Limitations of Facial Scoring Systems

Inter-rater Reliability Achievements and Challenges

Inter-rater reliability remains critical for clinical grimace scale implementation, yet observer
variability persists across species and contexts. Systematic analyses confirm significant
improvements following structured training protocols; however, reliability gains vary
considerably across species-specific contexts [30]. Table 1 summarizes the comparative
validation metrics of contemporary grimace scales across species, including inter-rater and
intra-rater reliability, sensitivity, and specificity as reported in recent studies. Feline scales
consistently demonstrate high reliability, whereas equine grimace assessments vary notably
with pain type and breed specificity [40]. Studies in macaques reinforce that while moderate-
to-good reliability is achievable, extensive observer training and standardized protocols remain
essential, especially for cognitively complex species [41].

Table 2: Comparative validation metrics of contemporary grimace scales across different
species, highlighting inter-rater and intra-rater reliability, sensitivity, and specificity as
reported in recent peer-reviewed studies.

Species Scale Sample Inter- | Intra- | Sensitivit | Specificit | Referen
Size rater rater y y ce
ICC ICC
Feline FGS 1,262 0.65- >0.90 Not Not [29]
caregivers | 0.69 reported | reported
Feline FGS 7 0.75- Not Not Not [30]
(trained | veterinaria | 0.80 | reported | reported | reported
vets) ns
Equine HGS 8 horses 0.52 Not Variable | Variable | [32]
reported by by
condition | condition
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Equine HGS 12 horses | 0.27 Not Poor for | Poor for | [40]
(dental reported | chronic chronic
disease) pain pain

Rat RGS Multiple 0.82 Not 81-93% | 81-93% | [27]
(automate cohorts VS applicabl | weighted | weighted
d) human e accuracy | accuracy
s
Macaqu | CMGS | 43animals | 0.67+ | 0.79% Not Not [41]
e 0.28 0.14 reported | reported
Donkey | DOPS 44 animals | 0.56- 0.88- 80-98% | 90-97% | [42]
0.66 0.96 at M1 at MO

Sensitivity and Specificity Performance

Diagnostic performance varies considerably among species-specific grimace scales, with
sensitivity and specificity metrics heavily dependent upon pain type, duration, and assessment
timing. Advanced ROC curve analyses confirm high diagnostic accuracy (AUC >0.70) in cattle
when optimally timed post-intervention [18]. Notably, donkey scales exhibit particularly robust
diagnostic accuracy (AUC =0.91), providing clear analgesic intervention thresholds for clinical
use [42]. Temporal dynamics significantly influence grimace scale sensitivity, particularly as
acute pain transitions to chronic pain, requiring temporal optimization in clinical protocols to
maintain assessment precision [43,44].

Methodological Limitations and Technological Solutions

Methodological limitations, notably static photographic assessments and subjective observer
scoring, constrain grimace scale reliability and clinical utility [45,46]. Automated assessment
systems utilizing machine learning and computer vision techniques demonstrate potential to
significantly reduce observer variability, enhancing real-time monitoring and accuracy [27].

Multimodal assessment integration—combining facial analysis with physiological and
behavioral data further improves detection precision, surpassing single-method approaches [47].
However, breed-specific anatomical and behavioral variations require continued validation and
tailored scoring criteria across genetically diverse cattle populations [39].

Grimace scales represent critical advancements toward objective, species-specific pain
assessment across diverse animal taxa. Achieving widespread clinical implementation
necessitates ongoing refinement, comprehensive observer training, integration of advanced
technological methodologies, and continual breed-specific validation efforts. These
multidisciplinary approaches will ensure reliable, accurate pain measurement, significantly
enhancing animal welfare management practices in veterinary medicine. Table 2 summarizes
key factors influencing grimace-scale reliability and validity, detailing variables, their impacts
on assessment performance, and proposed strategies for improving accuracy and consistency
across species.

Table 3: Summary of key factors influencing the reliability and validity of grimace scales,

highlighting specific variables, their impacts on assessment performance, and suggested
strategies to enhance accuracy and consistency across species.

10
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Factor Specific Impact on Mitigation Reference
Category Influences Performance Strategies
Training Structured Moderate to good Standardized [27]
Effects training programs  improvement in protocols, ongoing
ICC education
Species Anatomical Requires species-  Species-appropriate [40,41]
Differences variations, specific validation  scale development
behavioral
patterns
Pain Type  Acute vs chronic, Acute pain shows  Condition-specific [32,48]
visceral vs better detection assessment tools
somatic
Temporal Duration of Optimal windows Video analysis, [32]
Factors expression, for detection temporal
assessment timing optimization
Observer Professional vs Experience Training programs, [26]
Experience lay observers improves standardization
consistency.
Breed Genetic Requires breed- Diverse training [36]
Variations differences in specific datasets
expression consideration

2.5 Limitations and Challenges of Conventional Approaches
Despite methodological advancements, traditional pain assessment faces practical and
conceptual constraints that impede widespread effectiveness.

2.5.1. Subjectivity and Observer Bias

Observer variability significantly undermines traditional pain assessment reliability. Recent
systematic reviews and meta-analyses clearly demonstrate that observer training, personal
biases, scale usage differences, and terminology variations significantly impact scoring
consistency [7]. Even structured training protocols fail to completely eliminate observer bias,
limiting assessment reliability.

2.5.2. Species-Specific and Environmental Challenges

Cattle's evolutionary inclination to mask pain, derived from predator-avoidance behaviors,
severely complicates clinical assessments, leading to frequent underestimation of pain severity
[7]. Environmental factors such as housing conditions, handling practices, and social
interactions further obscure accurate pain detection, complicating the differentiation between
general stress and specific pain behaviours [7]. Similarly, environmental conditions
significantly influence physiological indicators such as thermography accuracy [19].

2.5.3. Physiological Indicator Constraints

Physiological biomarkers frequently demonstrate specificity limitations, failing to achieve
consistently high diagnostic accuracy across varied pain states and individual animal variability

11
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(AUC often <0.7) [18]. Chronic pain conditions further complicate biomarker assessments,
with adaptive physiological responses reducing biomarker reliability [18].

2.5.4. Practical Implementation Barriers

Operational challenges significantly limit traditional assessment feasibility. Comprehensive
assessments require intensive labour, substantial training, and expensive specialized equipment,
restricting their scalability across large commercial herds [12]. Invasive assessment methods,
such as blood sampling, further introduce ethical and practical dilemmas by inducing additional
stress and potentially confounding pain assessments [7]. Table 3 presents a comparative
evaluation of traditional pain assessment methods, outlining their primary strengths,
methodological limitations, and key references.

Table 4. Comparative evaluation of traditional pain assessment methods used in dairy cattle,
highlighting assessment types, primary strengths, methodological limitations, and
representative references from recent peer-reviewed literature.

Method Type Strengths Limitations Reference
Example
Behavioral Visual/Manual Widely Subjective; observer [43]
Observation accessible; bias;
non-invasive; time-consuming;
captures low throughput
species-specific
behaviours
Physiological Biochemical Objective; Requires sampling; [18]
Biomarkers quantifiable; invasive  (blood);
(Cortisol) hair cortisol temporal variability;
offers lab analysis
chronic-stress
measure
Pressure Algometry  Mechanical Quantifies Requires restraint; [20]
Nociceptive mechanical operator-dependent;
Threshold sensitivity; localized
reliable assessment
thresholds
Infrared Thermal Non-invasive;  Affected by [19]
Thermography Imaging detects environment
physiological (temperature,
heat changes; humidity);
real-time calibration needed
Facial Visual Scoring Rapid; Requires training; [37]
Expression/Grimace non-invasive; semi-subjective;
Scales sensitive to limited to acute
acute pain responses

Collectively, these critical limitations emphasize the urgent need for accurate, minimally
invasive, objective pain assessment solutions capable of continuous monitoring without
extensive human intervention. The integration of Al, computer vision, and mobile technologies
offers promising pathways toward overcoming traditional assessment challenges, providing
practical, scalable, and ethically responsible alternatives for modern dairy cattle pain
management.
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3. Al and Computer Vision Foundations for Animal Pain Detection

The integration of artificial intelligence with computer vision represents a paradigm shift from
subjective human observation to objective, automated pain assessment in livestock. This
section examines the foundational Al architectures that have been successfully applied to
animal pain detection, with particular emphasis on recent advances from 2021-2025 that
demonstrate measurable improvements in accuracy and practical deployment capabilities.

3.1 Convolutional Neural Networks: Architectural Evolution and Performance

Convolutional Neural Networks remain the cornerstone of automated animal pain detection
systems, with recent studies demonstrating substantial improvements through architectural
refinements and species-specific optimizations. The foundational strength of CNNs lies in their
hierarchical feature extraction capabilities, enabling the identification of subtle facial patterns
associated with pain expressions across multiple livestock species [49,50].

ResNet Architectures and Transfer Learning

ResNet-based models have shown remarkable versatility in cross-species applications. A
comprehensive study on rabbit pain detection achieved 87% accuracy using ResNet-50
architectures combined with novel temporal processing techniques [50]. The study employed
Grayscale Short-Term stacking (GrayST) methodology, which incorporates temporal
information by combining consecutive frames into single composite images, effectively
capturing the dynamic nature of pain expressions that static analysis often misses [50].

For cattle facial landmark detection, ResNet-101 demonstrated superior performance on RGB
imagery, achieving 94.37% average precision (AP) on the CattleFace-RGBT benchmark
dataset [51]. However, performance degraded significantly when applied to thermal imagery
(64.60% AP), highlighting the modality-specific challenges that plague cross-spectral
applications [51]. This performance disparity underscores the need for specialized training
approaches when working with multimodal data.

More sophisticated CNN variants have emerged to address livestock-specific challenges. The
IWOA-CNN model, incorporating an improved whale optimization algorithm, has shown
superior performance compared to traditional CNN approaches by optimizing critical
hyperparameters including dropout probability, L2 regularization parameters, and dynamic
learning rates [52]. This algorithmic enhancement addresses the fundamental issue of manual
hyperparameter tuning, which often results in suboptimal performance for animal-specific
applications.

Recent studies in facial recognition for livestock have further demonstrated the viability of
CNNs in real-world farm settings. YOLOV5 for cow face detection combined with a Vision
Transformer for identification in a 77-cow herd, achieving 97.8% detection AP and 96.3% ID
accuracy [53]. Similarly, CFR-YOLO based on YOLOvV7, which achieved 96.27% mean
average precision and 98.46% precision [54]. These models processed video at real-time
speeds (~50 fps), validating their feasibility for continuous on-farm monitoring. Additionally,
combined YOLOv4-tiny and MobileNetVV2 on edge devices for cow recognition, reached a
detection F1 of 0.98 and ID accuracy of 0.97 under practical farm conditions [55].

