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Abstract  14 
Pain management in dairy cattle remains a persistent challenge, hindered by subjective 15 
assessments and inherent observer biases that compromise animal welfare and impose 16 
significant economic burdens due to conditions such as mastitis and lameness. Emerging 17 
artificial intelligence (AI) technologies, integrated with computer vision and mobile platforms, 18 
now offer transformative solutions through objective, automated facial expression analysis. 19 
Advancements in neurobiological research have elucidated the mechanisms underlying bovine 20 
pain expression, enabling the development of robust grimace scales validated by high 21 
sensitivity and specificity (e.g., UCAPS, sensitivity/specificity: 0.78–0.85). Recent AI models 22 
employing advanced architectures such as YOLOv8-Pose (achieving 96.9% mAP in landmark 23 
detection) and transformer-based frameworks (demonstrating 98.36% accuracy in facial 24 
recognition tasks) significantly surpass conventional methodologies in accuracy, reliability, 25 
and scalability. Moreover, multimodal approaches fusing RGB and thermal imaging have 26 
demonstrated remarkable efficacy (81–95% accuracy) in capturing nuanced physiological 27 
indicators of pain. Edge-optimized deployment strategies now enable real-time, field-level 28 
applications, delivering rapid classifications at up to 24 frames per second with classification 29 
accuracies of 94.2%. Yet, substantial challenges persist, particularly in accounting for breed-30 
specific variability and environmental interferences that limit universal applicability. Critical 31 
future research avenues include transfer learning for improved crossbreed adaptability, 32 
multimodal integration for chronic pain detection, and the advancement of longitudinal 33 
monitoring frameworks within precision livestock farming. The practical implications of these 34 
technologies are profound, promising significant welfare improvements through timely 35 
interventions, reduced economic losses, and the broader ethical advancement of AI-driven 36 
veterinary partnerships. The integration of automated facial expression-based pain detection in 37 
dairy operations thus holds immense potential to redefine standards in animal welfare and 38 
establish a new paradigm for sustainable and ethically aligned global dairy production. 39 
 40 
Keywords: Artificial Intelligence in Dairy Farming; Automated Pain Detection; Facial 41 
Expression Analysis; Precision Livestock Farming; Grimace Scales; Computer Vision in 42 
Agriculture. 43 
 44 
1. Introduction 45 
 46 
The welfare of dairy cattle represents an urgent priority for producers, veterinarians, regulatory 47 
bodies, and consumers worldwide, driven by both ethical responsibilities and significant 48 
economic considerations. Pain-related health issues, notably mastitis and lameness, exact 49 
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profound economic tolls and substantially compromise animal well-being. Traditional 50 
methodologies for assessing pain in dairy cattle - primarily behavioural observations, 51 
physiological indicators, and clinical scoring systems, are hindered by inherent limitations 52 
including observer bias, subjectivity, invasiveness, and insufficient temporal sensitivity. The 53 
advancement of artificial intelligence (AI), computer vision, and mobile technologies offers 54 
new avenues for precise, objective, and scalable pain monitoring, thereby significantly 55 
enhancing animal welfare and economic sustainability in dairy farming through precision 56 
livestock farming (PLF) initiatives. 57 
 58 
1.1. Significance of Pain Management in Dairy Cattle Welfare 59 
Effective pain management is increasingly recognized as a cornerstone of dairy cattle welfare, 60 
significantly influencing both animal well-being and production efficiency. Mastitis, one of the 61 
predominant diseases affecting dairy herds globally, imposes extensive economic 62 
consequences extending far beyond the direct expenses associated with treatment. Recent 63 
studies underscore that mastitis profoundly reduces the net present value (NPV) of dairy 64 
operations due to decreased milk yield, impaired reproductive capabilities, and increased 65 
culling rates [1]. Moreover, the negative economic ramifications of mastitis extend notably into 66 
reproductive outcomes, as cows afflicted with mastitis display substantially reduced conception 67 
rates compared to their healthy counterparts: notably lower first-service (41.7% vs. 58.2%), 68 
third-service (30.2% vs. 45.3%), and cumulative conception rates across multiple services (36.4% 69 
vs. 49.2%)[1]. 70 
 71 
Lameness is another significant contributor to pain-associated economic losses within dairy 72 
operations. Recent evidence positions lameness as the third most economically damaging 73 
health issue among dairy cattle, preceded only by mastitis and fertility disorders [2]. The 74 
economic impact of lameness manifests clearly through immediate and considerable reductions 75 
in milk production shortly after the onset of symptoms [3]. Beyond direct production losses, 76 
lameness triggers additional financial burdens from increased treatment costs, prolonged 77 
calving intervals, and the necessity of premature culling [2]. Collectively, the multidimensional 78 
nature of pain-related economic impacts underscores the necessity of developing effective, 79 
scalable, and precise methods for timely detection and intervention. 80 
 81 
1.2. Limitations of Traditional Pain Assessment Methods 82 
Current practices for pain assessment in dairy cattle rely predominantly on subjective 83 
behavioural observations, physiological measurements, and clinical scoring techniques. These 84 
methods exhibit significant methodological constraints that compromise their reliability and 85 
applicability. Systematic reviews have documented considerable subjectivity inherent in 86 
behavioural assessments, with variations in observer outcomes heavily influenced by factors 87 
such as evaluator experience, gender, age, and contextual nuances [4]. Meta-analyses have 88 
quantified this subjectivity, demonstrating substantial discrepancies in reported pain scores 89 
between studies employing diverse scales and terminologies [4]. 90 
 91 
Observer bias and inter-rater variability further weaken the reliability of conventional pain 92 
assessment tools. Recent evaluations employing the COSMIN (Consensus-based Standards for 93 
the Selection of Health Measurement Instruments) guidelines highlight that only a small subset 94 
of behavioural-based instruments achieve consistently high validation scores across all 95 
essential measurement criteria [5]. These findings emphasize the critical challenges associated 96 
with obtaining dependable and uniform pain assessments, particularly within commercial dairy 97 
environments where evaluators face stringent time constraints and limited training 98 
opportunities. 99 
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 100 
Furthermore, traditional assessment approaches frequently fail to capture the dynamic and 101 
transient nature of pain expressions. Most conventional evaluations provide only episodic, 102 
snapshot observations, which may overlook brief but clinically meaningful expressions of pain. 103 
Research indicates that pain-related facial expressions in livestock often last between 0.3 and 104 
0.7 seconds, rendering periodic manual observations insufficiently sensitive to identify early-105 
stage or subclinical pain conditions [6]. This temporal limitation presents significant gaps, 106 
allowing undetected pain states to escalate unchecked between observation intervals. 107 
 108 
Additionally, invasive traditional methods raise critical animal welfare concerns. Physiological 109 
indicators, such as blood sampling or rectal temperature measurement, may induce stress 110 
reactions in animals, inadvertently confounding pain assessment outcomes [7]. The necessary 111 
handling and restraint involved in invasive assessments can mask or artificially amplify 112 
expressions of pain, thus undermining both the accuracy and ethical justification of such 113 
procedures [7]. 114 
 115 
1.2. Emergence of Artificial Intelligence and Mobile Technology in Veterinary Medicine 116 
The integration of artificial intelligence and mobile technologies into veterinary medicine has 117 
witnessed rapid acceleration since 2021, significantly advancing capabilities in automated 118 
animal welfare monitoring and pain detection systems. Recent innovations in computer vision 119 
techniques demonstrate impressive accuracy in cattle biometric identification and behaviour 120 
monitoring. For example, Vision Transformer (ViT) architectures applied to the 121 
Opencows2020 dataset achieved cattle identification accuracy rates as high as 99.79%, while 122 
YOLO-based frameworks combining YOLOv5 with ViT have attained detection precision 123 
(mean average precision, mAP) of 97.8% and identification accuracy of 96.3% in practical farm 124 
settings [8,9]. 125 
 126 
Precision livestock farming (PLF) represents a paradigm shift in dairy farm management, 127 
incorporating AI-driven sensors, computer vision, and big data analytics to monitor animal 128 
health, behavior, and welfare continuously. Contemporary PLF systems leverage diverse 129 
sensing modalities such as RFID tags, accelerometers, thermal imaging, and computer vision 130 
analytics to deliver comprehensive, real-time insights into cattle welfare. Research indicates 131 
that accelerometer-based systems effectively detect movement patterns indicative of lameness 132 
or stress-related behaviors, while multimodal sensor integration consistently outperforms 133 
single-modality systems in terms of detection accuracy and reliability [10]. 134 
 135 
The proliferation of mobile technology has facilitated widespread accessibility to advanced 136 
monitoring capabilities, empowering farmers to deploy PLF solutions effectively, even without 137 
extensive technical expertise or substantial infrastructural investments. Recent deployments of 138 
mobile applications for livestock welfare have demonstrated high usability and practical 139 
feasibility in commercial production scenarios, enabling farmers to swiftly interpret data and 140 
respond proactively to welfare alerts[11]. The seamless integration of mobile technology with 141 
advanced AI algorithms has successfully addressed temporal limitations inherent in traditional 142 
pain assessment methodologies, enabling timely interventions and enhancing animal welfare 143 
outcomes in dairy cattle. 144 
 145 
Thus, the convergence of AI, computer vision, and mobile platforms holds remarkable promise 146 
to address current limitations in pain assessment, facilitating objective, scalable, and ethically 147 
responsible improvements in dairy cattle welfare and economic viability. 148 
 149 
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1.3 Methodology 150 
This systematic review followed PRISMA 2020 guidelines to identify and synthesize peer-151 
reviewed research on AI-based animal pain detection systems. A comprehensive search was 152 
conducted across three major databases (PubMed, Web of Science, Scopus) covering 153 
publications from January 2021 to July 2025. 154 
 155 
Search Strategy: Boolean combinations of terms including ("artificial intelligence" OR 156 
"machine learning" OR "computer vision" OR "deep learning") AND ("pain detection" OR 157 
"facial expression" OR "grimace scale") AND ("cattle" OR "livestock" OR "cat" OR "dog" OR 158 
"horse" OR animal species terms) were employed with database-specific syntax optimization. 159 
A representative PubMed search string. 160 
 161 
("artificial intelligence"[Title/Abstract] OR "machine learning"[Title/Abstract] OR "deep 162 
learning"[Title/Abstract] OR "computer vision"[Title/Abstract])  AND ("pain 163 
detection"[Title/Abstract] OR "facial expression"[Title/Abstract] OR "grimace 164 
scale"[Title/Abstract])  AND ("cattle"[Title/Abstract] OR "cow"[Title/Abstract] OR 165 
"livestock"[Title/Abstract] OR "sheep"[Title/Abstract] OR "horse"[Title/Abstract] OR 166 
"dog"[Title/Abstract] OR "cat"[Title/Abstract]) 167 
 168 
Eligibility Criteria: Studies were selected according to predefined inclusion and exclusion 169 
criteria, as outlined in Table 1.  170 
Table 1. Inclusion and exclusion criteria for selecting publications for a systematic review  171 
Domain Inclusion Criteria Exclusion Criteria 
Publication type Peer-reviewed journal articles Preprints, non-peer-reviewed 

works, conference abstracts 
Language English Non-English publications 
Study type Primary research reporting 

automated AI/ML approaches for 
animal pain detection 

Reviews, opinion papers, or 
studies not involving automated 
methods 

Indicators Facial action units (FAUs), facial 
expressions, or facial-based 
indicators 

Studies using only physiological 
or behavioral (non-facial) 
indicators 

Performance 
reporting 

Quantitative performance metrics 
(accuracy, sensitivity, specificity, 
AUC, etc.) 