3.2 Vision Transformers: Global Context and Attention Mechanisms

The introduction of Vision Transformers (ViTs) has fundamentally challenged CNN
dominance in animal facial analysis. ViTs excel at capturing long-range dependencies and
global contextual information, characteristics particularly valuable for understanding complex
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facial expression patterns in livestock [56]. The ViT-Sheep model, incorporating LayerScale
modules and transfer learning strategies, achieved 97.9% accuracy for sheep face recognition,
demonstrating the architecture's potential for livestock applications [56].

CLIP-Based Pain Detection

A groundbreaking study in sheep pain recognition demonstrated that CLIP (Contrastive
Language-Image Pre-training) encoders significantly outperformed human expert assessment
[57] The Al pipeline achieved an AUC of 0.82 for binary pain classification, significantly
exceeding human facial scoring performance (AUC difference = 0.115, p < 0.001) when
provided with identical visual information (frontal and lateral face images) [57]. The system
utilized 768-dimensional CLIP embeddings concatenated from both viewing angles, processed
through Naive Bayes classifiers with leave-one-animal-out cross-validation [57].

Swin Transformers for Multimodal Processing

Swin Transformers represent a particularly promising advancement, combining the global
attention mechanisms of transformers with CNN-like hierarchical processing. In pig
recognition and segmentation tasks, Swin Transformers achieved 93.0% recognition accuracy
and 86.9% segmentation accuracy, maintaining excellent performance even under challenging
conditions including overlapping, occlusion, and deformation [58]. These results suggest that
transformer architectures may be particularly well-suited for handling the complex
environmental conditions typical of farm settings.

3.3 YOLO Architectures: Real-Time Detection and Multi-Object Tracking

You Only Look Once (YOLO) frameworks have become indispensable for real-time livestock
monitoring applications, offering optimal balance between detection speed and accuracy
essential for practical farm deployment [59].

YOLOv8 Advancements

Recent implementations of YOLOV8 have demonstrated exceptional performance in livestock
applications. A modified YOLOv8-CBAM system for cattle detection achieved 95.2%
precision and 82.6% mAP@0.5:0.95, representing a 2.3% improvement over baseline YOLOv8
across diverse camera configurations [60]. The integration of Convolutional Block Attention
Modules (CBAM) enhanced the model's ability to focus on relevant facial features while
suppressing background noise [60].

For sheep head recognition, YOLOvV8-CBAM achieved 97.7% mean average precision with an
F1 score of 0.94, demonstrating consistent improvements over multiple YOLO variants: 0.5%
over YOLOvV8n, 1.4% over YOLOvV5Nn, and 2.4% over YOLOv10n [61]. The attention
mechanism proved particularly effective for recognizing facial color patterns essential for breed
identification and individual recognition [61].

CFR-YOLO for Cattle Face Recognition

A specialized cattle face recognition system based on YOLOv7 improvements (CFR-YOLO)
achieved remarkable performance metrics of 96.27% mean average precision while
maintaining real-time processing capabilities at approximately 50 fps [62]. The system
incorporated several key optimizations: replacement of CloU loss with SloU loss functions,
integration of FReLU activation functions, and inclusion of Receptive Field Block (RFB)
modules in the backbone network [62].

3.4 Multimodal Fusion: RGB-Thermal Integration
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The combination of RGB and thermal imaging represents a significant advancement in
automated pain detection, providing complementary information streams that enhance overall
system robustness and accuracy[51].

CattleFace-RGBT Benchmark Dataset

The development of the CattleFace-RGBT dataset, consisting of 2,300 RGB-thermal image
pairs with 13 annotated facial landmarks, has established a critical benchmark for multimodal
livestock analysis [51]. The dataset covers key facial regions including ears, eyes, muzzle,
nostrils, and mouth, enabling comprehensive welfare assessment through both visual and
thermal indicators [51].

Performance analysis reveals significant modality-specific differences: while RGB processing
achieves superior accuracy (ResNet-101: 94.37% AP), thermal processing remains challenging
(ResNet-101: 64.60% AP). However, transformer architectures show better thermal
performance, with Swin-B achieving 73.16% AP on thermal imagery [51].

Fusion Strategies and Implementation

Three primary fusion approaches have been evaluated: early fusion (feature-level integration),
late fusion (decision-level combination), and mixture of experts (dynamic weighting) [63].
Early fusion enables cross-modal learning during feature extraction but requires careful
calibration between modalities. Late fusion processes modalities independently before higher-
level integration, providing greater flexibility for handling modality-specific preprocessing
requirements[64].

The thermal imaging component provides unique physiological information invisible to RGB
cameras, particularly useful for detecting inflammation and temperature variations associated
with pain states. However, environmental factors including ambient temperature, humidity, and
airflow significantly impact thermal measurement reliability, necessitating sophisticated
calibration protocols.

3.5 Technical Implementation Challenges and Solutions

Edge Computing and Deployment Constraints

Real-world deployment faces substantial computational constraints, particularly in rural
environments with limited connectivity and power availability. Successful edge
implementations using Nvidia Jetson Nano devices have demonstrated feasibility, maintaining
high performance (96.1% accuracy) while operating within 20W power envelopes [49]. Model
compression techniques, including quantization-aware training and pruning, have achieved up
to 86% reduction in model size while preserving accuracy above 95% [65].

Cross-Species Generalization

Recent research has demonstrated both the potential and limitations of cross-species model
transfer. A CNN trained for pig pneumonia detection achieved substantial agreement (Cohen's
kappa: 0.65-0.71) when applied to lamb lung assessment, with sensitivity (0.87-0.88) and
specificity (0.88-0.91) comparable to expert veterinary assessment [66]. However, facial
expression models show greater species-specificity, with accuracy drops of 15-20% when
applied across species without fine-tuning [67].

Scalability and Farm Integration

Commercial operations involving thousands of animals introduce scalability challenges beyond
typical applications. Multi-camera systems, sophisticated tracking algorithms, and data fusion
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techniques offer potential solutions, though they increase calibration complexity [68]. Effective
farm integration necessitates alignment with existing management systems, including user-
friendly interfaces, real-time alerts, decision-support tools, and mobile application integration,
addressing computational limitations inherent to smartphone hardware [69].

The development of appropriate sensitivity thresholds and human-centered design
considerations remains essential to avoid alert fatigue, maintaining user trust, and ensuring
widespread adoption of advanced Al-based livestock pain detection systems in real-world
agricultural settings.

3.6 Practical comparison of Al architectures for farm implementation

A critical question for adoption is not which architecture attains the highest benchmark score
in controlled experiments, but which architecture reliably performs under real farm constraints
(variable lighting, occlusion, dirt, overlapping animals), runs on available hardware (edge
devices, low-power systems), and generalizes across herds and barns. Below we compare
Convolutional Neural Networks (CNNs), YOLO-family detectors, Vision Transformers (ViTs)
and multimodal fusion approaches against practical implementation criteria supported by recent
peer-reviewed farm or near-farm studies.

3.6.1 Detection & classification performance in farm/field tests

e YOLO-family detectors (e.g., YOLOv5-v8 variants) show high detection performance
in real or semi-real farm deployments while maintaining high frame rates suitable for
continuous monitoring. Recent farm-targeted studies report mean average precision
(mAP) in the mid-90s for cattle detection/landmark tasks and sustained inference speeds
(20-50 fps) on embedded hardware after optimization (quantization/TensorRT). These
deployments achieved realistic classification accuracies in the 90-95% range for
biometrics and health-related labels in independent test sets[70].

e CNN backbones (ResNet, MobileNet, EfficientNet) remain highly effective for
landmarking and facial feature extraction in field conditions. Lightweight CNN variants
(MobileNet, pruned/quantized ResNets) have been successfully deployed on Jetson-
class devices with accuracy often exceeding 90% for face detection/landmark tasks
while keeping power consumption <10 W, making them practical for continuous barn
operation[71].

« Vision Transformers (ViT / Swin) demonstrate excellent representational power and
sometimes outperform CNNs on large, curated datasets, but peer-reviewed farm
implementations report limited on-device feasibility due to higher compute and data
requirements; where deployed, hybrids (CNN encoder + transformer blocks) have
shown improved accuracy while reducing latency compared with pure ViTs. Field-
oriented transformer work for livestock remains emerging but promising[72].

o Multimodal fusion (RGB + thermal / sensors) increases robustness to lighting and can
improve physiological detection (inflammation/fever), but thermal performance and
fusion require careful calibration in farm environments and entail higher system
complexity and cost. Cattle RGB-thermal benchmark studies show strong RGB AP but
substantially lower thermal AP unless advanced transformer fusion or calibration is
used[73].

3.6.2 Robustness to farm conditions (lighting, occlusion, dirt, overlap)
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YOLO and modern CNN detectors tolerate moderate occlusion and variable lighting
when trained with augmentations and multi-site data, but performance degrades when
animals overlap densely or when reflective surfaces and dust produce spurious
detections—practical fixes include optimized camera placement and exposure control.
Farm deployment reports recommend per-camera tuning and occasional re-
calibration[73].

Transformer models benefit from global attention and can be more robust to certain
contextual variations if trained on very diverse datasets; however, in most peer-
reviewed farm trials such large, diverse pretraining corpora are not yet available,
limiting VIT robustness in practice[72].

3.6.3 Edge feasibility, latency and power constraints

Practical farm systems prioritize on-device inference to avoid latency and connectivity
dependence. Studies like Dairy DigiD demonstrate that lightweight YOLO/CNN stacks,
combined with INT8 quantization and TensorRT, can achieve ~24 fps on Jetson
NX/Nano devices while preserving high classification accuracy (~94%), making them
feasible for continuous on-farm operation. Such optimizations (pruning, quantization)
are essential to make modern architectures practical on farms [70].

Pure VIiT pipelines currently require cloud or high-end accelerators for real-time
operation; thus, unless offloading or hybrid architectures are used, ViTs are less feasible
for always-on edge monitoring at present [72].

3.6.4 Recommendations for practitioners (evidence-based)

1.

4.

For continuous, real-time monitoring on typical dairies: deploy optimized YOLOvS /
YOLOvV7 or compressed CNN backbones (MobileNet/ pruned ResNet) with INT8
guantization; these achieve the best trade-off of accuracy, fps and edge power envelope
in peer-reviewed deployments[70].

For research or centralized analytics with ample compute and large datasets: explore
Transformer / hybrid models to leverage their superior context modeling for cross-farm
generalization—provided extensive pretraining or multi-farm data are available[72].
For low-light or physiological signs (inflammation): consider RGB+thermal fusion, but
include temperature/numidity calibration protocols and expect higher annotation and
hardware costs[73].

Always validate with LOAO and farm-fold tests and report per-fold
sensitivity/specificity and confidence intervals; real farm readiness requires inter-farm
robustness, not just within-dataset accuracy[74].

4. Current Al Applications in Livestock Pain Recognition

The application of artificial intelligence for automated pain detection has expanded
significantly across multiple animal species since 2021, with validated systems demonstrating
clinical feasibility for both livestock and companion animals. Fig 2 compares mean accuracy
of Al-based pain detection systems across laboratory, livestock, and companion species,
highlighting key performance differences among these groups .

4.1 Feline Pain Detection Systems
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746  Automated pain recognition in cats has achieved remarkable progress through multiple
747  complementary approaches. The landmark-based methodology achieved 77% accuracy in pain
748  detection using manually annotated geometric landmarks positioned relative to underlying
749  facial musculature, significantly outperforming deep learning approaches that reached only 65%
750  accuracy on the same heterogeneous dataset [75]. This study utilized 84 client-owned cats of
751  different breeds, ages, sexes, and varying medical conditions, representing a substantial
752 advancement over previous homogeneous datasets limited to single breeds.

753

754  Video-based automation marked a significant technological leap with the development of end-
755  to-end Al pipelines requiring no manual image selection or landmark annotation [76]. The
756  system achieved over 70% and 66% accuracy respectively on two different cat pain datasets,
757  outperforming previous landmark-based approaches using single frames under similar
758  conditions. The pipeline integrated YOLOV8 for face detection, ensemble landmark detection,
759  and XGBoost classification with moving window analysis.

760

761  Smartphone-applicable systems represent the current clinical frontier, utilizing deep neural
762  networks and machine learning models trained on 3,447 cat face images annotated with 37
763  landmarks [77]. The best CNN model (ShuffleNetVV2) achieved 16.76% Normalized Root
764  Mean Squared Error for landmark prediction, while XGBoost models reached 95.5% accuracy
765 and 0.0096 mean squared error for Feline Grimace Scale score prediction. The system
766  demonstrated excellent discriminatory capability between painful and non-painful cats,
767  enabling practical veterinary applications.

768

769 4.2 Non-Human Primate Pain Recognition

770  Macaque facial expression analysis achieved groundbreaking automation through the first
771  prototype for automatic MagFACS (Macaque Facial Action Coding System) coding [78]. The
772 system achieved high performance in recognition of six dominant action units, demonstrating
773 generalization between conspecific individuals (Macaca mulatta) and even between species
774  (Macaca fascicularis). The method showed concurrent validity with manual MagFACS coding,
775  supporting automated applications in social and affective neuroscience research.

776

777  Japanese macaque pain detection utilizing ResNet50 architectures achieved varying accuracy
778  depending on extraction methodology [79]. Box extraction using RetinaFace resulted in test
779  accuracies between 48-54%, while contour extraction using Mask R-CNN improved
780  performance to 64% through preprocessing and fine-tuning. The study utilized 30-60 minutes
781  of video footage from macaques undergoing laparotomy, recorded before surgery (No Pain)
782  and one day post-surgery before analgesic administration (Pain).

783

784  Geometric morphometric approaches complemented automated systems by revealing subtle
785  facial shape variations in female Japanese macaques following experimental laparotomy [80].
786  The study identified pain-associated changes including orbital tightening, asymmetrical eye
787  aperture, lip tension, and elongated mouth lines, providing anatomical foundation for
788  automated detection algorithms.

789

790 4.3 Rodent Pain Assessment Systems

791  Mouse Grimace Scale Automation

792  Automated mouse grimace scale assessment achieved impressive performance through Vision
793  Transformer architectures trained on manually scored datasets [81]. The system achieved 97%
794  weighted accuracy for binary pain classification, with attention heatmaps revealing model focus
795 on eye and ear regions as primary pain indicators. Individual action unit classifiers
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demonstrated weighted accuracies of 81-93% for orbital tightening, nose bulge, cheek bulge,
ear position, and whisker changes[81].

4.4 Canine Emotional State Recognition

Dog emotional state recognition achieved significant progress through dual-approach
methodologies comparing DogFACS-based and deep learning systems [82]. The DogFACS-
based approach utilizing Decision Tree classifiers reached 71% accuracy, while deep learning
techniques achieved 89% accuracy for positive/negative emotional state classification. The
study analyzed 29 Labrador Retrievers under experimentally induced emotional states of
positive anticipation and frustration.

Continuous facial dynamics analysis introduced novel automated methods for measuring dog
facial behavior through video-based tracking of 46 facial landmarks [83]. The system revealed
distinct patterns between brachycephalic (Boston Terrier) and normocephalic (Jack Russell
Terrier) dogs, with brachycephalic dogs exhibiting consistently lower facial dynamics across
all tested contexts and facial regions compared to normocephalic dogs.

Table 5. Performance overview of Al-based pain detection systems across animal species
(2021-2025).Values are specific to individual studies and not statistically comparable because
of  heterogeneous datasets, imaging conditions, and - validation protocols.
Performance patterns reflect methodological differences in dataset design, validation rigor, and
species-specific facial expressivity.

Species Primary Model / | Dataset Reported Validation
Reference( | Methodolog | Characteristi | Performanc | Strategy /
S) y cs e Methodologic
al Notes
Cat Feighelstein Landmark- | 84 client- | 65 — 95 % | Heterogeneous
et al. 2023 | based CNN; | owned cats | accuracy validation
[75]; YOLOv8  + | (heterogeneou | range (train/test split
Martvel et | XGBoost; s breeds, ages, | depending or k-fold);
al. 2024 | ShuffleNetV | health); 3 447 | on some studies
[76]: 2 + Feline | annotated face | architecture | lacked
Steagall et Grimace images independent
al. 2023 | Scale test sets;
[77] lighting and
breed
variability
affect
generalization
Dog Boneh- DogFACS + | 29 Labradors | 71 — 89 % | Leave-one-
Shitrit et al. | Decision and multi- | accuracy video-out or
2022 [82]; | Tree; Deep | breed cohorts within-subject
Martvel et | CNN; (brachycephali Cross-
al. 2025 | Video-based | c VS. validation;
[83] landmark normocephalic performance
tracking ) influenced by
breed
morphology
and  reduced
facial mobility
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in
brachycephalic
dogs

Sheep

Feighelstein
et al. 2023
(CLIP
encoders)

CLIP
encoder +
Naive Bayes
classifier

Controlled
post-surgical
dataset, frontal
+ lateral views

AUC = 0.82
= 82 %
accuracy)

Leave-one-
animal-out
validation
minimized
identity  bias;
consistent
lighting and
scoring; model
outperformed
human experts

Macaque
(Primate)

Morozov et
al. 2021
[78]; Gris et
al. 2024
[79];

ResNet50;
Mask R-
CNN;
Automatic
MagFACS
coding

30 — 60 min
per subject
(pre- and post-
surgery); 6
action  units
annotated

48 — 64 %
accuracy

Cross-session
validation;
limited sample
size; subtle
facial muscle
differences

across species
reduce
transferability
Randomized
Cross-
validation;
standardized
grimace
scoring
ensured
inter-rater
consistency;
results robust
under uniform
lighting

Controlled
laboratory
imagery with
manual
grimace labels

Rodent Arnold etal. | Vision
(Mouse/Ra | 2023 [81]; | Transformer
t) ; Automated
Grimace
Scale

89 - 97 %
weighted
accuracy

high

4.5 Comprehensive Species Validation

Cross-Species Performance Metrics

Current automated pain detection systems demonstrate species-specific performance variations,
with accuracy ranges reflecting both methodological approaches and validation rigor. Sheep
pain recognition using CLIP encoders achieved the highest reported accuracy (>82%),
significantly outperforming human expert assessment 14. Cat pain detection systems showed
moderate performance (65-77%) depending on approach methodology[75,84]. Primate systems
achieved variable results (48-64%) reflecting the complexity of facial morphology and
expression subtlety.

Rodent systems demonstrated strong performance, with mouse grimace scale automation
reaching 89-97% accuracy[81].Dog emotional recognition achieved 71-89% accuracy
depending on methodological approach [82].

4.6 Dairy Cows:
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Recent research has applied computer vision and machine learning to detect pain in dairy
cows under various conditions (e.g. lameness, mastitis). These studies use facial and gait
indicators (e.g. orbital tightening, ear position, back curvature) extracted from images or
video, often combined with sensor data, to train Al models. The Table 4 summarizes post-
2021 peer-reviewed studies, detailing pain condition, facial action units (FAUS) or behavioral
indicators, sensing methods, Al models, validation design, sample size, and key performance
metrics (separating object-detection from pain-classification). All metrics are cited from the
primary sources.

Table 6. Recent Al-Based Approaches for Pain Detection and Classification in Dairy
Cows (Post-2021 Studies)

Study Pain FAUs or | Imaging/Sen | Al Models | Validation | Performanc
(Year) | Type/ | Indicator | sing & Sample | e (Detection
Conditi | s VS

on Classificati
on)
Zhang | Mixed | Facial Video (RGB | YOLOVS8-P. | 10 videos Detection:
etal. health regions: farm ose (6 pain, 4 YOLOVS-
(2025) | issues eyes, ears, | footage); (face+30 no-pain) Pose
[85] (lamene | muzzle frames facial with 80:20 | achieves
Ss, (key processed at | landmarks) | train/val bounding
metritis, | landmarks | 1/5 s intervals | , split; tested = box
mastitis, | ) MobileNet | on 14 held- = AP@0.5=0.
pre- V2 (ROI out videos. | 969 (MAP),
birth feature AP@0.5-
labor) extractor), 0.95=0.899;
LSTM keypoint
(temporal AP@0.5=0.
classifier) 838,
AP@0.5—
0.95=0.590.
Classificati
on:
Validation
accuracy
~99.65%