Studies lacking validation or 
performance reporting 

Ground truth Veterinary assessment or validated 
pain scales used as gold standard 

Studies without validated ground 
truth 

 172 
Study Selection:  Search results were exported to Zotero reference manager. Duplicate records 173 
were removed. Screened titles and abstracts for relevance, followed by full-text assessment 174 
against eligibility criteria. 175 
Data Synthesis: A total of 112 high-quality studies met inclusion criteria, encompassing 176 
multiple species (cattle, sheep, horses, cats, dogs, rabbits, rodents) and AI approaches (CNNs, 177 
Vision Transformers, YOLO architectures). Performance metrics were systematically extracted 178 
and synthesized both quantitatively and narratively to provide comprehensive coverage of 179 
current AI capabilities in automated animal pain detection. The selection process is documented 180 
in the PRISMA 2020 flow diagram (Figure 1), detailing the number of records identified, 181 
screened, excluded (with reasons), and included in the final synthesis. 182 
 183 
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Figure 1. PRISMA 2020 flow diagram for study selection in the systematic review on AI-184 
based facial action unit analysis for pain detection in dairy cattle. 185 
 186 
2. Pain Assessment in Dairy Cattle: Foundations and Limitations  187 
 188 
Effective pain assessment in dairy cattle involves a complex interplay of animal welfare science, 189 
veterinary practice, agricultural economics, and ethical considerations. Historically viewed 190 
primarily as a welfare-focused issue, pain detection and management have evolved into 191 
multidimensional challenges that significantly impact the economic sustainability and social 192 
acceptability of modern dairy farming operations. 193 
 194 
2.1 Importance of Pain Detection in Dairy Cattle Welfare and Economics 195 
Detecting pain in dairy cattle is critical not only for animal welfare but also for its profound 196 
economic implications across the dairy industry. Unaddressed pain negatively affects animal 197 
behavior and physiological health, triggering stress responses that diminish productivity, 198 
growth rates, milk yield, and reproductive efficiency [12]. These physiological impacts such as 199 
hormonal stress responses, metabolic disruptions, and immune system suppression directly 200 
compromise animal health, thus reducing overall farm profitability [7]. 201 
 202 
Economic incentives further underscore the importance of effective pain mitigation. Zoltick et 203 
al. (2024) highlight that reducing pain through proactive analgesia enhances production 204 
efficiency sufficiently to offset the associated analgesic costs, thereby incentivizing farmers 205 
toward improved animal welfare management [7]. Additionally, stress responses triggered by 206 
pain negatively affect nutrient absorption, reproductive function, and general body condition, 207 
collectively translating into measurable economic losses at the herd level [7]. 208 
 209 
2.2 Impact on Productivity, Longevity, and Economic Losses 210 
Economic losses attributed to pain-related conditions in dairy cattle are substantial, with 211 
mastitis, lameness, and ketosis identified as the primary economic burdens globally, costing 212 
the dairy sector approximately $65 billion annually [13]. These losses encompass direct 213 
treatment expenses and significant indirect impacts, including reduced productivity, 214 
reproductive failures, premature culling, and impaired herd longevity. 215 
 216 
Mastitis-Associated Economic Impact 217 
Globally, mastitis remains one of the most financially devastating dairy cattle diseases, 218 
incurring losses estimated between $20 and $30 billion annually [14]. Economic analyses show 219 
that clinical mastitis causes significant individual losses through decreased milk production, 220 
impaired fertility, and increased culling rates, with subclinical mastitis alone accounting for 221 
roughly 70-80% of the total mastitis-related economic burden [14]. 222 
 223 
The COVID-19 pandemic intensified these economic pressures. Research indicates dairy farms 224 
globally experienced increased mastitis-related losses due to disrupted veterinary care access, 225 
constrained market channels, and falling milk prices. These factors amplified the disease's 226 
financial burden, emphasizing systemic vulnerabilities within dairy supply chains and 227 
reinforcing the economic importance of early, accurate pain detection methods [14]. 228 
 229 
2.2.1. Lameness and Production Performance 230 
Lameness is another prominent pain-related condition severely impacting dairy farm 231 
profitability. Recent longitudinal research demonstrated that lameness significantly reduces 232 
milk yield, with lame cows producing approximately 161-183 kg less milk per lactation 233 
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compared to their healthy counterparts [15]. Lameness also prolongs calving-to-conception 234 
intervals, with affected cows experiencing significantly longer delays—approximately 38 235 
additional days if lame before the first service and up to 87 days if lame afterward [15]. 236 
 237 
Moreover, the timing of lameness occurrences further amplifies its economic implications. 238 
Early lactation lameness typically triggers severe inflammatory responses, reducing feed intake, 239 
rumination times, and milk production efficiency. Such behavioral changes negatively affect 240 
energy balance and ovarian activity, thereby delaying postpartum reproductive cyclicity [15]. 241 
These cumulative productivity losses underscore lameness's profound economic consequences. 242 
 243 
Lameness also indirectly exacerbates mastitis risks, creating additional economic complexity. 244 
Lame cows spend increased time lying on contaminated bedding, heightening bacterial 245 
exposure risks and subsequently raising mastitis incidence rates [16]. Thus, lameness indirectly 246 
contributes to economic losses through diminished milk quality and increased treatment 247 
expenses, reflecting interlinked disease management challenges. 248 
 249 
2.3 Traditional Methods of Pain Assessment 250 
Traditional pain assessment approaches predominantly rely on direct behavioral observations, 251 
physiological biomarkers, and structured clinical scoring systems. Despite recent 252 
methodological improvements, these approaches carry inherent limitations affecting their 253 
practical effectiveness. 254 
 255 
2.3.1. Behavioral Indicators and Observational Methods 256 
Behavioral observations remain a cornerstone of cattle pain assessment. Typical indicators 257 
include abdominal discomfort behaviors, altered locomotion, posture changes, and interaction 258 
disruptions. Recent advancements, such as accelerometer-based movement analyses, enhance 259 
behavioral assessment objectivity, capturing precise mobility pattern alterations associated with 260 
pain [7]. 261 
 262 
Tools like the Cow Pain Scale, validated in recent literature, systematically identify behavioral 263 
indicators—including reduced environmental interaction, altered posture, and decreased 264 
responsiveness—that effectively signal pain [17]. Despite validation, these tools heavily 265 
depend on observer training and experience, often leading to subjective variability [4]. 266 
 267 
2.3.2. Physiological Measures and Biomarker Assessment 268 
Physiological biomarkers, notably cortisol, offer quantifiable pain detection metrics. Recent 269 
validation demonstrates plasma cortisol's diagnostic reliability, achieving receiver operating 270 
characteristic (ROC) curves (AUC >0.7) at specific post-pain stimulus intervals [18]. 271 
Additionally, hair cortisol provides robust chronic stress assessments by reflecting prolonged 272 
hypothalamic-pituitary-adrenal (HPA) axis activation, offering retrospective pain measures 273 
superior to acute assessments [18]. 274 
 275 
Infrared thermography (IRT) has gained traction as a non-invasive physiological pain indicator, 276 
demonstrating reliable diagnostic accuracy at specific post-intervention intervals (e.g., 72 hours, 277 
AUC >0.7). However, environmental factors, including ambient temperature and humidity, 278 
substantially impact IRT accuracy, requiring stringent calibration [19]. 279 
 280 
2.3.4. Advanced Physiological Monitoring Technologies 281 
Pressure algometry quantifies mechanical nociceptive thresholds, effectively distinguishing 282 
pain states such as digital dermatitis in cattle. Recent studies confirmed its reliability, though 283 
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practical constraints—including animal restraint requirements and specialized training—limit 284 
widespread implementation [20]. Integration of multiple physiological indicators, as recent 285 
research suggests, may enhance assessment accuracy, given that single biomarkers rarely offer 286 
definitive pain discrimination [18]. 287 
 288 
2.4. Facial Expressions and Grimace Scales: Bridging Traditional and Automated Methods  289 
Facial expressions constitute one of the most fundamental, evolutionarily conserved 290 
communication mechanisms for pain across mammalian species. The development of 291 
standardized grimace scales has significantly enhanced objective pain assessment in veterinary 292 
medicine, overcoming traditional limitations related to observer subjectivity. This section 293 
systematically examines the neurobiological mechanisms underlying facial expressions of pain, 294 
the rigorous development and validation processes for grimace scales across domestic, 295 
laboratory, and farm animal species, and addresses ongoing challenges in their clinical 296 
applicability and reliability for livestock welfare management.  297 
 298 
2.4.1 Neurobiological Basis of Pain Expression 299 
Neural Pathways and Facial Action Unit Activation 300 
Facial expressions of pain involve intricate interactions among nociceptive processing, 301 
emotional regulation, and motor control pathways. These systems collectively produce 302 
observable facial muscle responses indicative of pain states. Recent neuroscientific 303 
advancements have identified critical neural circuits translating pain perception into facial 304 
action units (FAUs), thus providing foundational scientific justification for grimace scale 305 
methodologies.  306 
 307 
Current evidence underscores the amygdala’s pivotal role in generating pain-related facial 308 
expressions due to its extensive connections with sensory processing and motor control regions 309 
[21]. The central nucleus of the amygdala (CeA) serves as an integrative hub, receiving direct 310 
inputs from nociceptive regions such as the parabrachial nucleus, and projecting to brainstem 311 
motor centres that regulate facial musculature [22]. Optogenetic studies reveal that targeted 312 
CeA circuit activation elicits distinct pain-associated facial expressions, whereas inhibition 313 
reduces such responses, confirming functional links between pain perception and facial motor 314 
output [23].  315 
 316 
The trigeminal nerve complex further supports pain-related facial expressions, facilitating both 317 
sensory detection and motor responses via the trigeminal motor nucleus, which governs critical 318 
muscles involved in grimacing behaviors [24].Thus, the amygdala-trigeminal circuitry is 319 
instrumental in generating specific facial pain behaviors.  320 
 321 
Recent molecular-level insights highlight the contribution of non-neuronal elements, 322 
particularly astrocytes within the CeA, to facial expression regulation during chronic pain states. 323 
Elevated glial fibrillary acidic protein (GFAP) levels correspond with sustained facial pain 324 
behaviors, and selective inhibition of amygdala astrocytes reduces these expressions, indicating 325 
glial involvement in pain signalling and expression modulation [22].  326 
 327 
Species-Specific Neural Control Mechanisms 328 
Although foundational neural circuits for facial pain expressions remain evolutionarily 329 
conserved, species-specific variations in facial musculature and innervation patterns 330 
significantly impact observable expressions. In cattle, anatomical studies reveal unique facial 331 
muscle arrangements and nerve supply patterns distinct from human or rodent models, 332 
emphasizing the necessity for species-specific grimace scales [6].  333 
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 334 
2.4.2 Development and Validation of Grimace Scales Across Species 335 
Evolution of Standardized Assessment Approaches 336 
Grimace scale development has evolved significantly, transitioning from initial observational 337 
methodologies to rigorously validated, standardized instruments providing quantifiable pain 338 
metrics. Key developmental principles—identification of consistent FAUs correlating with 339 
pain, standardized scoring criteria for trained observers, and validation against established pain 340 
indicators—have maintained consistency across various species [25]. This systematic approach 341 
enhances scientific rigor and practical applicability across different animal groups.  342 
 343 
Laboratory Animal Applications and Refinements 344 
Grimace scales in laboratory animals, particularly rodents, have benefited from substantial 345 
refinement and validation. The Mouse Grimace Scale (MGS) now demonstrates optimized 346 
accuracy with fewer facial action units; notably, orbital tightening consistently exhibits strong 347 
predictive accuracy across pain models [26].  348 
 349 
Advanced quantitative methods employing machine learning have further improved rodent 350 
grimace scale accuracy. Automated Rat Grimace Scale (RGS) scoring, leveraging advanced 351 
computational techniques, achieves precision and recall rates above 97%, closely matching 352 
human expert assessments (ICC of 0.82) [27]. Training protocols significantly enhance inter-353 
rater reliability in rat grimace assessments, indicating sustained improvements over extended 354 
periods and emphasizing the durability of standardized training programs [28].  355 
 356 
Feline Pain Assessment Advances 357 
Recent advancements in feline pain assessment have demonstrated high reliability and practical 358 
applicability of the Feline Grimace Scale (FGS). Validation across diverse user groups—359 
veterinarians, veterinary nurses, students, and caregivers—confirms robust inter-rater 360 
reliability, with intraclass correlations consistently between 0.65 and 0.69 [29]. Structured 361 
training substantially improves observer consistency, elevating reliability metrics to excellent 362 
levels (ICC 0.75–0.80) [30].  363 
 364 
Furthermore, automated feline pain recognition using deep learning techniques has achieved 365 
promising accuracy (>70%), employing precise landmark-based analysis derived from feline 366 
facial action coding systems [31]. Nevertheless, continued validation remains critical to address 367 
variability across datasets and individual cat populations.  368 
 369 
Equine Grimace Scale Development and Challenges 370 
Equine grimace scales face distinct challenges, particularly related to the brief temporal 371 
dynamics of equine pain expressions, with approximately 75% of FAUs lasting only 0.3–0.7 372 
seconds [32]. This underscores the importance of temporal resolution in equine pain 373 
assessments, favouring video-based analyses over static photographic methods.  374 
 375 
Comparative reliability studies involving multiple equine pain scales—including HGS, 376 
EQUUS-FAP, EPS, and CPS—indicate varying inter-rater consistency, with the Composite 377 
Orthopedic Pain Scale displaying the highest reliability (ICC up to 0.75) [32]. Breed-specific 378 
differences in pain expression among horses—such as Friesians demonstrating reduced pain 379 
responsiveness compared to Quarter Horses—highlight the necessity for breed-sensitive 380 
grimace scales [33]. Recent investigations also suggest limited effectiveness of equine grimace 381 
scales for chronic pain states, such as gastric ulcers, reinforcing the importance of 382 
distinguishing scale utility across pain conditions [6].  383 
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 384 
Bovine Pain Assessment Developments 385 
In bovine pain assessment, the Unesp-Botucatu Cattle Pain Scale (UCAPS) represents a 386 
landmark development, achieving robust validation and high reliability across diverse breeds 387 
[34,35]. Recent developments have expanded this approach to calves, creating the Calf Grimace 388 
Scale (CGS), which reliably identifies pain-associated FAUs following painful procedures like 389 
castration [36,37].  390 
 391 
Advanced bovine validation methodologies incorporate comprehensive criteria—expression 392 
specificity, construct validity, responsiveness—to rigorously evaluate facial FAUs during 393 
painful conditions, notably clinical mastitis [38]. Real-time versus video-recorded assessment 394 
comparisons using UCAPS demonstrate high consistency (ICC ≥0.81), informing standardized 395 
clinical assessment protocols [39]. Fig illustrates the temporal dynamics of FAU activation 396 
across a 72-hour postoperative period in dairy cows (n = 45). 397 
 398 
 399 
Fig 2. Temporal Dynamics of Facial Action Unit Activation with Error Bars and 400 
Statistical Significance During 72-Hour Postoperative Period in Dairy Cows (n=45)[34] 401 
 402 
2.4.3 Reliability, Validity, and Limitations of Facial Scoring Systems 403 
Inter-rater Reliability Achievements and Challenges 404 
Inter-rater reliability remains critical for clinical grimace scale implementation, yet observer 405 
variability persists across species and contexts. Systematic analyses confirm significant 406 
improvements following structured training protocols; however, reliability gains vary 407 
considerably across species-specific contexts [30]. Table 1 summarizes the comparative 408 
validation metrics of contemporary grimace scales across species, including inter-rater and 409 
intra-rater reliability, sensitivity, and specificity as reported in recent studies. Feline scales 410 
consistently demonstrate high reliability, whereas equine grimace assessments vary notably 411 
with pain type and breed specificity [40]. Studies in macaques reinforce that while moderate-412 
to-good reliability is achievable, extensive observer training and standardized protocols remain 413 
essential, especially for cognitively complex species [41].  414 
 415 
Table 2: Comparative validation metrics of contemporary grimace scales across different 416 
species, highlighting inter-rater and intra-rater reliability, sensitivity, and specificity as 417 
reported in recent peer-reviewed studies. 418 