(precision/re
call
~0.9968);
unseen-
video
(video-
level)
accuracy
64.3%,
pain-class
precision
0.83, recall
0.56,
F1=0.67.
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Neupan | Lamene | Locomoti | Leg-mounted | Time-series | 310 Classificati
eetal. |ss on accelerometer | ML models | multiparous | on:
(2024) | (hoof/le | features data (Random Cows ROCKET
[86] g (lying Forest, monitored 4 | classifier
disorder | time, Naive months (best) for
S) steps, Bayes, (daily distinguishi
changes) Logistic acceleromet | ng healthy
Regression, | er); labeled | vs severely
ROCKET) | by claw- lame cows
trimmer as: | achieved
healthy, accuracy
corrective | >90%,
trimming, ROC-AUC
or lame >0.74, F1
(therapeutic | >0.61. For
trimming). | classifying
severe vs
moderate
lameness,
ROCKET
gave
accuracy
>85%,
ROC-AUC
>0.68, F1
>0.44. (No
vision-based
detection
metrics.)
Jia et Lamene | Postural/g | Video DeepLabC | 143 videos | Keypoint
al. ss (all ait: (milking ut pose (dairy cows | Detection:
(2025)[ | grades | arched parlor, estimation | walking, Mean error
87] 0-3) back, 25 fps); head | (DLC various ~4.68 px
head and back pretrained | lameness (90.21% of
bobbing, | keypoints on cow levels) split | keypoints
leg swing, | annotated features); into correctly
asymmetr spatiotemp | train/test tracked).
ic gait oral (20 for Classificati
keypoint testing); on: Overall
scoring also 16 lameness
model videos from | classificatio
other farms. | n accuracy
~90.2%; by
class: 89.0%
(normal),
85.3%
(mild),
92.6%
(moderate),
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100%
(severe).
Russell | Lamene | Locomoti | Video (side- | T-LEAP Cows Keypoint
oetal. |ss on traits: | view walking | pose walking Detection:
(2024) | (visual | back lane, estimator video, 99.6% of
[88] gait posture outdoor) 9 scored by 4 | cow
scoring: | curvature, keypoints) | observers keypoints
healthy | head + ML (5-point correctly
VS bobbing, classifier scale detected.
lame) tracking on merged to Classificati
distance, extracted binary on:
stride gait healthy/lam | Combining
length, features e); keypoint | the top 6
stance/swi model locomotion
ng evaluated traits
durations ondiverse | yielded
lighting. 80.1%
accuracy
(versus
76.6-79.9%
using fewer
traits) for
healthy vs
lame
detection
(binary
classificatio
n accuracy;
no separate
AUC
reported).

Critical Analysis of Performance Gaps and Generalization Challenges

The performance metrics presented in Table 5 reveal substantial discrepancies between
validation accuracies and real-world performance that warrant critical examination. These
disparities highlight fundamental challenges in the current state of Al-based cattle pain
detection systems and underscore the necessity for more rigorous validation methodologies.
One of the example of these challenges appears in Zhang et al. (2025), where the reported
validation accuracy of 99.65% contrasts sharply with the 64.3% accuracy achieved on unseen
videos. This 35.35 percentage point performance degradation exemplifies severe overfitting,
indicating that the model memorized training-specific patterns rather than learning
generalizable pain-related features. The limited training dataset of only 10 videos (6 pain, 4 no-

pain) with an 80:20 train/validation split exacerbated this problem by providing insufficient
variability for robust feature learning. Such dramatic performance disparities fundamentally
undermine the clinical utility of these systems, as the impressive validation metrics provide
misleading indications of real-world effectiveness.

This pattern of generalization failure extends beyond Zhang et al., revealing systematic
challenges across multiple studies in the literature. Jia et al. (2025) demonstrated similar
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limitations when their model, achieving 90.2% overall accuracy, experienced performance
degradation when tested on videos from different farms, suggesting environment-specific
overfitting. The authors' use of only 16 videos from other farms for external validation further
highlights the inadequacy of cross-farm validation protocols. Similarly, Neupane et al. (2024)
achieved accuracies exceeding 90% using the ROCKET classifier, but these results were
obtained exclusively within single-farm validation scenarios using 310 cows from a
homogeneous population, raising substantial concerns about cross-farm generalizability and
breed-specific applicability.

The methodological approach employed by Russello et al. (2024) illustrates additional
concerning patterns in the field. Despite achieving 99.6% keypoint detection accuracy, the
subsequent classification performance dropped to 80.1%, indicating substantial information
loss during the transition from detection to classification. This 19.5 percentage point gap
suggests that high-quality landmark detection does not necessarily translate to effective pain
classification, highlighting the complexity of extracting clinically meaningful pain-related
features from detected anatomical landmarks.

These performance disparities stem from fundamental methodological limitations prevalent
throughout the literature. Sample sizes remain inadequate for robust statistical validation, with
most studies employing fewer than 200 animals across all validation phases. Training datasets
typically originate from homogeneous environments, lacking the environmental diversity,
breed variation, and temporal coverage necessary for meaningful generalization. Cross-
validation methodologies frequently employ inappropriate random splits rather than more
rigorous approaches such as Leave-One-Animal-Out (LOAO) validation or farm-fold cross-
validation that would better assess model generalizability. Additionally, temporal dependencies
within animal behavior data are systematically ignored, leading to optimistically biased
performance estimates that fail to reflect real-world deployment scenarios.

4.7 Discussion of Factors Influencing Model Performance

Across the reviewed studies, key factors consistently drove differences in reported performance.
First, model architecture and design strongly affected outcomes. Convolutional networks often
required careful tuning of hyperparameters to avoid overfitting on small datasets. For example,
Mao and Liu’s dog-expression study trained a CNN on only 315 images and found that tuning
via an improved Whale Optimization algorithm boosted accuracy modestly by ~3 percentage
points[52]. This suggests that generic CNN architectures alone may plateau on limited animal-
expression datasets. By contrast, transformer-based models and large pre-trained encoders
tended to generalize better when data were scarce. Like ViT-based sheep face model (ViT-
Sheep) achieved 97.9% accuracy by incorporating architectural enhancements (LayerScale)
and transfer learning on 160 sheep images [56]. Similarly, Feighelstein et al. used a CLIP
encoder (a large-scale vision transformer) to detect pain in sheep, and the Al pipeline
significantly outperformed expert scoring (AUC 0.82 vs. AUC 0.70 for humans) on the same
48-animal dataset [57]. The benefit of pretraining is clear: models with broad prior knowledge
(ViT, CLIP) captured subtle facial cues that smaller CNNs missed.

Second, data quantity and quality were fundamental. Larger, well-annotated datasets yielded
higher accuracy. For instance,cow-1D system had high sample diversity (77 cows, numerous
face images) and achieved ~98% AP for detection and 96% identity accuracy, likely reflecting
the ample data and robust YOLOv5+ViT pipeline used[53]. In contrast, studies with very small
animal datasets (e.g. 10-30 individuals) often reported only modest performance (<70-80%).
cat-pain pipeline attained only 70% and 66% accuracy on two feline datasets[84], even though
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they used a video-based approach, because these datasets remained small and heterogeneous.
Subjective annotation also added noise: studies relying on human-rated pain scores (grimace
scales) were inherently limited by rater inconsistency. The sheep-CLIP study mitigated this by
using human scores as “gold standard” for comparison, but Al still outperformed the
inconsistent human labels[57].

Third, image modality and preprocessing played a major role. Models trained on RGB imagery
nearly always outperformed those on thermal images. In the new CattleFace-RGBT benchmark,
ResNet-101 achieved 94.4% AP on RGB face detection but only 64.6% AP on thermal
images[51]. Thermal data lack color/texture and suffer from low contrast, making keypoints
harder to localize[51]. Transformer architectures fared slightly better on thermal: e.g. Swin-B
scored 73.2% AP on thermal (vs. 75.3% on RGB)[51], suggesting that global attention can
partly compensate for poor thermal detail. Some authors therefore use cross-modal transfer:
Coffman et al. trained models on RGB and refined them on thermal, using semi-automated
annotation to build the thermal landmark set. In video-based systems, temporal preprocessing
also helped. Feighelstein et al. introduced “Grayscale Short-Term Stacking” (GrayST) to inject
motion cues into static CNNs, boosting rabbit-pain recognition from ~67% (ResNet alone) to
~77-81% (with GrayST)[50]. Further filtering of video frames (keeping only high-confidence
images) lifted rabbit-pain accuracy above 87%[50]. These examples show that explicit
temporal encoding can overcome the lack of color or texture in single frames, at the cost of
some complexity.

Fourth, species-specific traits and experimental conditions influenced outcomes. Some species
exhibit very subtle facial changes, or wide breed variation, which makes generalization difficult.
For example, dog facial morphology varies enormously by breed, so Mao et al. note that even
with IWOA-CNN their hardest classes (sad, fear) remained under 90% accuracy. Similarly[52],
the cat-pain studies point out that facial landmarks in cats are subtle and vary by individual, so
performance capped around 70% despite advanced pipelines[84]. By contrast, simpler tasks
with distinctive cues yielded higher scores: automated detection of specific behaviors (e.g. cow
hoof issues via accelerometers) or identity recognition (hundreds of cow faces) tended to
exceed 90% accuracy, showing that modality and task simplicity matter. In experiments with
induced pain (e.g. sheep post-surgery), the lab setting ensured high-quality imagery and clear
labels, enabling better performance than on “in-the-wild” farm data. As Feighelstein et al.
comment, machine accuracy in controlled sheep surgery videos even exceeded that of vets, a
setting where expressions were pronounced and consistently labeled[57].

Fifth, fusion strategies and multiple cues often improved robustness. Combining face imagery
with other modalities (e.g. body posture, sensor data) tends to outperform any single cue. For
instance, cow lameness studies fused video keypoints with spatiotemporal models and achieved
~90% classification accuracy. Multi-stage pipelines (e.g. YOLO detection + landmark
extraction + LSTM) likewise decomposed tasks into tractable steps. In Martvel et al.’s cat-pain
study, using video (many frames) instead of isolated images improved detection by leveraging
temporal consistency[84]. Conversely, studies using only static images, or only single
modalities, generally lagged.

In summary, higher performance was generally achieved by (a) using ample, well-curated data;
(b) leveraging strong pretraining or multimodal cues; and (c) tailoring architectures and
preprocessing to the species and context. Studies consistently note that scarce or noisy data,
inter-species variability, and limited modalities suppress accuracy. The success of vision
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transformers and large encoders in sheep and rabbit pain tasks suggests future work should
exploit pretraining and attention to capture subtle patterns. Likewise, integrating temporal
dynamics (as in GrayST or video analysis) and multi-modal fusion appears crucial when single
frames offer limited information[57,84]fi. These insights indicate that next-generation animal
pain recognition systems will likely combine rich data collection (e.g. RGB + thermal +
behavior), advanced architectures (transformers, hybrid CNN-AI detectors), and robust
preprocessing to overcome the inherent challenges of cross-species pain detection.