Species Scale Sample 
Size 

Inter-
rater 
ICC 

Intra-
rater 
ICC 

Sensitivit
y 

Specificit
y 

Referen
ce 

Feline FGS 1,262 
caregivers 

0.65-
0.69 

>0.90 Not 
reported 

Not 
reported 

[29] 

Feline FGS 
(trained 

vets) 

7 
veterinaria

ns 

0.75-
0.80 

Not 
reported 

Not 
reported 

Not 
reported 

[30] 

Equine HGS 8 horses 0.52 Not 
reported 

Variable 
by 

condition 

Variable 
by 

condition 

[32] 
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Equine HGS 
(dental 
disease) 

12 horses 0.27 Not 
reported 

Poor for 
chronic 

pain 

Poor for 
chronic 

pain 

[40] 

Rat RGS 
(automate

d) 

Multiple 
cohorts 

0.82 
vs 

human
s 

Not 
applicabl

e 

81-93% 
weighted 
accuracy 

81-93% 
weighted 
accuracy 

[27] 

Macaqu
e 

CMGS 43 animals 0.67 ± 
0.28 

0.79 ± 
0.14 

Not 
reported 

Not 
reported 

[41] 

Donkey DOPS 44 animals 0.56-
0.66 

0.88-
0.96 

80-98% 
at M1 

90-97% 
at M0 

[42] 

 419 
Sensitivity and Specificity Performance 420 
Diagnostic performance varies considerably among species-specific grimace scales, with 421 
sensitivity and specificity metrics heavily dependent upon pain type, duration, and assessment 422 
timing. Advanced ROC curve analyses confirm high diagnostic accuracy (AUC >0.70) in cattle 423 
when optimally timed post-intervention [18]. Notably, donkey scales exhibit particularly robust 424 
diagnostic accuracy (AUC = 0.91), providing clear analgesic intervention thresholds for clinical 425 
use [42]. Temporal dynamics significantly influence grimace scale sensitivity, particularly as 426 
acute pain transitions to chronic pain, requiring temporal optimization in clinical protocols to 427 
maintain assessment precision [43,44].  428 
 429 
Methodological Limitations and Technological Solutions 430 
Methodological limitations, notably static photographic assessments and subjective observer 431 
scoring, constrain grimace scale reliability and clinical utility [45,46]. Automated assessment 432 
systems utilizing machine learning and computer vision techniques demonstrate potential to 433 
significantly reduce observer variability, enhancing real-time monitoring and accuracy [27].  434 
 435 
Multimodal assessment integration—combining facial analysis with physiological and 436 
behavioral data further improves detection precision, surpassing single-method approaches [47]. 437 
However, breed-specific anatomical and behavioral variations require continued validation and 438 
tailored scoring criteria across genetically diverse cattle populations [39].  439 
 440 
Grimace scales represent critical advancements toward objective, species-specific pain 441 
assessment across diverse animal taxa. Achieving widespread clinical implementation 442 
necessitates ongoing refinement, comprehensive observer training, integration of advanced 443 
technological methodologies, and continual breed-specific validation efforts. These 444 
multidisciplinary approaches will ensure reliable, accurate pain measurement, significantly 445 
enhancing animal welfare management practices in veterinary medicine. Table 2 summarizes 446 
key factors influencing grimace-scale reliability and validity, detailing variables, their impacts 447 
on assessment performance, and proposed strategies for improving accuracy and consistency 448 
across species.  449 
 450 
Table 3: Summary of key factors influencing the reliability and validity of grimace scales, 451 
highlighting specific variables, their impacts on assessment performance, and suggested 452 
strategies to enhance accuracy and consistency across species. 453 
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Factor 
Category 

Specific 
Influences 

Impact on 
Performance 

Mitigation 
Strategies 

Reference 

Training 
Effects 

Structured 
training programs 

Moderate to good 
improvement in 

ICC 

Standardized 
protocols, ongoing 

education 

[27] 

Species 
Differences 

Anatomical 
variations, 
behavioral 

patterns 

Requires species-
specific validation 

Species-appropriate 
scale development 

[40,41] 

Pain Type Acute vs chronic, 
visceral vs 

somatic 

Acute pain shows 
better detection 

Condition-specific 
assessment tools 

[32,48] 

Temporal 
Factors 

Duration of 
expression, 

assessment timing 

Optimal windows 
for detection 

Video analysis, 
temporal 

optimization 

[32] 

Observer 
Experience 

Professional vs 
lay observers 

Experience 
improves 

consistency 

Training programs, 
standardization 

[26] 

Breed 
Variations 

Genetic 
differences in 

expression 

Requires breed-
specific 

consideration 

Diverse training 
datasets 

[36] 

 454 
2.5 Limitations and Challenges of Conventional Approaches 455 
Despite methodological advancements, traditional pain assessment faces practical and 456 
conceptual constraints that impede widespread effectiveness. 457 
 458 
2.5.1. Subjectivity and Observer Bias 459 
Observer variability significantly undermines traditional pain assessment reliability. Recent 460 
systematic reviews and meta-analyses clearly demonstrate that observer training, personal 461 
biases, scale usage differences, and terminology variations significantly impact scoring 462 
consistency [7]. Even structured training protocols fail to completely eliminate observer bias, 463 
limiting assessment reliability. 464 
 465 
2.5.2. Species-Specific and Environmental Challenges 466 
Cattle's evolutionary inclination to mask pain, derived from predator-avoidance behaviors, 467 
severely complicates clinical assessments, leading to frequent underestimation of pain severity 468 
[7]. Environmental factors such as housing conditions, handling practices, and social 469 
interactions further obscure accurate pain detection, complicating the differentiation between 470 
general stress and specific pain behaviours [7]. Similarly, environmental conditions 471 
significantly influence physiological indicators such as thermography accuracy [19]. 472 
 473 
2.5.3. Physiological Indicator Constraints 474 
Physiological biomarkers frequently demonstrate specificity limitations, failing to achieve 475 
consistently high diagnostic accuracy across varied pain states and individual animal variability 476 
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(AUC often <0.7) [18]. Chronic pain conditions further complicate biomarker assessments, 477 
with adaptive physiological responses reducing biomarker reliability [18]. 478 
 479 
2.5.4. Practical Implementation Barriers 480 
Operational challenges significantly limit traditional assessment feasibility. Comprehensive 481 
assessments require intensive labour, substantial training, and expensive specialized equipment, 482 
restricting their scalability across large commercial herds [12]. Invasive assessment methods, 483 
such as blood sampling, further introduce ethical and practical dilemmas by inducing additional 484 
stress and potentially confounding pain assessments [7]. Table 3 presents a comparative 485 
evaluation of traditional pain assessment methods, outlining their primary strengths, 486 
methodological limitations, and key references. 487 
 488 
Table 4. Comparative evaluation of traditional pain assessment methods used in dairy cattle, 489 
highlighting assessment types, primary strengths, methodological limitations, and 490 
representative references from recent peer-reviewed literature. 491 
Method Type Strengths Limitations Reference 

Example 
Behavioral 
Observation 

Visual/Manual Widely 
accessible; 
non-invasive; 
captures 
species-specific 
behaviours 

Subjective; observer 
bias; 
time-consuming; 
low throughput 

[43] 

Physiological 
Biomarkers 
(Cortisol) 

Biochemical Objective; 
quantifiable; 
hair cortisol 
offers 
chronic-stress 
measure 

Requires sampling; 
invasive (blood); 
temporal variability; 
lab analysis 

[18] 

Pressure Algometry Mechanical 
Nociceptive 
Threshold 

Quantifies 
mechanical 
sensitivity; 
reliable 
thresholds 

Requires restraint; 
operator-dependent; 
localized 
assessment 

[20] 

Infrared 
Thermography 

Thermal 
Imaging 

Non-invasive; 
detects 
physiological 
heat changes; 
real-time 

Affected by 
environment 
(temperature, 
humidity); 
calibration needed 

[19] 

Facial 
Expression/Grimace 
Scales 

Visual Scoring Rapid; 
non-invasive; 
sensitive to 
acute pain 

Requires training; 
semi-subjective; 
limited to acute 
responses 

[37] 

 492 
Collectively, these critical limitations emphasize the urgent need for accurate, minimally 493 
invasive, objective pain assessment solutions capable of continuous monitoring without 494 
extensive human intervention. The integration of AI, computer vision, and mobile technologies 495 
offers promising pathways toward overcoming traditional assessment challenges, providing 496 
practical, scalable, and ethically responsible alternatives for modern dairy cattle pain 497 
management.  498 
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 499 
3. AI and Computer Vision Foundations for Animal Pain Detection 500 
The integration of artificial intelligence with computer vision represents a paradigm shift from 501 
subjective human observation to objective, automated pain assessment in livestock. This 502 
section examines the foundational AI architectures that have been successfully applied to 503 
animal pain detection, with particular emphasis on recent advances from 2021-2025 that 504 
demonstrate measurable improvements in accuracy and practical deployment capabilities. 505 
 506 
3.1 Convolutional Neural Networks: Architectural Evolution and Performance 507 
Convolutional Neural Networks remain the cornerstone of automated animal pain detection 508 
systems, with recent studies demonstrating substantial improvements through architectural 509 
refinements and species-specific optimizations. The foundational strength of CNNs lies in their 510 
hierarchical feature extraction capabilities, enabling the identification of subtle facial patterns 511 
associated with pain expressions across multiple livestock species [49,50]. 512 
 513 
ResNet Architectures and Transfer Learning 514 
ResNet-based models have shown remarkable versatility in cross-species applications. A 515 
comprehensive study on rabbit pain detection achieved 87% accuracy using ResNet-50 516 
architectures combined with novel temporal processing techniques [50]. The study employed 517 
Grayscale Short-Term stacking (GrayST) methodology, which incorporates temporal 518 
information by combining consecutive frames into single composite images, effectively 519 
capturing the dynamic nature of pain expressions that static analysis often misses [50]. 520 
 521 
For cattle facial landmark detection, ResNet-101 demonstrated superior performance on RGB 522 
imagery, achieving 94.37% average precision (AP) on the CattleFace-RGBT benchmark 523 
dataset [51]. However, performance degraded significantly when applied to thermal imagery 524 
(64.60% AP), highlighting the modality-specific challenges that plague cross-spectral 525 
applications [51]. This performance disparity underscores the need for specialized training 526 
approaches when working with multimodal data. 527 
 528 
More sophisticated CNN variants have emerged to address livestock-specific challenges. The 529 
IWOA-CNN model, incorporating an improved whale optimization algorithm, has shown 530 
superior performance compared to traditional CNN approaches by optimizing critical 531 
hyperparameters including dropout probability, L2 regularization parameters, and dynamic 532 
learning rates [52]. This algorithmic enhancement addresses the fundamental issue of manual 533 
hyperparameter tuning, which often results in suboptimal performance for animal-specific 534 
applications. 535 
Recent studies in facial recognition for livestock have further demonstrated the viability of 536 
CNNs in real-world farm settings. YOLOv5 for cow face detection combined with a Vision 537 
Transformer for identification in a 77-cow herd, achieving 97.8% detection AP and 96.3% ID 538 
accuracy [53]. Similarly, CFR-YOLO based on YOLOv7, which achieved 96.27% mean 539 
average precision and 98.46% precision [54]. These models processed video at real-time 540 
speeds (~50 fps), validating their feasibility for continuous on-farm monitoring. Additionally, 541 
combined YOLOv4-tiny and MobileNetV2 on edge devices for cow recognition, reached a 542 
detection F1 of 0.98 and ID accuracy of 0.97 under practical farm conditions [55]. 543 
 544 
3.2 Vision Transformers: Global Context and Attention Mechanisms 545 
The introduction of Vision Transformers (ViTs) has fundamentally challenged CNN 546 
dominance in animal facial analysis. ViTs excel at capturing long-range dependencies and 547 
global contextual information, characteristics particularly valuable for understanding complex 548 
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facial expression patterns in livestock [56]. The ViT-Sheep model, incorporating LayerScale 549 
modules and transfer learning strategies, achieved 97.9% accuracy for sheep face recognition, 550 
demonstrating the architecture's potential for livestock applications [56]. 551 
CLIP-Based Pain Detection 552 
A groundbreaking study in sheep pain recognition demonstrated that CLIP (Contrastive 553 
Language-Image Pre-training) encoders significantly outperformed human expert assessment 554 
[57] The AI pipeline achieved an AUC of 0.82 for binary pain classification, significantly 555 
exceeding human facial scoring performance (AUC difference = 0.115, p < 0.001) when 556 
provided with identical visual information (frontal and lateral face images) [57]. The system 557 
utilized 768-dimensional CLIP embeddings concatenated from both viewing angles, processed 558 
through Naive Bayes classifiers with leave-one-animal-out cross-validation [57]. 559 
 560 
Swin Transformers for Multimodal Processing 561 
Swin Transformers represent a particularly promising advancement, combining the global 562 
attention mechanisms of transformers with CNN-like hierarchical processing. In pig 563 
recognition and segmentation tasks, Swin Transformers achieved 93.0% recognition accuracy 564 
and 86.9% segmentation accuracy, maintaining excellent performance even under challenging 565 
conditions including overlapping, occlusion, and deformation [58]. These results suggest that 566 
transformer architectures may be particularly well-suited for handling the complex 567 
environmental conditions typical of farm settings. 568 
 569 
3.3 YOLO Architectures: Real-Time Detection and Multi-Object Tracking 570 
You Only Look Once (YOLO) frameworks have become indispensable for real-time livestock 571 
monitoring applications, offering optimal balance between detection speed and accuracy 572 
essential for practical farm deployment [59]. 573 
 574 
YOLOv8 Advancements 575 
Recent implementations of YOLOv8 have demonstrated exceptional performance in livestock 576 
applications. A modified YOLOv8-CBAM system for cattle detection achieved 95.2% 577 
precision and 82.6% mAP@0.5:0.95, representing a 2.3% improvement over baseline YOLOv8 578 
across diverse camera configurations [60]. The integration of Convolutional Block Attention 579 
Modules (CBAM) enhanced the model's ability to focus on relevant facial features while 580 
suppressing background noise [60]. 581 
 582 
For sheep head recognition, YOLOv8-CBAM achieved 97.7% mean average precision with an 583 
F1 score of 0.94, demonstrating consistent improvements over multiple YOLO variants: 0.5% 584 
over YOLOv8n, 1.4% over YOLOv5n, and 2.4% over YOLOv10n [61]. The attention 585 
mechanism proved particularly effective for recognizing facial color patterns essential for breed 586 
identification and individual recognition [61]. 587 
 588 
CFR-YOLO for Cattle Face Recognition 589 
A specialized cattle face recognition system based on YOLOv7 improvements (CFR-YOLO) 590 
achieved remarkable performance metrics of 96.27% mean average precision while 591 
maintaining real-time processing capabilities at approximately 50 fps [62]. The system 592 
incorporated several key optimizations: replacement of CIoU loss with SIoU loss functions, 593 
integration of FReLU activation functions, and inclusion of Receptive Field Block (RFB) 594 
modules in the backbone network [62]. 595 
 596 
3.4 Multimodal Fusion: RGB-Thermal Integration 597 
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The combination of RGB and thermal imaging represents a significant advancement in 598 
automated pain detection, providing complementary information streams that enhance overall 599 
system robustness and accuracy[51]. 600 
 601 
CattleFace-RGBT Benchmark Dataset 602 
The development of the CattleFace-RGBT dataset, consisting of 2,300 RGB-thermal image 603 
pairs with 13 annotated facial landmarks, has established a critical benchmark for multimodal 604 
livestock analysis [51]. The dataset covers key facial regions including ears, eyes, muzzle, 605 
nostrils, and mouth, enabling comprehensive welfare assessment through both visual and 606 
thermal indicators [51]. 607 
 608 
Performance analysis reveals significant modality-specific differences: while RGB processing 609 
achieves superior accuracy (ResNet-101: 94.37% AP), thermal processing remains challenging 610 
(ResNet-101: 64.60% AP). However, transformer architectures show better thermal 611 
performance, with Swin-B achieving 73.16% AP on thermal imagery [51]. 612 
 613 
Fusion Strategies and Implementation 614 
Three primary fusion approaches have been evaluated: early fusion (feature-level integration), 615 
late fusion (decision-level combination), and mixture of experts (dynamic weighting) [63]. 616 
Early fusion enables cross-modal learning during feature extraction but requires careful 617 
calibration between modalities. Late fusion processes modalities independently before higher-618 
level integration, providing greater flexibility for handling modality-specific preprocessing 619 
requirements[64]. 620 
 621 
The thermal imaging component provides unique physiological information invisible to RGB 622 
cameras, particularly useful for detecting inflammation and temperature variations associated 623 
with pain states. However, environmental factors including ambient temperature, humidity, and 624 
airflow significantly impact thermal measurement reliability, necessitating sophisticated 625 
calibration protocols. 626 
 627 
3.5 Technical Implementation Challenges and Solutions 628 
Edge Computing and Deployment Constraints 629 
Real-world deployment faces substantial computational constraints, particularly in rural 630 
environments with limited connectivity and power availability. Successful edge 631 
implementations using Nvidia Jetson Nano devices have demonstrated feasibility, maintaining 632 
high performance (96.1% accuracy) while operating within 10W power envelopes [49]. Model 633 
compression techniques, including quantization-aware training and pruning, have achieved up 634 
to 86% reduction in model size while preserving accuracy above 95% [65]. 635 
 636 
Cross-Species Generalization 637 
Recent research has demonstrated both the potential and limitations of cross-species model 638 
transfer. A CNN trained for pig pneumonia detection achieved substantial agreement (Cohen's 639 
kappa: 0.65-0.71) when applied to lamb lung assessment, with sensitivity (0.87-0.88) and 640 
specificity (0.88-0.91) comparable to expert veterinary assessment [66]. However, facial 641 
expression models show greater species-specificity, with accuracy drops of 15-20% when 642 
applied across species without fine-tuning [67]. 643 
 644 
Scalability and Farm Integration 645 
Commercial operations involving thousands of animals introduce scalability challenges beyond 646 
typical applications. Multi-camera systems, sophisticated tracking algorithms, and data fusion 647 
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techniques offer potential solutions, though they increase calibration complexity [68]. Effective 648 
farm integration necessitates alignment with existing management systems, including user-649 
friendly interfaces, real-time alerts, decision-support tools, and mobile application integration, 650 
addressing computational limitations inherent to smartphone hardware [69]. 651 
 652 
The development of appropriate sensitivity thresholds and human-centered design 653 
considerations remains essential to avoid alert fatigue, maintaining user trust, and ensuring 654 
widespread adoption of advanced AI-based livestock pain detection systems in real-world 655 
agricultural settings. 656 
 657 
3.6 Practical comparison of AI architectures for farm implementation 658 
A critical question for adoption is not which architecture attains the highest benchmark score 659 
in controlled experiments, but which architecture reliably performs under real farm constraints 660 
(variable lighting, occlusion, dirt, overlapping animals), runs on available hardware (edge 661 
devices, low-power systems), and generalizes across herds and barns. Below we compare 662 
Convolutional Neural Networks (CNNs), YOLO-family detectors, Vision Transformers (ViTs) 663 
and multimodal fusion approaches against practical implementation criteria supported by recent 664 
peer-reviewed farm or near-farm studies. 665 
 666 
3.6.1 Detection & classification performance in farm/field tests 667 

• YOLO-family detectors (e.g., YOLOv5–v8 variants) show high detection performance 668 
in real or semi-real farm deployments while maintaining high frame rates suitable for 669 
continuous monitoring. Recent farm-targeted studies report mean average precision 670 
(mAP) in the mid-90s for cattle detection/landmark tasks and sustained inference speeds 671 
(20–50 fps) on embedded hardware after optimization (quantization/TensorRT). These 672 
deployments achieved realistic classification accuracies in the 90–95% range for 673 
biometrics and health-related labels in independent test sets[70].  674 
 675 

• CNN backbones (ResNet, MobileNet, EfficientNet) remain highly effective for 676 
landmarking and facial feature extraction in field conditions. Lightweight CNN variants 677 
(MobileNet, pruned/quantized ResNets) have been successfully deployed on Jetson-678 
class devices with accuracy often exceeding 90% for face detection/landmark tasks 679 
while keeping power consumption <10 W, making them practical for continuous barn 680 
operation[71]. 681 
 682 

• Vision Transformers (ViT / Swin) demonstrate excellent representational power and 683 
sometimes outperform CNNs on large, curated datasets, but peer-reviewed farm 684 
implementations report limited on-device feasibility due to higher compute and data 685 
requirements; where deployed, hybrids (CNN encoder + transformer blocks) have 686 
shown improved accuracy while reducing latency compared with pure ViTs. Field-687 
oriented transformer work for livestock remains emerging but promising[72].  688 
 689 

• Multimodal fusion (RGB + thermal / sensors) increases robustness to lighting and can 690 
improve physiological detection (inflammation/fever), but thermal performance and 691 
fusion require careful calibration in farm environments and entail higher system 692 
complexity and cost. Cattle RGB-thermal benchmark studies show strong RGB AP but 693 
substantially lower thermal AP unless advanced transformer fusion or calibration is 694 
used[73].  695 

3.6.2 Robustness to farm conditions (lighting, occlusion, dirt, overlap) 696 
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• YOLO and modern CNN detectors tolerate moderate occlusion and variable lighting 697 
when trained with augmentations and multi-site data, but performance degrades when 698 
animals overlap densely or when reflective surfaces and dust produce spurious 699 
detections—practical fixes include optimized camera placement and exposure control. 700 
Farm deployment reports recommend per-camera tuning and occasional re-701 
calibration[73].  702 
 703 

• Transformer models benefit from global attention and can be more robust to certain 704 
contextual variations if trained on very diverse datasets; however, in most peer-705 
reviewed farm trials such large, diverse pretraining corpora are not yet available, 706 
limiting ViT robustness in practice[72].  707 

 708 
3.6.3 Edge feasibility, latency and power constraints 709 

• Practical farm systems prioritize on-device inference to avoid latency and connectivity 710 
dependence. Studies like Dairy DigiD demonstrate that lightweight YOLO/CNN stacks, 711 
combined with INT8 quantization and TensorRT, can achieve ~24 fps on Jetson 712 
NX/Nano devices while preserving high classification accuracy (~94%), making them 713 
feasible for continuous on-farm operation. Such optimizations (pruning, quantization) 714 
are essential to make modern architectures practical on farms [70].  715 
 716 

• Pure ViT pipelines currently require cloud or high-end accelerators for real-time 717 
operation; thus, unless offloading or hybrid architectures are used, ViTs are less feasible 718 
for always-on edge monitoring at present [72].  719 

 720 
3.6.4 Recommendations for practitioners (evidence-based) 721 

1. For continuous, real-time monitoring on typical dairies: deploy optimized YOLOv8 / 722 
YOLOv7 or compressed CNN backbones (MobileNet/ pruned ResNet) with INT8 723 
quantization; these achieve the best trade-off of accuracy, fps and edge power envelope 724 
in peer-reviewed deployments[70]. 725 

2. For research or centralized analytics with ample compute and large datasets: explore 726 
Transformer / hybrid models to leverage their superior context modeling for cross-farm 727 
generalization—provided extensive pretraining or multi-farm data are available[72].  728 

3. For low-light or physiological signs (inflammation): consider RGB+thermal fusion, but 729 
include temperature/humidity calibration protocols and expect higher annotation and 730 
hardware costs[73].  731 

4. Always validate with LOAO and farm-fold tests and report per-fold 732 
sensitivity/specificity and confidence intervals; real farm readiness requires inter-farm 733 
robustness, not just within-dataset accuracy[74].  734 