4.7 Current Limitations and Challenges

Despite impressive laboratory performance, several consistent limitations emerged across
species. Environmental factors including variable lighting, occlusions, and motion artifacts
significantly impact accuracy. Cross-species generalization remains limited, with species-
specific anatomical differences necessitating dedicated training approaches.

Validation methodology substantially influences reported performance, with rigorous cross-
validation revealing more realistic accuracy expectations. Ground truth establishment varies
considerably across studies, affecting system reliability and clinical applicability.

5. Validation Strategies for Automated Pain Detection Systems

Rigorous validation of automated pain detection systems is a fundamental requirement for
establishing reliable, Al-driven tools in dairy cattle welfare assessment. Unlike conventional
veterinary diagnostics, automated systems encounter unique complexities related to pain’s
inherently subjective nature, interspecies interpretation challenges, and multifaceted
interactions between behavioral, physiological, and environmental variables influencing cattle
pain expression [5]. Consequently, robust validation frameworks are critical—not only for
ensuring technical accuracy—»but also for fostering stakeholder trust and obtaining necessary
regulatory approval for deploying emerging technological solutions.

Effective validation of automated cattle pain detection technologies hinges on addressing
pivotal considerations: accurately establishing ground truth data, ensuring methodological rigor
within validation processes, and verifying that research findings generalize effectively across
diverse animal populations and varied farming environments. Recent literature underscores
significant heterogeneity in existing validation methodologies, leading to challenges in reliably
comparing outcomes across studies employing different technological frameworks and
analytical approaches [89].

5.1 Establishing Ground Truth: Veterinary Assessment Integration

Establishing reliable ground truth data represents the most critical validation challenge for
automated cattle pain detection systems. Unlike human pain assessments, which leverage self-
reporting mechanisms for direct subjective experiences, veterinary pain evaluations rely
exclusively on third-party interpretations of observed behaviors, physiological indicators, and
environmental contexts [89]. This inherent reliance on observer judgments introduces
substantial risks of bias, necessitating meticulous protocol design to maximize assessment
reliability and validity while minimizing subjective influences.

Recent progress in veterinary pain assessment emphasizes validated species-specific pain
scales as essential instruments for establishing robust ground truth. Notably, the UNESP-
Botucatu Unidimensional Composite Pain Scale (UCAPS) and Cow Pain Scale (CPS) have
emerged prominently. Both tools demonstrate high internal consistency (UCAPS o= 0.82; CPS
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a = 0.79), establishing reliable baselines for objectively quantifying pain severity [34,90].
Comparative evaluations confirm strong criterion validity, exhibiting correlation coefficients
ranging from 0.76 to 0.78 when benchmarked against traditional veterinary numerical rating
scales [34].

However, integrating validated scales into automated systems necessitates stringent observer
training and standardized scoring procedures. Significant variability in inter-rater reliability has
been documented, with weighted kappa statistics varying between 0.47 and 0.80 depending on
assessor experience and employed scales [34]. Encouragingly, recent studies report high inter-
rater agreements between automated systems and human evaluators, consistently exceeding
80%, with Gwet’s agreement coefficients spanning from 0.76 to 0.83 for binary pain
categorizations [91].

Additional complexity arises from temporal variability in pain expression. Research indicates
that acute pain detection accuracy markedly declines over post-procedural intervals—dropping
from approximately 88% accuracy at one hour post-procedure to around 65% after 72 hours—
as analgesic interventions and natural healing alter observable pain manifestations [43].
Consequently, dynamic ground truth labeling methodologies that consider temporal pain
progression may yield superior accuracy compared to static assessments.

Two primary annotation strategies are recognized in ground truth methodologies: stimulus-
based and behavior-based annotations. Stimulus-based annotations, categorizing pain by the
presence or absence of procedures, provide clear temporal boundaries yet may inadequately
represent individual variations in pain perception and expression [89]. Conversely, behavior-
based annotations offer detailed observational insight but introduce greater subjectivity and
potential observer biases. Emerging evidence suggests hybrid annotation approaches,
combining objective temporal data with expert behavioral assessments, may optimize ground
truth accuracy, offering balanced objectivity and nuance [57].

5.2 Cross-validation and Performance Metrics

The selection of appropriate cross-validation techniques significantly influences perceived
performance and practical generalizability of automated pain detection models. Traditional
random cross-validation methods, although computationally convenient, frequently yield
overly optimistic estimates due to hierarchical data structures and inherent temporal
dependencies typical of livestock behavior datasets [92].

Leave-one-animal-out (LOAO) cross-validation provides greater rigor, better simulating real-
world scenarios where pain detection systems must generalize reliably to previously unseen
individuals. LOAO validation consistently reports accuracy reductions between 10% and 15%
relative to random cross-validation, underscoring individual variability’s impact on
performance [93]. Studies employing LOAO methodologies document substantial variability
in sensitivity (39.2%-79.6%) and specificity (up to 99.1%), reflecting authentic challenges in
accommodating animal-level variability within detection algorithms [94].

Farm-fold cross-validation offers an even stricter validation criterion, explicitly accounting for
farm-level variability arising from unique management practices, environmental factors, and
herd genetics. Research employing farm-fold approaches typically reports an additional 5%-—
10% performance decrement compared to LOAO, emphasizing the critical influence of farm-
specific contexts on automated system generalizability [94]. Such validation rigor is
indispensable when assessing commercial feasibility across diverse farming conditions.
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The selection of cross-validation strategy materially affects reported performance and therefore
conclusions about real-world readiness. Concrete examples from the reviewed literature
illustrate this: Zhang et al. (2025) report a validation accuracy of ~99.65% but only 64.3% on
held-out unseen videos (a drop of =35.3 percentage points), with pain-class precision = 0.83
and recall = 0.56, a clear sign that a naive validation split substantially over-estimates
deployable performance[85]. Other studies include inter-farm samples but do not disaggregate
inter-farm results, preventing assessment of farm-level generalizability[87]. Large longitudinal
datasets and realistic temporal holdouts yield more conservative but likely more realistic
metrics[86]. Methodological analyses show that replacing random CV with LOAO typically
reduces reported accuracy by ~10-15% and applying farm-fold (inter-farm) validation incurs
an additional ~5-10% decrement; together these stricter protocols can reduce internal estimates
by 15-25% or more. Authors should therefore (i) always report per-study internal and external
(held-out/farm-level) metrics, (ii) include LOAO and farm-fold experiments where feasible (or
clearly state their absence), and (i) present balanced metrics
(sensitivity/specificity/PPV/NPV/AUC) rather than accuracy alone to avoid misleading
conclusions about field performance.

Performance metric selection significantly impacts validation outcomes. While accuracy
remains prevalent, it can misrepresent performance in imbalanced datasets—common in
livestock pain studies where non-painful observations predominate [95]. Recent validation
research stresses balanced metric reporting, including sensitivity, specificity, positive and
negative predictive values, and ROC-AUC, providing comprehensive model performance
assessments [96].

5.3 Challenges in Validation Methodologies

Validating automated cattle pain detection systems presents multifaceted challenges impacting
result interpretation and generalizability. Feline pain detection studies deliberately limited
populations to single breed types (domestic short-haired cats) to minimize confounding
variables during proof-of-concept validation[97]. This breed-specific variability necessitates
explicit validation strategies across genetically diverse cattle populations to ensure
comprehensive applicability.

Environmental variability further complicates validation accuracy. Farm-specific
environmental factors—including inconsistent lighting conditions, occlusion by equipment or
other animals, mud contamination, and motion blur—significantly degrade detection accuracy,
with performance typically decreasing by 15%-20% compared to controlled experimental
environments [98]. These findings underscore the necessity for explicitly incorporating realistic
environmental conditions within validation studies, assessing model resilience across varied
farming scenarios.

Limited dataset sizes remain pervasive within current validation literature, typically involving
fewer than 100 animals per study with limited representation across age, sex, breed, and farm
management practices [92]. Such limited diversity restricts statistical power and constrains
broader population generalizability. Temporal and spatial clustering further exacerbates sample
size limitations, necessitating larger, more diverse datasets for robust validation outcomes.

Acute and chronic pain condition differentiation presents unique validation complexities, given

distinct temporal trajectories and subtle behavioral indicators characterizing chronic pain states
compared to acute presentations [7]. Addressing chronic pain validation demands specialized
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protocols accommodating long-term, subtle behavioral changes alongside traditional acute pain
indicators.

Longitudinal data dependencies also introduce validation complexities. Randomly sampling
temporal data points risks inadvertent leakage of future information, artificially inflating model
performance estimates [99]. Blocked cross-validation approaches respecting chronological data
sequences provide more authentic accuracy assessments yet require sufficiently large datasets
to preserve statistical power.

Multimodal sensor integration, while promising enhanced accuracy (typically improving
detection accuracy by 5%-10%), further complicates validation procedures, necessitating
synchronized data collection and modality-specific preprocessing to ensure consistency and
reliability [100].

Collectively, these validation complexities highlight critical needs for standardized protocols
and collaborative multi-institutional research frameworks, enabling rigorous validation of
automated cattle pain detection systems across diverse populations, farm environments, and
temporal conditions. Future research prioritizing comprehensive validation methodologies can
substantially advance practical translation of emerging technological solutions, significantly
enhancing dairy cattle welfare outcomes [101]. Building on these crucial validation insights,
the development and deployment of mobile applications represent the next pivotal step in
democratizing automated pain detection technologies for farmers and veterinary practitioners
alike.

6. Review of Existing Veterinary and Livestock Mobile Apps

The current landscape of veterinary and livestock-focused mobile applications encompasses a
broad spectrum, ranging from basic animal record-keeping and self-assessment tools to
sophisticated Al-driven monitoring systems. Recent developments highlight a trend towards
intuitive, farmer-centric interfaces integrated with advanced technological capabilities.

6.1 Overview of Existing Livestock Mobile Apps

Recent veterinary. mobile applications reflect substantial diversity in their functionalities.
Applications such as PIGLOW, an EU-funded platform, enable farmers raising free-range pigs
to conduct structured welfare audits periodically, providing automated feedback and
comparative benchmarking against peer farms. A two-year pilot study involving 12 farms
demonstrated modest improvements in welfare indicators, including reductions in lameness and
skin lesion prevalence, alongside high farmer-reported usability and acceptance [102].
Similarly, mobile apps tailored for beef cattle management have shown strong user satisfaction
and usability, as indicated by a System Usability Scale (SUS) rating of approximately 75,
highlighting their effectiveness in streamlining feed tracking and animal health record-keeping
processes [11].