 735 
 736 
4. Current AI Applications in Livestock Pain Recognition 737 
 738 
The application of artificial intelligence for automated pain detection has expanded 739 
significantly across multiple animal species since 2021, with validated systems demonstrating 740 
clinical feasibility for both livestock and companion animals. Fig 2 compares mean accuracy 741 
of AI-based pain detection systems across laboratory, livestock, and companion species, 742 
highlighting key performance differences among these groups . 743 
 744 
4.1 Feline Pain Detection Systems 745 
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Automated pain recognition in cats has achieved remarkable progress through multiple 746 
complementary approaches. The landmark-based methodology achieved 77% accuracy in pain 747 
detection using manually annotated geometric landmarks positioned relative to underlying 748 
facial musculature, significantly outperforming deep learning approaches that reached only 65% 749 
accuracy on the same heterogeneous dataset [75]. This study utilized 84 client-owned cats of 750 
different breeds, ages, sexes, and varying medical conditions, representing a substantial 751 
advancement over previous homogeneous datasets limited to single breeds. 752 
 753 
Video-based automation marked a significant technological leap with the development of end-754 
to-end AI pipelines requiring no manual image selection or landmark annotation [76]. The 755 
system achieved over 70% and 66% accuracy respectively on two different cat pain datasets, 756 
outperforming previous landmark-based approaches using single frames under similar 757 
conditions. The pipeline integrated YOLOv8 for face detection, ensemble landmark detection, 758 
and XGBoost classification with moving window analysis. 759 
 760 
Smartphone-applicable systems represent the current clinical frontier, utilizing deep neural 761 
networks and machine learning models trained on 3,447 cat face images annotated with 37 762 
landmarks [77]. The best CNN model (ShuffleNetV2) achieved 16.76% Normalized Root 763 
Mean Squared Error for landmark prediction, while XGBoost models reached 95.5% accuracy 764 
and 0.0096 mean squared error for Feline Grimace Scale score prediction. The system 765 
demonstrated excellent discriminatory capability between painful and non-painful cats, 766 
enabling practical veterinary applications. 767 
 768 
4.2 Non-Human Primate Pain Recognition 769 
Macaque facial expression analysis achieved groundbreaking automation through the first 770 
prototype for automatic MaqFACS (Macaque Facial Action Coding System) coding [78]. The 771 
system achieved high performance in recognition of six dominant action units, demonstrating 772 
generalization between conspecific individuals (Macaca mulatta) and even between species 773 
(Macaca fascicularis). The method showed concurrent validity with manual MaqFACS coding, 774 
supporting automated applications in social and affective neuroscience research. 775 
 776 
Japanese macaque pain detection utilizing ResNet50 architectures achieved varying accuracy 777 
depending on extraction methodology [79]. Box extraction using RetinaFace resulted in test 778 
accuracies between 48-54%, while contour extraction using Mask R-CNN improved 779 
performance to 64% through preprocessing and fine-tuning. The study utilized 30-60 minutes 780 
of video footage from macaques undergoing laparotomy, recorded before surgery (No Pain) 781 
and one day post-surgery before analgesic administration (Pain). 782 
 783 
Geometric morphometric approaches complemented automated systems by revealing subtle 784 
facial shape variations in female Japanese macaques following experimental laparotomy [80]. 785 
The study identified pain-associated changes including orbital tightening, asymmetrical eye 786 
aperture, lip tension, and elongated mouth lines, providing anatomical foundation for 787 
automated detection algorithms. 788 
 789 
4.3 Rodent Pain Assessment Systems 790 
Mouse Grimace Scale Automation 791 
Automated mouse grimace scale assessment achieved impressive performance through Vision 792 
Transformer architectures trained on manually scored datasets [81]. The system achieved 97% 793 
weighted accuracy for binary pain classification, with attention heatmaps revealing model focus 794 
on eye and ear regions as primary pain indicators. Individual action unit classifiers 795 
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demonstrated weighted accuracies of 81-93% for orbital tightening, nose bulge, cheek bulge, 796 
ear position, and whisker changes[81]. 797 
 798 
4.4 Canine Emotional State Recognition 799 
Dog emotional state recognition achieved significant progress through dual-approach 800 
methodologies comparing DogFACS-based and deep learning systems [82]. The DogFACS-801 
based approach utilizing Decision Tree classifiers reached 71% accuracy, while deep learning 802 
techniques achieved 89% accuracy for positive/negative emotional state classification. The 803 
study analyzed 29 Labrador Retrievers under experimentally induced emotional states of 804 
positive anticipation and frustration. 805 
 806 
Continuous facial dynamics analysis introduced novel automated methods for measuring dog 807 
facial behavior through video-based tracking of 46 facial landmarks [83]. The system revealed 808 
distinct patterns between brachycephalic (Boston Terrier) and normocephalic (Jack Russell 809 
Terrier) dogs, with brachycephalic dogs exhibiting consistently lower facial dynamics across 810 
all tested contexts and facial regions compared to normocephalic dogs. 811 
 812 
Table 5. Performance overview of AI-based pain detection systems across animal species 813 
(2021-2025).Values are specific to individual studies and not statistically comparable because 814 
of heterogeneous datasets, imaging conditions, and validation protocols. 815 
Performance patterns reflect methodological differences in dataset design, validation rigor, and 816 
species-specific facial expressivity. 817 
Species Primary 

Reference(
s) 

Model / 
Methodolog
y 

Dataset 
Characteristi
cs 

Reported 
Performanc
e 

Validation 
Strategy / 
Methodologic
al Notes 

Cat 
 
Feighelstein 
et al. 2023 
[75]; 
Martvel et 
al. 2024 
[76]; 
Steagall et 
al. 2023 
[77] 

Landmark-
based CNN; 
YOLOv8 + 
XGBoost; 
ShuffleNetV
2 + Feline 
Grimace 
Scale 

84 client-
owned cats 
(heterogeneou
s breeds, ages, 
health); 3 447 
annotated face 
images 

65 – 95 % 
accuracy 
range 
depending 
on 
architecture 

Heterogeneous 
validation 
(train/test split 
or k-fold); 
some studies 
lacked 
independent 
test sets; 
lighting and 
breed 
variability 
affect 
generalization 

Dog Boneh-
Shitrit et al. 
2022 [82]; 
Martvel et 
al. 2025 
[83] 

DogFACS + 
Decision 
Tree; Deep 
CNN; 
Video-based 
landmark 
tracking 

29 Labradors 
and multi-
breed cohorts 
(brachycephali
c vs. 
normocephalic
) 

71 – 89 % 
accuracy 

Leave-one-
video-out or 
within-subject 
cross-
validation; 
performance 
influenced by 
breed 
morphology 
and reduced 
facial mobility 
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in 
brachycephalic 
dogs 

Sheep Feighelstein 
et al. 2023 
(CLIP 
encoders) 

CLIP 
encoder + 
Naïve Bayes 
classifier 

Controlled 
post-surgical 
dataset, frontal 
+ lateral views 

AUC = 0.82 
(≈ 82 % 
accuracy) 

Leave-one-
animal-out 
validation 
minimized 
identity bias; 
consistent 
lighting and 
scoring; model 
outperformed 
human experts 

Macaque 
(Primate) 

Morozov et 
al. 2021 
[78]; Gris et 
al. 2024 
[79];  

ResNet50; 
Mask R-
CNN; 
Automatic 
MaqFACS 
coding 

30 – 60 min 
per subject 
(pre- and post-
surgery); 6 
action units 
annotated 

48 – 64 % 
accuracy 

Cross-session 
validation; 
limited sample 
size; subtle 
facial muscle 
differences 
across species 
reduce 
transferability 

Rodent 
(Mouse/Ra
t) 

Arnold et al. 
2023 [81];  

Vision 
Transformer
; Automated 
Grimace 
Scale 

Controlled 
laboratory 
imagery with 
manual 
grimace labels 

89 – 97 % 
weighted 
accuracy 

Randomized 
cross-
validation; 
standardized 
grimace 
scoring 
ensured high 
inter-rater 
consistency; 
results robust 
under uniform 
lighting 

 818 
4.5 Comprehensive Species Validation 819 
Cross-Species Performance Metrics 820 
Current automated pain detection systems demonstrate species-specific performance variations, 821 
with accuracy ranges reflecting both methodological approaches and validation rigor. Sheep 822 
pain recognition using CLIP encoders achieved the highest reported accuracy (>82%), 823 
significantly outperforming human expert assessment 14. Cat pain detection systems showed 824 
moderate performance (65-77%) depending on approach methodology[75,84]. Primate systems 825 
achieved variable results (48-64%) reflecting the complexity of facial morphology and 826 
expression subtlety. 827 
 828 
Rodent systems demonstrated strong performance, with mouse grimace scale automation 829 
reaching 89-97% accuracy[81].Dog emotional recognition achieved 71-89% accuracy 830 
depending on methodological approach [82]. 831 
 832 
4.6 Dairy Cows: 833 
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Recent research has applied computer vision and machine learning to detect pain in dairy 834 
cows under various conditions (e.g. lameness, mastitis). These studies use facial and gait 835 
indicators (e.g. orbital tightening, ear position, back curvature) extracted from images or 836 
video, often combined with sensor data, to train AI models. The Table 4 summarizes post-837 
2021 peer-reviewed studies, detailing pain condition, facial action units (FAUs) or behavioral 838 
indicators, sensing methods, AI models, validation design, sample size, and key performance 839 
metrics (separating object-detection from pain-classification). All metrics are cited from the 840 
primary sources. 841 
 842 
Table 6. Recent AI-Based Approaches for Pain Detection and Classification in Dairy 843 
Cows (Post-2021 Studies) 844 
Study 
(Year) 

Pain 
Type / 
Conditi
on 

FAUs or 
Indicator
s 

Imaging/Sen
sing 

AI Models Validation 
& Sample 

Performanc
e (Detection 
vs 
Classificati
on) 

Zhang 
et al. 
(2025) 
[85] 

Mixed 
health 
issues 
(lamene
ss, 
metritis, 
mastitis, 
pre‐
birth 
labor)  

Facial 
regions: 
eyes, ears, 
muzzle 
(key 
landmarks
)  

Video (RGB 
farm 
footage); 
frames 
processed at 
1/5 s intervals 

YOLOv8-P
ose 
(face+30 
facial 
landmarks)
, 
MobileNet
V2 (ROI 
feature 
extractor), 
LSTM 
(temporal 
classifier)  

10 videos 
(6 pain, 4 
no-pain) 
with 80:20 
train/val 
split; tested 
on 14 held-
out videos. 

Detection: 
YOLOv8-
Pose 
achieves 
bounding 
box 
AP@0.5=0.
969 (mAP), 
AP@0.5–
0.95=0.899; 
keypoint 
AP@0.5=0.
838, 
AP@0.5–
0.95=0.590. 
Classificati
on: 
Validation 
accuracy 
≈99.65% 
(precision/re
call 
≈0.9968); 
unseen-
video 
(video-
level) 
accuracy 
64.3%, 
pain-class 
precision 
0.83, recall 
0.56, 
F1=0.67. 
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Neupan
e et al. 
(2024) 
[86] 

Lamene
ss 
(hoof/le
g 
disorder
s) 

Locomoti
on 
features 
(lying 
time, 
steps, 
changes) 

Leg-mounted 
accelerometer 
data 

Time-series 
ML models 
(Random 
Forest, 
Naïve 
Bayes, 
Logistic 
Regression, 
ROCKET)  

310 
multiparous 
cows 
monitored 4 
months 
(daily 
acceleromet
er); labeled 
by claw-
trimmer as: 
healthy, 
corrective 
trimming, 
or lame 
(therapeutic 
trimming). 

Classificati
on: 
ROCKET 
classifier 
(best) for 
distinguishi
ng healthy 
vs severely 
lame cows 
achieved 
accuracy 
>90%, 
ROC-AUC 
>0.74, F1 
>0.61. For 
classifying 
severe vs 
moderate 
lameness, 
ROCKET 
gave 
accuracy 
>85%, 
ROC-AUC 
>0.68, F1 
>0.44. (No 
vision-based 
detection 
metrics.) 

Jia et 
al. 
(2025)[
87]  

Lamene
ss (all 
grades 
0–3) 

Postural/g
ait: 
arched 
back, 
head 
bobbing, 
leg swing, 
asymmetr
ic gait  

Video 
(milking 
parlor, 
25 fps); head 
and back 
keypoints 
annotated 

DeepLabC
ut pose 
estimation 
(DLC 
pretrained 
on cow 
features); 
spatiotemp
oral 
keypoint 
scoring 
model  

143 videos 
(dairy cows 
walking, 
various 
lameness 
levels) split 
into 
train/test 
(20 for 
testing); 
also 16 
videos from 
other farms. 

Keypoint 
Detection: 
Mean error 
≈4.68 px 
(90.21% of 
keypoints 
correctly 
tracked). 
Classificati
on: Overall 
lameness 
classificatio
n accuracy 
≈90.2%; by 
class: 89.0% 
(normal), 
85.3% 
(mild), 
92.6% 
(moderate), 
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100% 
(severe). 

Russell
o et al. 
(2024) 
[88] 

Lamene
ss 
(visual 
gait 
scoring: 
healthy 
vs 
lame) 

Locomoti
on traits: 
back 
posture 
curvature, 
head 
bobbing, 
tracking 
distance, 
stride 
length, 
stance/swi
ng 
durations  

Video (side-
view walking 
lane, 
outdoor) 

T-LEAP 
pose 
estimator 
(9 
keypoints) 
+ ML 
classifier 
on 
extracted 
gait 
features  

Cows 
walking 
video, 
scored by 4 
observers 
(5-point 
scale 
merged to 
binary 
healthy/lam
e); keypoint 
model 
evaluated 
on diverse 
lighting. 

Keypoint 
Detection: 
99.6% of 
cow 
keypoints 
correctly 
detected. 
Classificati
on: 
Combining 
the top 6 
locomotion 
traits 
yielded 
80.1% 
accuracy 
(versus 
76.6–79.9% 
using fewer 
traits) for 
healthy vs 
lame 
detection 
(binary 
classificatio
n accuracy; 
no separate 
AUC 
reported). 

 845 
Critical Analysis of Performance Gaps and Generalization Challenges 846 
The performance metrics presented in Table 5 reveal substantial discrepancies between 847 
validation accuracies and real-world performance that warrant critical examination. These 848 
disparities highlight fundamental challenges in the current state of AI-based cattle pain 849 
detection systems and underscore the necessity for more rigorous validation methodologies. 850 
One of the example of these challenges appears in Zhang et al. (2025), where the reported 851 
validation accuracy of 99.65% contrasts sharply with the 64.3% accuracy achieved on unseen 852 
videos. This 35.35 percentage point performance degradation exemplifies severe overfitting, 853 
indicating that the model memorized training-specific patterns rather than learning 854 
generalizable pain-related features. The limited training dataset of only 10 videos (6 pain, 4 no- 855 
 856 
pain) with an 80:20 train/validation split exacerbated this problem by providing insufficient 857 
variability for robust feature learning. Such dramatic performance disparities fundamentally 858 
undermine the clinical utility of these systems, as the impressive validation metrics provide 859 
misleading indications of real-world effectiveness. 860 
 861 
This pattern of generalization failure extends beyond Zhang et al., revealing systematic 862 
challenges across multiple studies in the literature. Jia et al. (2025) demonstrated similar 863 
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limitations when their model, achieving 90.2% overall accuracy, experienced performance 864 
degradation when tested on videos from different farms, suggesting environment-specific 865 
overfitting. The authors' use of only 16 videos from other farms for external validation further 866 
highlights the inadequacy of cross-farm validation protocols. Similarly, Neupane et al. (2024) 867 
achieved accuracies exceeding 90% using the ROCKET classifier, but these results were 868 
obtained exclusively within single-farm validation scenarios using 310 cows from a 869 
homogeneous population, raising substantial concerns about cross-farm generalizability and 870 
breed-specific applicability. 871 
 872 
The methodological approach employed by Russello et al. (2024) illustrates additional 873 
concerning patterns in the field. Despite achieving 99.6% keypoint detection accuracy, the 874 
subsequent classification performance dropped to 80.1%, indicating substantial information 875 
loss during the transition from detection to classification. This 19.5 percentage point gap 876 
suggests that high-quality landmark detection does not necessarily translate to effective pain 877 
classification, highlighting the complexity of extracting clinically meaningful pain-related 878 
features from detected anatomical landmarks. 879 
 880 
These performance disparities stem from fundamental methodological limitations prevalent 881 
throughout the literature. Sample sizes remain inadequate for robust statistical validation, with 882 
most studies employing fewer than 200 animals across all validation phases. Training datasets 883 
typically originate from homogeneous environments, lacking the environmental diversity, 884 
breed variation, and temporal coverage necessary for meaningful generalization. Cross-885 
validation methodologies frequently employ inappropriate random splits rather than more 886 
rigorous approaches such as Leave-One-Animal-Out (LOAO) validation or farm-fold cross-887 
validation that would better assess model generalizability. Additionally, temporal dependencies 888 
within animal behavior data are systematically ignored, leading to optimistically biased 889 
performance estimates that fail to reflect real-world deployment scenarios. 890 
 891 
4.7 Discussion of Factors Influencing Model Performance 892 
Across the reviewed studies, key factors consistently drove differences in reported performance. 893 
First, model architecture and design strongly affected outcomes. Convolutional networks often 894 
required careful tuning of hyperparameters to avoid overfitting on small datasets. For example, 895 
Mao and Liu’s dog-expression study trained a CNN on only 315 images and found that tuning 896 
via an improved Whale Optimization algorithm boosted accuracy modestly by ~3 percentage 897 
points[52]. This suggests that generic CNN architectures alone may plateau on limited animal-898 
expression datasets. By contrast, transformer-based models and large pre-trained encoders 899 
tended to generalize better when data were scarce. Like ViT-based sheep face model (ViT-900 
Sheep) achieved 97.9% accuracy by incorporating architectural enhancements (LayerScale) 901 
and transfer learning on 160 sheep images [56]. Similarly, Feighelstein et al. used a CLIP 902 
encoder (a large-scale vision transformer) to detect pain in sheep, and the AI pipeline 903 
significantly outperformed expert scoring (AUC 0.82 vs. AUC 0.70 for humans) on the same 904 
48-animal dataset [57]. The benefit of pretraining is clear: models with broad prior knowledge 905 
(ViT, CLIP) captured subtle facial cues that smaller CNNs missed. 906 
 907 
Second, data quantity and quality were fundamental. Larger, well-annotated datasets yielded 908 
higher accuracy. For instance,cow-ID system had high sample diversity (77 cows, numerous 909 
face images) and achieved ~98% AP for detection and 96% identity accuracy, likely reflecting 910 
the ample data and robust YOLOv5+ViT pipeline used[53]. In contrast, studies with very small 911 
animal datasets (e.g. 10–30 individuals) often reported only modest performance (<70–80%). 912 
cat-pain pipeline attained only 70% and 66% accuracy on two feline datasets[84], even though 913 
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they used a video-based approach, because these datasets remained small and heterogeneous. 914 
Subjective annotation also added noise: studies relying on human-rated pain scores (grimace 915 
scales) were inherently limited by rater inconsistency. The sheep-CLIP study mitigated this by 916 
using human scores as “gold standard” for comparison, but AI still outperformed the 917 
inconsistent human labels[57]. 918 
 919 
Third, image modality and preprocessing played a major role. Models trained on RGB imagery 920 
nearly always outperformed those on thermal images. In the new CattleFace-RGBT benchmark, 921 
ResNet-101 achieved 94.4% AP on RGB face detection but only 64.6% AP on thermal 922 
images[51]. Thermal data lack color/texture and suffer from low contrast, making keypoints 923 
harder to localize[51]. Transformer architectures fared slightly better on thermal: e.g. Swin-B 924 
scored 73.2% AP on thermal (vs. 75.3% on RGB)[51], suggesting that global attention can 925 
partly compensate for poor thermal detail. Some authors therefore use cross-modal transfer: 926 
Coffman et al. trained models on RGB and refined them on thermal, using semi-automated 927 
annotation to build the thermal landmark set. In video-based systems, temporal preprocessing 928 
also helped. Feighelstein et al. introduced “Grayscale Short-Term Stacking” (GrayST) to inject 929 
motion cues into static CNNs, boosting rabbit-pain recognition from ~67% (ResNet alone) to 930 
~77–81% (with GrayST)[50]. Further filtering of video frames (keeping only high-confidence 931 
images) lifted rabbit-pain accuracy above 87%[50]. These examples show that explicit 932 
temporal encoding can overcome the lack of color or texture in single frames, at the cost of 933 
some complexity. 934 
 935 
Fourth, species-specific traits and experimental conditions influenced outcomes. Some species 936 
exhibit very subtle facial changes, or wide breed variation, which makes generalization difficult. 937 
For example, dog facial morphology varies enormously by breed, so Mao et al. note that even 938 
with IWOA-CNN their hardest classes (sad, fear) remained under 90% accuracy. Similarly[52], 939 
the cat-pain studies point out that facial landmarks in cats are subtle and vary by individual, so 940 
performance capped around 70% despite advanced pipelines[84]. By contrast, simpler tasks 941 
with distinctive cues yielded higher scores: automated detection of specific behaviors (e.g. cow 942 
hoof issues via accelerometers) or identity recognition (hundreds of cow faces) tended to 943 
exceed 90% accuracy, showing that modality and task simplicity matter. In experiments with 944 
induced pain (e.g. sheep post-surgery), the lab setting ensured high-quality imagery and clear 945 
labels, enabling better performance than on “in-the-wild” farm data. As Feighelstein et al. 946 
comment, machine accuracy in controlled sheep surgery videos even exceeded that of vets, a 947 
setting where expressions were pronounced and consistently labeled[57]. 948 
 949 
Fifth, fusion strategies and multiple cues often improved robustness. Combining face imagery 950 
with other modalities (e.g. body posture, sensor data) tends to outperform any single cue. For 951 
instance, cow lameness studies fused video keypoints with spatiotemporal models and achieved 952 
~90% classification accuracy. Multi-stage pipelines (e.g. YOLO detection + landmark 953 
extraction + LSTM) likewise decomposed tasks into tractable steps. In Martvel et al.’s cat-pain 954 
study, using video (many frames) instead of isolated images improved detection by leveraging 955 
temporal consistency[84]. Conversely, studies using only static images, or only single 956 
modalities, generally lagged. 957 
. 958 
 959 
In summary, higher performance was generally achieved by (a) using ample, well-curated data; 960 
(b) leveraging strong pretraining or multimodal cues; and (c) tailoring architectures and 961 
preprocessing to the species and context. Studies consistently note that scarce or noisy data, 962 
inter-species variability, and limited modalities suppress accuracy. The success of vision 963 
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transformers and large encoders in sheep and rabbit pain tasks suggests future work should 964 
exploit pretraining and attention to capture subtle patterns. Likewise, integrating temporal 965 
dynamics (as in GrayST or video analysis) and multi-modal fusion appears crucial when single 966 
frames offer limited information[57,84]fi. These insights indicate that next-generation animal 967 
pain recognition systems will likely combine rich data collection (e.g. RGB + thermal + 968 
behavior), advanced architectures (transformers, hybrid CNN-AI detectors), and robust 969 
preprocessing to overcome the inherent challenges of cross-species pain detection. 970 
 971 
4.7 Current Limitations and Challenges 972 
Despite impressive laboratory performance, several consistent limitations emerged across 973 
species. Environmental factors including variable lighting, occlusions, and motion artifacts 974 
significantly impact accuracy. Cross-species generalization remains limited, with species-975 
specific anatomical differences necessitating dedicated training approaches. 976 
 977 
Validation methodology substantially influences reported performance, with rigorous cross-978 
validation revealing more realistic accuracy expectations. Ground truth establishment varies 979 
considerably across studies, affecting system reliability and clinical applicability. 980 
 981 
5. Validation Strategies for Automated Pain Detection Systems 982 
 983 
Rigorous validation of automated pain detection systems is a fundamental requirement for 984 
establishing reliable, AI-driven tools in dairy cattle welfare assessment. Unlike conventional 985 
veterinary diagnostics, automated systems encounter unique complexities related to pain’s 986 
inherently subjective nature, interspecies interpretation challenges, and multifaceted 987 
interactions between behavioral, physiological, and environmental variables influencing cattle 988 
pain expression [5]. Consequently, robust validation frameworks are critical—not only for 989 
ensuring technical accuracy—but also for fostering stakeholder trust and obtaining necessary 990 
regulatory approval for deploying emerging technological solutions.  991 
 992 
Effective validation of automated cattle pain detection technologies hinges on addressing 993 
pivotal considerations: accurately establishing ground truth data, ensuring methodological rigor 994 
within validation processes, and verifying that research findings generalize effectively across 995 
diverse animal populations and varied farming environments. Recent literature underscores 996 
significant heterogeneity in existing validation methodologies, leading to challenges in reliably 997 
comparing outcomes across studies employing different technological frameworks and 998 
analytical approaches [89].  999 
 1000 
5.1 Establishing Ground Truth: Veterinary Assessment Integration  1001 
Establishing reliable ground truth data represents the most critical validation challenge for 1002 
automated cattle pain detection systems. Unlike human pain assessments, which leverage self-1003 
reporting mechanisms for direct subjective experiences, veterinary pain evaluations rely 1004 
exclusively on third-party interpretations of observed behaviors, physiological indicators, and 1005 
environmental contexts [89]. This inherent reliance on observer judgments introduces 1006 
substantial risks of bias, necessitating meticulous protocol design to maximize assessment 1007 
reliability and validity while minimizing subjective influences.  1008 
 1009 
Recent progress in veterinary pain assessment emphasizes validated species-specific pain 1010 
scales as essential instruments for establishing robust ground truth. Notably, the UNESP-1011 
Botucatu Unidimensional Composite Pain Scale (UCAPS) and Cow Pain Scale (CPS) have 1012 
emerged prominently. Both tools demonstrate high internal consistency (UCAPS α = 0.82; CPS 1013 