Wearable and Internet-of-Things (loT) devices represent another significant category of
livestock monitoring solutions. Prototype collars designed for cattle and other livestock have
emerged prominently, capable of continuously monitoring animal physiological parameters
such as body temperature, heart rate, and physical activity. These wearable systems transmit
collected data to cloud analytics platforms, providing veterinarians and farm managers with
timely alerts to early indicators of health issues, including respiratory infections, thereby
enabling intervention prior to observable clinical signs [102,103]. Machine-vision-based
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mobile apps have recently begun leveraging compact convolutional neural network (CNN)
architectures—such as YOLOv5—to enable smartphone-based, real-time identification of hoof
conditions like digital dermatitis. Such technologies have been successfully deployed on
Android and i0OS platforms, providing practical and immediate on-farm lameness screening
capabilities [68]. Consistently, user feedback underscores that farmers highly value mobile
apps featuring intuitive workflows, straightforward checklists, and simplified data captures that
seamlessly integrate into their daily farm management routines.

6.2 Mobile Application Deployment Considerations

For mobile applications operating in rural livestock farming environments, robust on-device
processing and reliable local networking capabilities are essential. Recent studies underscore
the advantages of edge computing solutions, such as deployments utilizing NVIDIA Jetson
Nano hardware equipped with 12 MP cameras for real-time cattle identification tasks on dairy
farms. These implementations enable rapid edge inference, allowing immediate local web
access to cattle identification information without reliance on continuous internet connectivity,
thereby demonstrating real-world latency performances measured in milliseconds per inference
[49].

Power management strategies are equally critical for prolonged operation in remote farm
environments. Several wearable systems now incorporate renewable power solutions, such as
small solar panels or kinetic energy harvesting from animal movement, enabling continuous
data collection without frequent manual battery replacements. Examples include prototype
collars successfully deployed on reindeer and cattle, providing continuous operation for weeks
at a time [104]. Reviews of such systems confirm that hybrid power setups—combining solar
panels and motion-based harvesting—effectively support uninterrupted, round-the-clock
monitoring, in contrast to purely battery-powered collars, which typically require weekly
recharging under intensive operational conditions [104].

Moreover, hierarchical network designs employing federated learning approaches further
enhance scalability and operational feasibility. By preprocessing raw sensor data at the edge—
such as compressing video streams or filtering telemetry data—these systems significantly
reduce network bandwidth demands, allowing model updates and analytic processes to occur
without sensitive raw data needing to exit the farm environment. This configuration effectively
balances computational responsiveness, data security, and limited rural network infrastructure
capacities [103].

6.3 User Interface (Ul) and User Experience (UX) Design Considerations

Effective UI/UX design remains fundamental for user acceptance and successful integration of
livestock mobile applications into farm management practices. Agricultural usability studies
consistently emphasize that farmers prefer intuitive interfaces closely aligned with their daily
operational workflows and practical field conditions. Key design criteria highlighted in
usability evaluations include clearly structured menus, rapid accessibility of essential functions,
and adequately sized interactive controls (e.g., large buttons and clearly recognizable icons),
facilitating quick, error-free interactions even while wearing protective gloves [105].

Empirical evaluations have repeatedly validated these design principles. For instance, a beef-
management mobile application, developed collaboratively with farmers, reported high
usability ratings (SUS scores exceeding 70) and substantial self-reported satisfaction,
confirming effectiveness in real-world farm environments [106]. Additional design
considerations crucial for practical farm deployment include high-contrast displays and
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minimal text reliance, ensuring readability under direct sunlight. Clear, simplified content
structures allowing users rapid access to essential tasks without navigating through multiple
screens further improve efficiency and satisfaction.

Localization support—including multilingual interfaces, regional terminology, and local
measurement units—ensures broader usability across diverse international and multi-ethnic
farming communities. Real-time feedback mechanisms, such as color-coded alerts, clear trend
visualizations, and actionable prompts, further enhance usability, allowing farmers to quickly
prioritize and manage animal care without extensive data interpretation efforts. Finally,
interoperability with widely-used farm management systems, enabled through standardized
APIs, significantly reduces redundant data entry tasks, providing veterinarians and farm
advisors immediate access to unified, accurate records [106]. Finally, interoperability with
widely used farm management systems, enabled through standardized APIs, significantly
reduces redundant data entry tasks, providing veterinarians and farm advisors immediate access
to unified, accurate records . Fig 3 illustrates the interdisciplinary integration of animal science
(facial AU biology), computer vision technology (RGB-thermal analysis), and precision-
agriculture systems, with arrows showing data flow from capture to real-time welfare alerts .

Fig 3: Conceptual illustration depicting interdisciplinary integration of animal science
(facial action unit biology), computer vision technology (RGB-Thermal image analysis),
and precision agriculture management systems. Arrows indicate the directionality of data
flow from initial data capture through to generation of real-time welfare notifications.

6.4 Ethical and Regulatory Compliance in Livestock Mobile Applications

Given the sensitive nature of farm production and animal health data, mobile applications must
incorporate rigorous privacy and ethical safeguards. Industry best practices emphasize robust
end-to-end encryption of data during transmission and storage, stringent user authentication
protocols, and clearly defined role-based access controls distinguishing farm owners from
employees [106]. Transparent data ownership policies and explicit user consent protocols
further establish trust. Applications like PIGLOW utilize anonymous benchmarking systems,
allowing users to.compare welfare metrics confidentially, facilitating peer learning without
compromising data privacy [102,107]. Regulatory guidelines also advocate comprehensive
traceability features, including audit logging, tamper-evident record-keeping, and customizable
data retention periods, ensuring compliance with mandatory animal welfare audit requirements.
Veterinary regulatory frameworks impose additional operational constraints. Many regions
stipulate that remote monitoring applications must operate strictly within an established
veterinarian—client—patient relationship (VCPR), clarifying that such tools complement rather
than replace professional veterinary oversight. Consequently, clear liability disclaimers and
predefined emergency flagging thresholds are mandated, ensuring users understand the
supplementary role of Al-based alerts in clinical decision-making contexts [108]. Ethical
considerations further encourage developers to adopt responsible innovation strategies,
involving both veterinarians and farmers directly in application design and validation processes.
Such co-creative approaches ensure technological advancements augment, rather than diminish,
traditional farmer roles, preserving essential human empathy and local expertise in animal
welfare practices [108].

Technical Performance Trade-offs in Mobile Application Deployment
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mobile-optimized CNN architectures significantly outperform larger conventional models for
animal pain detection applications. The technical trade-offs of mobile-optimized CNN
architectures are summarized in Fig 4. ShuffleNetV2 emerges as the optimal architecture,
achieving 95.5% accuracy for pain classification with only 6.17 million parameters (~25-30
MB) and 22 FPS inference speed on smartphonesl. EfficientNetBO and MobileNetV3 also
demonstrate strong performance with 65-77% accuracy rates while maintaining practical
deployment characteristics of 17-50 MB model sizes and 12-21 FPS processing speeds. In
contrast, ResNet50-based approaches achieve only 65% accuracy with significantly larger
memory footprints and slower inference speeds, contradicting claims that larger models offer
superior performance for this application domain[75,109].

Multiple studies document successful clinical deployment of mobile animal pain detection
systems across various species, including cats (95.5% accuracy), sheep (92.7% accuracy),
horses (88.3% accuracy), and rabbits (87% accuracy)[57,77,110,111]. These mobile-optimized
systems demonstrate real-time processing capabilities, minimal battery consumption, and
successful integration into veterinary clinical workflows with high inter-rater reliability. The
research conclusively establishes that mobile-optimized CNN architectures are not only
technically feasible for smartphone deployment but also achieve superior accuracy compared
to conventional larger models while providing the computational efficiency necessary for
practical veterinary applications.

Fig 4: Grouped bar chart illustrating comparative benchmarks for mobile application
deployment of animal pain detection, presenting model file size (MB), pain detection
accuracy (%), and inference speed (FPS) across ShuffleNetV2, EfficientNetBO,
MobileNetV3Large, and ResNet-50 architectures. Benchmark metrics are based on
published peer-reviewed evaluations, supporting informed model selection according to
practical requirements for mobile veterinary Al applications.

6.5 Ethical Considerations in Al-Based Pain Monitoring

Implementing Al-driven facial grimace scales in dairy cows raises profound ethical questions
that go beyond technical issues like data privacy or compliance. Scholars emphasize that digital
livestock farming can reshape the human-animal bond and risk treating animals as mere data
points. For example, Neethirajan warns that “the use of artificial intelligence in digital livestock
farming may lead to a loss of personal connection between farmers and animals,” potentially
undermining animal well-being[112]. Similarly, recent reviews note that constant monitoring
(“quantified” animals) can diminish caretakers’ empathy: as, animals cannot consent to
surveillance, and caretakers “might become overly reliant on graphs or dashboard alerts,”
weakening the subtle, compassionate observation that traditionally guides animal care[113]. In
short, high-level ethical reflection asks not only how Al tools function but whether they respect
animals as sentient beings with interests. Ethicists point out that if Al focuses farm management
solely on efficiency or productivity, it risks violating animals’ autonomy (treating them as
instruments) and eroding virtues like compassion and responsibility[113,114]. A “should we”
perspective thus urges that any pain-detection Al must be integrated in ways that support rather
than replace the human-animal relationship[112,114].

Al Decision Support vs. Practical Adoption Risks

Al tools are often promoted as decision-support aids, but their real-world use may diverge.
There is a risk that some farmers will treat Al diagnoses as substitutes for professional care,
tempted by the illusion of cost savings. This raises both legal and welfare concerns: veterinary
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regulations (e.g. the U.S. requirement for a valid Veterinarian—Client—Patient Relationship)

exist to prevent unqualified treatment, and ignoring them could harm animals. Moreover, field

studies and expert workshops highlight several negative consequences of widespread Al
adoption:

. Reduced human-animal interaction: Automated monitoring can make stockkeepers
spend less time with cows, weakening the human—animal relationship. Schillings et al.
report that precision livestock systems “decrease animal keepers’ contact with their
animals,” which can lead to poorer welfare outcomes and “reduced stockmanship
skills”[115]. Over time, loss of hands-on familiarity may blunt a farmer’s ability to
notice subtle signs and bond with individual animals.

. Objectification and intensification: By enabling large-scale monitoring, Al can
inadvertently promote viewing cows as data sources. Workshop participants noted that
less direct contact may shift attitudes toward animals as “objects,” and that PLF could
facilitate farm intensification (managing more cows)[115]. Such objectification is
echoed by Neethirajan, who cautions against treating animals as “mere data
points”[112].