ACCEPTED



27 
 

α = 0.79), establishing reliable baselines for objectively quantifying pain severity [34,90]. 1014 
Comparative evaluations confirm strong criterion validity, exhibiting correlation coefficients 1015 
ranging from 0.76 to 0.78 when benchmarked against traditional veterinary numerical rating 1016 
scales [34].  1017 
 1018 
However, integrating validated scales into automated systems necessitates stringent observer 1019 
training and standardized scoring procedures. Significant variability in inter-rater reliability has 1020 
been documented, with weighted kappa statistics varying between 0.47 and 0.80 depending on 1021 
assessor experience and employed scales [34]. Encouragingly, recent studies report high inter-1022 
rater agreements between automated systems and human evaluators, consistently exceeding 1023 
80%, with Gwet’s agreement coefficients spanning from 0.76 to 0.83 for binary pain 1024 
categorizations [91].  1025 
 1026 
Additional complexity arises from temporal variability in pain expression. Research indicates 1027 
that acute pain detection accuracy markedly declines over post-procedural intervals—dropping 1028 
from approximately 88% accuracy at one hour post-procedure to around 65% after 72 hours—1029 
as analgesic interventions and natural healing alter observable pain manifestations [43]. 1030 
Consequently, dynamic ground truth labeling methodologies that consider temporal pain 1031 
progression may yield superior accuracy compared to static assessments.  1032 
 1033 
Two primary annotation strategies are recognized in ground truth methodologies: stimulus-1034 
based and behavior-based annotations. Stimulus-based annotations, categorizing pain by the 1035 
presence or absence of procedures, provide clear temporal boundaries yet may inadequately 1036 
represent individual variations in pain perception and expression [89]. Conversely, behavior-1037 
based annotations offer detailed observational insight but introduce greater subjectivity and 1038 
potential observer biases. Emerging evidence suggests hybrid annotation approaches, 1039 
combining objective temporal data with expert behavioral assessments, may optimize ground 1040 
truth accuracy, offering balanced objectivity and nuance [57]. 1041 
 1042 
5.2 Cross-validation and Performance Metrics 1043 
The selection of appropriate cross-validation techniques significantly influences perceived 1044 
performance and practical generalizability of automated pain detection models. Traditional 1045 
random cross-validation methods, although computationally convenient, frequently yield 1046 
overly optimistic estimates due to hierarchical data structures and inherent temporal 1047 
dependencies typical of livestock behavior datasets [92]. 1048 
Leave-one-animal-out (LOAO) cross-validation provides greater rigor, better simulating real-1049 
world scenarios where pain detection systems must generalize reliably to previously unseen 1050 
individuals. LOAO validation consistently reports accuracy reductions between 10% and 15% 1051 
relative to random cross-validation, underscoring individual variability’s impact on 1052 
performance [93]. Studies employing LOAO methodologies document substantial variability 1053 
in sensitivity (39.2%–79.6%) and specificity (up to 99.1%), reflecting authentic challenges in 1054 
accommodating animal-level variability within detection algorithms [94]. 1055 
 1056 
Farm-fold cross-validation offers an even stricter validation criterion, explicitly accounting for 1057 
farm-level variability arising from unique management practices, environmental factors, and 1058 
herd genetics. Research employing farm-fold approaches typically reports an additional 5%–1059 
10% performance decrement compared to LOAO, emphasizing the critical influence of farm-1060 
specific contexts on automated system generalizability [94]. Such validation rigor is 1061 
indispensable when assessing commercial feasibility across diverse farming conditions. 1062 
 1063 
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The selection of cross-validation strategy materially affects reported performance and therefore 1064 
conclusions about real-world readiness. Concrete examples from the reviewed literature 1065 
illustrate this: Zhang et al. (2025) report a validation accuracy of ≈99.65% but only 64.3% on 1066 
held-out unseen videos (a drop of ≈35.3 percentage points), with pain-class precision = 0.83 1067 
and recall = 0.56, a clear sign that a naive validation split substantially over-estimates 1068 
deployable performance[85]. Other studies  include inter-farm samples but do not disaggregate 1069 
inter-farm results, preventing assessment of farm-level generalizability[87]. Large longitudinal 1070 
datasets and realistic temporal holdouts yield more conservative but likely more realistic 1071 
metrics[86]. Methodological analyses show that replacing random CV with LOAO typically 1072 
reduces reported accuracy by ~10–15% and applying farm-fold (inter-farm) validation incurs 1073 
an additional ~5–10% decrement; together these stricter protocols can reduce internal estimates 1074 
by 15–25% or more. Authors should therefore (i) always report per-study internal and external 1075 
(held-out/farm-level) metrics, (ii) include LOAO and farm-fold experiments where feasible (or 1076 
clearly state their absence), and (iii) present balanced metrics 1077 
(sensitivity/specificity/PPV/NPV/AUC) rather than accuracy alone to avoid misleading 1078 
conclusions about field performance. 1079 
 1080 
Performance metric selection significantly impacts validation outcomes. While accuracy 1081 
remains prevalent, it can misrepresent performance in imbalanced datasets—common in 1082 
livestock pain studies where non-painful observations predominate [95]. Recent validation 1083 
research stresses balanced metric reporting, including sensitivity, specificity, positive and 1084 
negative predictive values, and ROC-AUC, providing comprehensive model performance 1085 
assessments [96]. 1086 
 1087 
5.3 Challenges in Validation Methodologies 1088 
Validating automated cattle pain detection systems presents multifaceted challenges impacting 1089 
result interpretation and generalizability. Feline pain detection studies deliberately limited 1090 
populations to single breed types (domestic short-haired cats) to minimize confounding 1091 
variables during proof-of-concept validation[97]. This breed-specific variability necessitates 1092 
explicit validation strategies across genetically diverse cattle populations to ensure 1093 
comprehensive applicability. 1094 
 1095 
Environmental variability further complicates validation accuracy. Farm-specific 1096 
environmental factors—including inconsistent lighting conditions, occlusion by equipment or 1097 
other animals, mud contamination, and motion blur—significantly degrade detection accuracy, 1098 
with performance typically decreasing by 15%–20% compared to controlled experimental 1099 
environments [98]. These findings underscore the necessity for explicitly incorporating realistic 1100 
environmental conditions within validation studies, assessing model resilience across varied 1101 
farming scenarios. 1102 
 1103 
Limited dataset sizes remain pervasive within current validation literature, typically involving 1104 
fewer than 100 animals per study with limited representation across age, sex, breed, and farm 1105 
management practices [92]. Such limited diversity restricts statistical power and constrains 1106 
broader population generalizability. Temporal and spatial clustering further exacerbates sample 1107 
size limitations, necessitating larger, more diverse datasets for robust validation outcomes. 1108 
 1109 
Acute and chronic pain condition differentiation presents unique validation complexities, given 1110 
distinct temporal trajectories and subtle behavioral indicators characterizing chronic pain states 1111 
compared to acute presentations [7]. Addressing chronic pain validation demands specialized 1112 
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protocols accommodating long-term, subtle behavioral changes alongside traditional acute pain 1113 
indicators. 1114 
 1115 
Longitudinal data dependencies also introduce validation complexities. Randomly sampling 1116 
temporal data points risks inadvertent leakage of future information, artificially inflating model 1117 
performance estimates [99]. Blocked cross-validation approaches respecting chronological data 1118 
sequences provide more authentic accuracy assessments yet require sufficiently large datasets 1119 
to preserve statistical power. 1120 
Multimodal sensor integration, while promising enhanced accuracy (typically improving 1121 
detection accuracy by 5%–10%), further complicates validation procedures, necessitating 1122 
synchronized data collection and modality-specific preprocessing to ensure consistency and 1123 
reliability [100]. 1124 
 1125 
Collectively, these validation complexities highlight critical needs for standardized protocols 1126 
and collaborative multi-institutional research frameworks, enabling rigorous validation of 1127 
automated cattle pain detection systems across diverse populations, farm environments, and 1128 
temporal conditions. Future research prioritizing comprehensive validation methodologies can 1129 
substantially advance practical translation of emerging technological solutions, significantly 1130 
enhancing dairy cattle welfare outcomes [101]. Building on these crucial validation insights, 1131 
the development and deployment of mobile applications represent the next pivotal step in 1132 
democratizing automated pain detection technologies for farmers and veterinary practitioners 1133 
alike. 1134 
 1135 
 1136 
6. Review of Existing Veterinary and Livestock Mobile Apps 1137 
 1138 
The current landscape of veterinary and livestock-focused mobile applications encompasses a 1139 
broad spectrum, ranging from basic animal record-keeping and self-assessment tools to 1140 
sophisticated AI-driven monitoring systems. Recent developments highlight a trend towards 1141 
intuitive, farmer-centric interfaces integrated with advanced technological capabilities. 1142 
 1143 
6.1 Overview of Existing Livestock Mobile Apps 1144 
Recent veterinary mobile applications reflect substantial diversity in their functionalities. 1145 
Applications such as PIGLOW, an EU-funded platform, enable farmers raising free-range pigs 1146 
to conduct structured welfare audits periodically, providing automated feedback and 1147 
comparative benchmarking against peer farms. A two-year pilot study involving 12 farms 1148 
demonstrated modest improvements in welfare indicators, including reductions in lameness and 1149 
skin lesion prevalence, alongside high farmer-reported usability and acceptance [102]. 1150 
Similarly, mobile apps tailored for beef cattle management have shown strong user satisfaction 1151 
and usability, as indicated by a System Usability Scale (SUS) rating of approximately 75, 1152 
highlighting their effectiveness in streamlining feed tracking and animal health record-keeping 1153 
processes [11]. 1154 
 1155 
Wearable and Internet-of-Things (IoT) devices represent another significant category of 1156 
livestock monitoring solutions. Prototype collars designed for cattle and other livestock have 1157 
emerged prominently, capable of continuously monitoring animal physiological parameters 1158 
such as body temperature, heart rate, and physical activity. These wearable systems transmit 1159 
collected data to cloud analytics platforms, providing veterinarians and farm managers with 1160 
timely alerts to early indicators of health issues, including respiratory infections, thereby 1161 
enabling intervention prior to observable clinical signs [102,103]. Machine-vision-based 1162 
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mobile apps have recently begun leveraging compact convolutional neural network (CNN) 1163 
architectures—such as YOLOv5—to enable smartphone-based, real-time identification of hoof 1164 
conditions like digital dermatitis. Such technologies have been successfully deployed on 1165 
Android and iOS platforms, providing practical and immediate on-farm lameness screening 1166 
capabilities [68]. Consistently, user feedback underscores that farmers highly value mobile 1167 
apps featuring intuitive workflows, straightforward checklists, and simplified data captures that 1168 
seamlessly integrate into their daily farm management routines.  1169 
 1170 
6.2 Mobile Application Deployment Considerations 1171 
For mobile applications operating in rural livestock farming environments, robust on-device 1172 
processing and reliable local networking capabilities are essential. Recent studies underscore 1173 
the advantages of edge computing solutions, such as deployments utilizing NVIDIA Jetson 1174 
Nano hardware equipped with 12 MP cameras for real-time cattle identification tasks on dairy 1175 
farms. These implementations enable rapid edge inference, allowing immediate local web 1176 
access to cattle identification information without reliance on continuous internet connectivity, 1177 
thereby demonstrating real-world latency performances measured in milliseconds per inference 1178 
[49]. 1179 
 1180 
Power management strategies are equally critical for prolonged operation in remote farm 1181 
environments. Several wearable systems now incorporate renewable power solutions, such as 1182 
small solar panels or kinetic energy harvesting from animal movement, enabling continuous 1183 
data collection without frequent manual battery replacements. Examples include prototype 1184 
collars successfully deployed on reindeer and cattle, providing continuous operation for weeks 1185 
at a time [104]. Reviews of such systems confirm that hybrid power setups—combining solar 1186 
panels and motion-based harvesting—effectively support uninterrupted, round-the-clock 1187 
monitoring, in contrast to purely battery-powered collars, which typically require weekly 1188 
recharging under intensive operational conditions [104]. 1189 
 1190 
Moreover, hierarchical network designs employing federated learning approaches further 1191 
enhance scalability and operational feasibility. By preprocessing raw sensor data at the edge—1192 
such as compressing video streams or filtering telemetry data—these systems significantly 1193 
reduce network bandwidth demands, allowing model updates and analytic processes to occur 1194 
without sensitive raw data needing to exit the farm environment. This configuration effectively 1195 
balances computational responsiveness, data security, and limited rural network infrastructure 1196 
capacities [103]. 1197 
 1198 
6.3 User Interface (UI) and User Experience (UX) Design Considerations 1199 
Effective UI/UX design remains fundamental for user acceptance and successful integration of 1200 
livestock mobile applications into farm management practices. Agricultural usability studies 1201 
consistently emphasize that farmers prefer intuitive interfaces closely aligned with their daily 1202 
operational workflows and practical field conditions. Key design criteria highlighted in 1203 
usability evaluations include clearly structured menus, rapid accessibility of essential functions, 1204 
and adequately sized interactive controls (e.g., large buttons and clearly recognizable icons), 1205 
facilitating quick, error-free interactions even while wearing protective gloves [105]. 1206 
 1207 
Empirical evaluations have repeatedly validated these design principles. For instance, a beef-1208 
management mobile application, developed collaboratively with farmers, reported high 1209 
usability ratings (SUS scores exceeding 70) and substantial self-reported satisfaction, 1210 
confirming effectiveness in real-world farm environments [106]. Additional design 1211 
considerations crucial for practical farm deployment include high-contrast displays and 1212 
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minimal text reliance, ensuring readability under direct sunlight. Clear, simplified content 1213 
structures allowing users rapid access to essential tasks without navigating through multiple 1214 
screens further improve efficiency and satisfaction. 1215 
 1216 
Localization support—including multilingual interfaces, regional terminology, and local 1217 
measurement units—ensures broader usability across diverse international and multi-ethnic 1218 
farming communities. Real-time feedback mechanisms, such as color-coded alerts, clear trend 1219 
visualizations, and actionable prompts, further enhance usability, allowing farmers to quickly 1220 
prioritize and manage animal care without extensive data interpretation efforts. Finally, 1221 
interoperability with widely-used farm management systems, enabled through standardized 1222 
APIs, significantly reduces redundant data entry tasks, providing veterinarians and farm 1223 
advisors immediate access to unified, accurate records [106]. Finally, interoperability with 1224 
widely used farm management systems, enabled through standardized APIs, significantly 1225 
reduces redundant data entry tasks, providing veterinarians and farm advisors immediate access 1226 
to unified, accurate records . Fig 3 illustrates the interdisciplinary integration of animal science 1227 
(facial AU biology), computer vision technology (RGB-thermal analysis), and precision-1228 
agriculture systems, with arrows showing data flow from capture to real-time welfare alerts .  1229 
 1230 