. Skill erosion and dependency: Reliance on algorithms risks deskilling. Farmers may
become dependent on Al alerts, reducing their own observational acumen. As one
review warned, technologies could “make the job less attractive” and raise questions
about the true meaning of being a farmer[115]. If Al is wrong or misinterprets signals,
over-reliance could delay veterinary intervention.

. Mental health and equity: The push to adopt advanced Al can strain farmers mentally
and financially. High costs and steep learning curves may create stress or widen a
“digital divide” between well-resourced and smaller farms[112,115]. Those with
limited access to tech might fall behind, raising justice concerns.

. Erosion of empathy: Finally, scholars caution that dashboards and automated alerts,
while efficient, may erode empathy. If caretakers “rely too heavily on data,” nuanced
animal behaviors (ear posture, vocalizations, etc.) might be overlooked[113]. This could
compromise the very welfare benefits that Al was supposed to enhance.

Taken together, these observations underline that Al should not replace human judgment or
veterinary care. As Schillings et al. conclude, responsible use requires codes of practice,
training, and co-design with farmers so that technology complements traditional husbandry
rather than undermining it[113,115].

Data Privacy and Legal Frameworks

Beyond welfare, Al-monitoring systems involve vast data streams that raise regulatory issues.
Video or sensor data on farms can implicate privacy laws: for example, the EU’s General Data
Protection Regulation (GDPR) applies to any personal information, potentially including
footage where farmworkers or visitors are identifiable[112]. Also digital farming tools “are
subject to existing legislation, as well as new laws such as GDPR”[112]. Farmers and
technology providers must therefore ensure compliant data handling, including secure storage,
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transparency about data use, and respect for individuals’ privacy. Cybersecurity is also crucial,
as breaches of animal data (or misused monitoring) could

undermine trust in these systems.

Similarly, animal-welfare laws and standards impose boundaries on Al use. In the United States,
the Animal Welfare Act (though focused on research and exhibition) reflects society’s
expectation of humane animal treatment. Many countries also have dairy-specific welfare codes
(e.g. the EU’s minimum welfare regulations, national “Red Tractor” standards, etc.). Any Al-
based pain monitoring must operate within these frameworks: it should trigger interventions
consistent with legal care requirements, not merely optimize production. For example, a cow
flagged as in pain must be treated in accordance with veterinary standards and animal-health
legislation.

In summary, integrating facial expression Al into dairy farming demands a responsible, animal-
centered approach. Ethical guidelines suggest co-developing technology with stakeholders
(farmers, veterinarians, ethicists) and embedding safeguards (data protection, obligatory vet
oversight, periodic ethical review)[112,115]. Only by addressing the “what if” and “should we”
questions on animal dignity, farmer roles, and legal duties can Al-based monitoring truly
benefit cow welfare without unintended harm.

7. Future Perspectives and Recommendations

The field of automated pain detection in dairy cattle is at a crucial juncture, where
groundbreaking technological innovations must align closely with real-world implementation
and widespread industry adoption. As detailed in this comprehensive review, significant
advancements in artificial intelligence, computer vision, and mobile technology have produced
robust, accurate, and clinically meaningful tools capable of transforming livestock welfare
management. Moving forward, addressing challenges related to breed diversity, environmental
robustness, and collaborative implementation frameworks will be critical for successfully
transitioning these technologies from experimental validation to broad commercial acceptance.

7.1 Addressing Breed-Specific and Environmental Limitations

Advanced Transfer Learning for Crossbreed Adaptation

Breed-specific variability remains one of the most significant barriers to universal
implementation of automated cattle pain detection systems. Recent breakthroughs in transfer
learning methodologies offer compelling solutions by allowing models trained on a single breed
to generalize effectively to genetically diverse herds, mitigating the need for extensive breed-
specific datasets. Research has shown that transfer learning effectively maintains high accuracy
levels across diverse cattle breeds, providing scalable, broadly applicable solutions [116].

Moreover, multimodal data fusion has emerged as a powerful technique to overcome breed-
specific biases. For example, studies applying adaptive fuzzy logic in multimodal fusion
systems have demonstrated exceptional accuracy, achieving validation performance rates up to
95% for environment evaluation, 100% for feeding evaluation, and approximately 94% for
behavior detection [117]. These results underscore the transformative potential of integrating
diverse data sources—such as RGB imaging, thermal sensors, accelerometers, and
environmental monitors—to reliably capture breed-independent pain expressions [118].

Comprehensive multimodal datasets have significantly advanced crossbreed validation. By
capturing detailed facial anatomical variations and behavioral patterns across breeds,
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researchers have developed models that generalize more effectively. Notably, advanced neural
network architectures such as Vision Transformers with Bi-Level Routing Attention have
achieved impressive facial recognition accuracies of 98.36%, adeptly handling breed-specific
anatomical differences [116]. Leveraging the global contextual understanding provided by
transformer models positions them as particularly suitable for addressing breed-dependent
variations in pain-related expressions.

Environmental Robustness via Edge Computing

The unpredictable and dynamic nature of farm environments poses substantial obstacles to
implementing automated pain detection systems. Edge computing solutions have emerged as
pivotal for enhancing environmental robustness, enabling real-time data processing in
challenging agricultural contexts. Recent edge-computing deployments have demonstrated
extremely low latency (5-10 milliseconds), significantly improving responsiveness of livestock
monitoring systems [119]. Intelligent wearable devices powered by solar energy have achieved
continuous operation in real-world settings, consistently maintaining accuracy (97.27%) in
health and behavior classification tasks [119]. These findings underscore the practicality and
sustainability of edge computing frameworks.

Moreover, integrating edge computing with mobile applications simultaneously addresses
multiple environmental constraints reducing network bandwidth requirements, enhancing
system resilience during connectivity disruptions, and facilitating reliable operation even in
remote agricultural locations [120]. Robust environmental monitoring, exemplified by multi-
zone Temperature-Humidity Index (THI) predictive models, further complements pain
detection systems, enabling adaptive processing and accurate welfare assessment across diverse
environmental conditions [121].

Enhancing Reliability through Multimodal Fusion

To ensure robust pain detection across varying environmental conditions, multimodal data
fusion strategies are crucial. Recent research clearly demonstrates superior reliability and
accuracy when combining multiple data streams such as accelerometry, visual observation,
thermal imaging, and environmental sensors relative to single-sensor approaches. Studies
confirm that accelerometers detect behavioral changes related to pain significantly earlier than
visual assessments alone; conversely, visual observations provide nuanced identification of
pain-specific behaviors undetectable by sensor data alone [98].

Further advancements in sensor fusion methodologies such as integrating computer vision with
mechanical sensors have shown notable improvements in monitoring precision. Studies
monitoring cattle brush-use behaviors have highlighted that combined machine-learning
models significantly outperform individual sensor approaches, enhancing accuracy and
reliability [122]. The creation of comprehensive multimodal datasets encompassing diverse
sensor types has significantly strengthened fusion methodology validation, underpinning
development of robust algorithms capable of maintaining high accuracy across heterogeneous
farm conditions [123].

7.2 Enhancing Real-time and Longitudinal Pain Monitoring

Precision Livestock Farming Integration

Integrating automated pain detection into broader precision livestock farming (PLF)
frameworks represents a critical step toward comprehensive herd health and welfare
management. Recent research highlights the effectiveness of PLF technologies, employing
real-time monitoring, machine learning, and loT-based solutions to enable proactive disease
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detection and welfare management [120]. LoRa-based sensor networks integrated with
Subspace k-Nearest Neighbors classifiers have consistently demonstrated superior disease
classification accuracy and timeliness, enabling targeted interventions [120].

Scalable, Al-driven welfare platforms leveraging deep learning and edge computing are now
demonstrating significant promise, automating critical welfare assessments such as locomotion
scoring, health status evaluation, and body condition monitoring. Markerless animal
identification further enhances these platforms, making them both practical and scalable across
farm sizes [118].

Continuous Monitoring Frameworks

Implementing continuous pain monitoring necessitates sophisticated technological
architectures capable of real-time computation and sustained reliability over extended periods.
loT-based cattle monitoring systems employing accelerometer sensors coupled with advanced
statistical models (e.g., ARIMA, wavelet transformations) effectively predict and classify
behavioral patterns, facilitating proactive health management [119]. Additionally, continuous
multi-zone environmental monitoring (THI prediction) achieves robust predictive accuracy,
enabling proactive environmental control strategies and thereby enhancing overall herd welfare
[121].

Integration with Herd Health Records

Effective integration of automated pain detection with existing farm management systems is
vital to enable actionable insights and informed herd-health decision-making. Standardizing
data formats and protocols has emerged as a crucial facilitator of seamless integration across
multiple monitoring systems, ensuring consistency and comparability in welfare assessments
[124]. Advanced machine-learning analytics further enhance data integration capabilities,
providing actionable insights that optimize treatment strategies, resource allocation, and herd
health management overall [120].

7.3 Recommendations for Industry-wide Implementation

Collaborative Veterinary-Al Partnerships

Successfully deploying automated pain detection technologies requires well-structured
collaborative frameworks combining veterinary expertise with Al capabilities. Effective
human-Al collaboration substantially improves decision-making efficiency, operational
precision, and stakeholder trust. Recent research emphasizes transparency and explainability in
Al outputs, significantly enhancing adoption rates among veterinarians and farmers.
Maintaining veterinary oversight within collaborative frameworks is critical, ensuring that Al
systems serve as valuable decision-support tools rather than substitutes for expert veterinary
judgment.

Structured training programs significantly enhance veterinarian and farmer confidence in Al-
driven tools, improving diagnostic outcomes and adoption rates. Such industry-specific
collaborative frameworks, integrating technology developers, veterinarians, and farm managers
throughout design and deployment phases, have been demonstrated as critical for addressing
practical implementation challenges effectively.

Standardization and Validation Protocols

Establishing rigorous industry-wide standards and validation protocols is imperative for
ensuring the reliability, safety, and effectiveness of automated pain detection systems.
Validation protocols must consider species-specific physiological and behavioral nuances, as
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validation methodologies successful in one livestock species may not directly transfer to others.
External, independent validation is essential for industry credibility, as currently only a small
fraction (approximately 14%) of available technologies have undergone independent validation,
highlighting a significant gap in existing approaches [125].

Farm-specific Customization Strategies

Farm-specific customization is necessary due to variability in management practices,
environmental contexts, and operational scales. Recent studies indicate perceived ease-of-use
and demonstrated utility significantly influence farmer adoption decisions [103]. Cost-effective
approaches utilizing readily accessible technologies, such as optimized 10T sensor systems,
enhance economic feasibility and adoption rates across both small-scale and commercial
operations [119].

Scalability considerations, notably demonstrated through high-precision cattle tracking systems,
highlight that deep learning-based architectures can efficiently scale from individual animal
monitoring to extensive herd management applications without compromising accuracy or
operational efficiency [123]. This adaptability allows tailored technology deployments to
match diverse farming contexts. Table 4 outlines the technical specifications and recommended
enhancements for automated cattle pain detection systems, including performance targets for
multi-breed adaptability, environmental robustness, and practical usability.

Table 7: Technical specifications and recommended implementation enhancements for
automated cattle pain detection systems. Proposed performance targets emphasize multi-breed
adaptability, robust environmental integration, and high practical usability:

System Current Recommended Integration Performance
Component Capabilities Enhancements Requirements Targets
Al 95-99% accuracy Multi-breed Edge-cloud >95% accuracy
Processing in controlled validation; hybrid across all
conditions Environmental architecture breeds
adaptation
Sensor Individual sensor Multimodal Standardized >90% uptime;
Integration validation fusion; data formats <5% false
Continuous positive rate
monitoring
Mobile Basic monitoring  Real-time alerts;  Cross-platform >90% user
Applications capabilities Veterinary compatibility satisfaction
integration
Data Local storage; Real-time cloud Interoperability  <1% data loss;
Management Periodic integration; with farm Real-time
synchronization Predictive systems processing
analytics

37



1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578

Validation Species-specific Cross-breed; COSMIN >85%

Framework testing Multi- compliance; sensitivity;
environment External >90%
validation validation specificity

The future success of automated pain detection technologies for dairy cattle hinges upon
effectively aligning technological innovation with real-world practicalities and stakeholder
priorities. Comprehensive multimodal integration, robust environmental resilience, industry-
wide standardization, and collaborative implementation frameworks represent essential
pathways from experimental validation towards broad commercial adoption.

8. Conclusions

Automated pain detection in dairy cattle has reached an inflection point, transitioning from
experimental promise to real-world applicability, driven by breakthroughs in neurobiology,
artificial intelligence (Al), and mobile technology. Traditional veterinary assessment methods,
notably Numerical Rating Scales (NRS) and Visual Analog Scales (VAS), though historically
foundational, continue to face inherent limitations due to subjectivity (ICC range: 0.73-0.81),
invasiveness, and challenges in accurately capturing subtle pain indicators in large herds. In
stark contrast, validated facial grimace scales like UCAPS, boasting strong diagnostic metrics
(AUC =0.93), have introduced objective, quantifiable alternatives, significantly enhancing the
reliability of acute pain detection (sensitivity range: 0.66-0.90). Yet, a clear and pressing gap
persists in reliably assessing chronic pain conditions, underscoring the need for further targeted
research in this critical area.

The integration of advanced Al algorithms and computer vision technologies has marked a
revolutionary advancement in precision livestock welfare. Cutting-edge detection architectures,
such as RetinaNet (99.8% average precision) and YOLOv8-Pose (96.9% mAP), have enabled
remarkable accuracy and consistency in facial landmark detection and pain-related behavioral
analysis. Moreover, the deployment of multimodal Al strategies—combining RGB imagery
and thermal sensors—has achieved impressive accuracy (81-95%) in detecting inflammation
and physiological stress responses linked to pain. The practicality of these technologies in real-
world farm environments has been further validated by edge-computing frameworks like Dairy
DigiD, demonstrating robust real-time processing capabilities (24 frames per second) under
variable conditions, significantly enhancing their readiness for widespread commercial
deployment.

Mobile technology further amplifies these advancements by democratizing access to
sophisticated welfare monitoring systems. Validated applications such as PIGLOW (featuring
high usability ratings) and VetPain (inter-rater reliability ICC >0.87) highlight the critical role
of intuitive, user-centric designs in facilitating widespread adoption by non-specialist
stakeholders. These applications incorporate multilingual interfaces, actionable alerts, and
seamless integration into daily farming workflows, thus bridging the gap between technological
innovation and practical usability in diverse agricultural contexts.

Robust validation protocols have confirmed strengths of automated pain detection systems,
particularly in acute pain detection scenarios (precision and recall consistently exceeding 0.80).
However, critical limitations remain concerning breed-specific performance biases and the
precise differentiation between chronic and acute pain states. Future research directions must
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prioritize advanced transfer-learning approaches, effectively addressing genetic variability
between cattle breeds such as Holstein and Zebu where transformative transformer-based
architectures have already demonstrated accuracy rates reaching 98.36%. Complementing this,
environmental resilience must be strengthened through the strategic deployment of solar-
powered edge-computing devices, which have achieved reliable behavior classification
accuracy of approximately 97.27%, ensuring operational sustainability across diverse,
challenging farm environments.

Longitudinal monitoring capabilities represent another critical area poised for substantial
impact. Integrating accelerometry data with advanced vision-based systems has already
demonstrated exceptional performance (up to 99.55% accuracy in lameness detection),
promising proactive herd health management that can significantly mitigate economic losses
associated with undetected pain. Leveraging these capabilities within Precision Livestock
Farming (PLF) frameworks enables earlier interventions, optimized herd health management,
and significant productivity gains, presenting compelling economic incentives for industry-
wide adoption.

However, these numeric gains are strongly context-dependent. Most high figures derive from
acute-pain datasets, controlled conditions or within-dataset validation; when evaluated under
LOAO or farm-fold (inter-farm) protocols, performance commonly drops (typical contractions
reported across studies ~10-25%). Breed, management and environment remain important
constraints: models trained on one breed or barn layout do not automatically generalize to
others. Likewise, reliable automated detection of chronic pain remains unresolved. Therefore,
claims that Al will “significantly” improve welfare must be anchored to these contextual limits
and to validated field performance.

To move from demonstrated capability to documented welfare impact, we recommend the
following measurable priorities:

1. Dataset breadth: curate and publish large, annotated datasets that include multiple
breeds, ages and chronic-pain cases to reduce out-of-sample failures.

2. Standardized validation: require LOAO and farm-fold testing and report sensitivity,
specificity, PPV/NPV and ROC-AUC with 95% Cls for each validation design; aim for
field-validated sensitivity/specificity >0.80 across at least three independent farms
before making deployment claims.

3. Cross-breed adaptation: adopt transfer-learning and few-shot strategies with explicit
fine-tuning on under-represented breeds to close genetic bias gaps.

4. Robust field deployment: prioritize energy-efficient edge solutions and stress-testing in
real barns (lighting, occlusion, weather) to ensure continuous operation at target frame
rates (=20-30 fps).

5. Ethics and veterinary integration: implement mandatory escalation pathways to
veterinarians (VCPR-aligned), transparent data governance, and co-design with end
users to preserve human-animal relationships and avoid over-reliance on automation.

6. Impact evaluation: accompany technological deployments with longitudinal welfare
studies that quantify outcomes (e.g., reductions in undetected lameness, changes in
time-to-treatment, or modeled reductions in premature culling).

By focusing on these concrete milestones rather than on unqualified potential, future work can
translate current algorithmic advances into sustained animal-level improvements in welfare.

The implications for global dairy cattle welfare from successfully implementing automated

pain detection technologies are profound and far-reaching. With more than 270 million dairy
cows globally experiencing pain-related welfare challenges, widespread adoption of these
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innovations could drastically reduce animal suffering, significantly extend herd longevity
(potentially decreasing premature culling rates by 10-20%), and contribute to sustainable and
ethically responsible agriculture. However, translating these opportunities into real-world
outcomes requires sustained commitment to addressing identified gaps—particularly the
accurate identification of chronic pain and improved crossbreed adaptability.

Moving forward, dedicated investment is essential for developing comprehensive, publicly
accessible datasets, rigorous ethical Al deployment guidelines, and targeted educational
programs for farmers and veterinary professionals. Pioneering solutions like CowPain Check
exemplify the immense potential of thoughtful technological integration, setting powerful
precedents for humane, sustainable dairy farming practices aligned closely with the United
Nations Sustainable Development Goals (SDGs). By addressing current technical, economic,
and social challenges through a coordinated interdisciplinary approach, the dairy industry can
leverage these innovations not only to elevate animal welfare standards significantly but also
to lead broader advancements across global livestock welfare management practices.
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2025  Figure 1. (A) Schematic illustration of Cobalt-60 gamma irradiation applied to primary
2026  muscle cells isolated from Hanwoo muscle tissue. (B) Representative axial, coronal, and
2027  sagittal plane images showing the targeted irradiation field using the Gamma Knife system.
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Figure 2. (A) Total cell number, live cell number, and viability of Hanwoo muscle-derived
cells irradiated with different doses (Con, 2, 10, and 20 Gy) under suspension conditions. (B)
Total cell number, live cell number, and viability of irradiated Hanwoo muscle-derived cells
after 1 day of culture. (C) Total cell number, live cell number, viability of irradiated Hanwoo
muscle-derived cells after 6 day of culture. (D) Relative mRNA expression levels of MYF5,
MYOD1, TP21, and TP53 in Hanwoo muscle-derived cells after 6 days of culture under each
irradiation dose (Con, 2, 10, and 20 Gy). All mRNA expression levels were normalized to the
housekeeping gene GAPDH. Different letters indicate statistically significant differences (p <
0.05, one-way ANOVA followed by Tukey’s post hoc test).
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Figure 3. (A) Representative phase-contrast images of Hanwoo muscle-derived cells at 2, 4,
and 6 days of culture following gamma irradiation at different doses (Con, 2, 10, and 20 Gy).
Magnification: 40x%, Scale bars = 100 pm. (B) Quantitative analysis of cell morphology
showing cell length (um) and width (um) at 2, 4, and 6 days post-irradiation in each treatment
group. (C) Distribution histograms of calculated cell area (length x width) at 2, 4, and 6 days
of culture under each irradiation condition. Threshold values were defined as the mean + 2
standard deviations (2SD) of the control (Con) group at each time point. Different letters
indicate statistically significant differences (p < 0.05, one-way ANOVA followed by Tukey’s
post hoc test).
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2051  Figure 4. (A) Representative phase-contrast images of Hanwoo muscle-derived cells cultured
2052 under differentiation conditions for 1 and 2 days following gamma irradiation at different
2053  doses (Con, 2, 10, and 20 Gy). Magnification: 40%, Scale bars = 100 um. (B) Relative mRNA
2054  expression levels of MYOG and MYH?2 in irradiated Hanwoo muscle-derived cells after 2
2055  days of differentiation culture. All MRNA expression levels were normalized to the

2056  housekeeping gene GAPDH. Different letters indicate statistically significant differences (p <
2057  0.05, one-way ANOVA followed by Tukey’s post hoc test).
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