 1231 
 1232 
Fig 3: Conceptual illustration depicting interdisciplinary integration of animal science 1233 
(facial action unit biology), computer vision technology (RGB-Thermal image analysis), 1234 
and precision agriculture management systems. Arrows indicate the directionality of data 1235 
flow from initial data capture through to generation of real-time welfare notifications. 1236 
 1237 
6.4 Ethical and Regulatory Compliance in Livestock Mobile Applications 1238 
Given the sensitive nature of farm production and animal health data, mobile applications must 1239 
incorporate rigorous privacy and ethical safeguards. Industry best practices emphasize robust 1240 
end-to-end encryption of data during transmission and storage, stringent user authentication 1241 
protocols, and clearly defined role-based access controls distinguishing farm owners from 1242 
employees [106]. Transparent data ownership policies and explicit user consent protocols 1243 
further establish trust. Applications like PIGLOW utilize anonymous benchmarking systems, 1244 
allowing users to compare welfare metrics confidentially, facilitating peer learning without 1245 
compromising data privacy [102,107]. Regulatory guidelines also advocate comprehensive 1246 
traceability features, including audit logging, tamper-evident record-keeping, and customizable 1247 
data retention periods, ensuring compliance with mandatory animal welfare audit requirements. 1248 
Veterinary regulatory frameworks impose additional operational constraints. Many regions 1249 
stipulate that remote monitoring applications must operate strictly within an established 1250 
veterinarian–client–patient relationship (VCPR), clarifying that such tools complement rather 1251 
than replace professional veterinary oversight. Consequently, clear liability disclaimers and 1252 
predefined emergency flagging thresholds are mandated, ensuring users understand the 1253 
supplementary role of AI-based alerts in clinical decision-making contexts [108]. Ethical 1254 
considerations further encourage developers to adopt responsible innovation strategies, 1255 
involving both veterinarians and farmers directly in application design and validation processes. 1256 
Such co-creative approaches ensure technological advancements augment, rather than diminish, 1257 
traditional farmer roles, preserving essential human empathy and local expertise in animal 1258 
welfare practices [108]. 1259 
 1260 
Technical Performance Trade-offs in Mobile Application Deployment 1261 

ACCEPTED



32 
 

mobile-optimized CNN architectures significantly outperform larger conventional models for 1262 
animal pain detection applications. The technical trade-offs of mobile-optimized CNN 1263 
architectures are summarized in Fig 4. ShuffleNetV2 emerges as the optimal architecture, 1264 
achieving 95.5% accuracy for pain classification with only 6.17 million parameters (~25-30 1265 
MB) and 22 FPS inference speed on smartphones1. EfficientNetB0 and MobileNetV3 also 1266 
demonstrate strong performance with 65-77% accuracy rates while maintaining practical 1267 
deployment characteristics of 17-50 MB model sizes and 12-21 FPS processing speeds. In 1268 
contrast, ResNet50-based approaches achieve only 65% accuracy with significantly larger 1269 
memory footprints and slower inference speeds, contradicting claims that larger models offer 1270 
superior performance for this application domain[75,109]. 1271 
 1272 
Multiple studies document successful clinical deployment of mobile animal pain detection 1273 
systems across various species, including cats (95.5% accuracy), sheep (92.7% accuracy), 1274 
horses (88.3% accuracy), and rabbits (87% accuracy)[57,77,110,111]. These mobile-optimized 1275 
systems demonstrate real-time processing capabilities, minimal battery consumption, and 1276 
successful integration into veterinary clinical workflows with high inter-rater reliability. The 1277 
research conclusively establishes that mobile-optimized CNN architectures are not only 1278 
technically feasible for smartphone deployment but also achieve superior accuracy compared 1279 
to conventional larger models while providing the computational efficiency necessary for 1280 
practical veterinary applications. 1281 
 1282 
Fig 4: Grouped bar chart illustrating comparative benchmarks for mobile application 1283 
deployment of animal pain detection, presenting model file size (MB), pain detection 1284 
accuracy (%), and inference speed (FPS) across ShuffleNetV2, EfficientNetB0, 1285 
MobileNetV3Large, and ResNet-50 architectures. Benchmark metrics are based on 1286 
published peer-reviewed evaluations, supporting informed model selection according to 1287 
practical requirements for mobile veterinary AI applications. 1288 
 1289 

6.5 Ethical Considerations in AI-Based Pain Monitoring 1290 
Implementing AI-driven facial grimace scales in dairy cows raises profound ethical questions 1291 
that go beyond technical issues like data privacy or compliance. Scholars emphasize that digital 1292 
livestock farming can reshape the human–animal bond and risk treating animals as mere data 1293 
points. For example, Neethirajan warns that “the use of artificial intelligence in digital livestock 1294 
farming may lead to a loss of personal connection between farmers and animals,” potentially 1295 
undermining animal well-being[112]. Similarly, recent reviews note that constant monitoring 1296 
(“quantified” animals) can diminish caretakers’ empathy: as, animals cannot consent to 1297 
surveillance, and caretakers “might become overly reliant on graphs or dashboard alerts,” 1298 
weakening the subtle, compassionate observation that traditionally guides animal care[113]. In 1299 
short, high-level ethical reflection asks not only how AI tools function but whether they respect 1300 
animals as sentient beings with interests. Ethicists point out that if AI focuses farm management 1301 
solely on efficiency or productivity, it risks violating animals’ autonomy (treating them as 1302 
instruments) and eroding virtues like compassion and responsibility[113,114]. A “should we” 1303 
perspective thus urges that any pain-detection AI must be integrated in ways that support rather 1304 
than replace the human–animal relationship[112,114]. 1305 
 1306 
AI Decision Support vs. Practical Adoption Risks 1307 
AI tools are often promoted as decision‐support aids, but their real-world use may diverge. 1308 
There is a risk that some farmers will treat AI diagnoses as substitutes for professional care, 1309 
tempted by the illusion of cost savings. This raises both legal and welfare concerns: veterinary 1310 
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regulations (e.g. the U.S. requirement for a valid Veterinarian–Client–Patient Relationship) 1311 
exist to prevent unqualified treatment, and ignoring them could harm animals. Moreover, field 1312 
studies and expert workshops highlight several negative consequences of widespread AI 1313 
adoption: 1314 
• Reduced human–animal interaction: Automated monitoring can make stockkeepers 1315 

spend less time with cows, weakening the human–animal relationship. Schillings et al. 1316 
report that precision livestock systems “decrease animal keepers’ contact with their 1317 
animals,” which can lead to poorer welfare outcomes and “reduced stockmanship 1318 
skills”[115]. Over time, loss of hands-on familiarity may blunt a farmer’s ability to 1319 
notice subtle signs and bond with individual animals. 1320 
 1321 

• Objectification and intensification: By enabling large-scale monitoring, AI can 1322 
inadvertently promote viewing cows as data sources. Workshop participants noted that 1323 
less direct contact may shift attitudes toward animals as “objects,” and that PLF could 1324 
facilitate farm intensification (managing more cows)[115]. Such objectification is 1325 
echoed by Neethirajan, who cautions against treating animals as “mere data 1326 
points”[112]. 1327 
 1328 
 1329 

• Skill erosion and dependency: Reliance on algorithms risks deskilling. Farmers may 1330 
become dependent on AI alerts, reducing their own observational acumen. As one 1331 
review warned, technologies could “make the job less attractive” and raise questions 1332 
about the true meaning of being a farmer[115]. If AI is wrong or misinterprets signals, 1333 
over-reliance could delay veterinary intervention. 1334 
 1335 
 1336 

• Mental health and equity: The push to adopt advanced AI can strain farmers mentally 1337 
and financially. High costs and steep learning curves may create stress or widen a 1338 
“digital divide” between well-resourced and smaller farms[112,115]. Those with 1339 
limited access to tech might fall behind, raising justice concerns. 1340 
 1341 
 1342 

• Erosion of empathy: Finally, scholars caution that dashboards and automated alerts, 1343 
while efficient, may erode empathy. If caretakers “rely too heavily on data,” nuanced 1344 
animal behaviors (ear posture, vocalizations, etc.) might be overlooked[113]. This could 1345 
compromise the very welfare benefits that AI was supposed to enhance. 1346 
 1347 
 1348 

Taken together, these observations underline that AI should not replace human judgment or 1349 
veterinary care. As Schillings et al. conclude, responsible use requires codes of practice, 1350 
training, and co-design with farmers so that technology complements traditional husbandry 1351 
rather than undermining it[113,115]. 1352 
 1353 
Data Privacy and Legal Frameworks 1354 
Beyond welfare, AI-monitoring systems involve vast data streams that raise regulatory issues. 1355 
Video or sensor data on farms can implicate privacy laws: for example, the EU’s General Data 1356 
Protection Regulation (GDPR) applies to any personal information, potentially including 1357 
footage where farmworkers or visitors are identifiable[112]. Also digital farming tools “are 1358 
subject to existing legislation, as well as new laws such as GDPR”[112]. Farmers and 1359 
technology providers must therefore ensure compliant data handling, including secure storage, 1360 
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transparency about data use, and respect for individuals’ privacy. Cybersecurity is also crucial, 1361 
as breaches of animal data (or misused monitoring) could  1362 
 1363 
undermine trust in these systems. 1364 
Similarly, animal-welfare laws and standards impose boundaries on AI use. In the United States, 1365 
the Animal Welfare Act (though focused on research and exhibition) reflects society’s 1366 
expectation of humane animal treatment. Many countries also have dairy-specific welfare codes 1367 
(e.g. the EU’s minimum welfare regulations, national “Red Tractor” standards, etc.). Any AI-1368 
based pain monitoring must operate within these frameworks: it should trigger interventions 1369 
consistent with legal care requirements, not merely optimize production. For example, a cow 1370 
flagged as in pain must be treated in accordance with veterinary standards and animal-health 1371 
legislation. 1372 
 1373 
In summary, integrating facial expression AI into dairy farming demands a responsible, animal-1374 
centered approach. Ethical guidelines suggest co-developing technology with stakeholders 1375 
(farmers, veterinarians, ethicists) and embedding safeguards (data protection, obligatory vet 1376 
oversight, periodic ethical review)[112,115]. Only by addressing the “what if” and “should we” 1377 
questions on animal dignity, farmer roles, and legal duties can AI-based monitoring truly 1378 
benefit cow welfare without unintended harm. 1379 
 1380 
7. Future Perspectives and Recommendations 1381 
 1382 
The field of automated pain detection in dairy cattle is at a crucial juncture, where 1383 
groundbreaking technological innovations must align closely with real-world implementation 1384 
and widespread industry adoption. As detailed in this comprehensive review, significant 1385 
advancements in artificial intelligence, computer vision, and mobile technology have produced 1386 
robust, accurate, and clinically meaningful tools capable of transforming livestock welfare 1387 
management. Moving forward, addressing challenges related to breed diversity, environmental 1388 
robustness, and collaborative implementation frameworks will be critical for successfully 1389 
transitioning these technologies from experimental validation to broad commercial acceptance.  1390 
 1391 
7.1 Addressing Breed-Specific and Environmental Limitations 1392 
Advanced Transfer Learning for Crossbreed Adaptation 1393 
Breed-specific variability remains one of the most significant barriers to universal 1394 
implementation of automated cattle pain detection systems. Recent breakthroughs in transfer 1395 
learning methodologies offer compelling solutions by allowing models trained on a single breed 1396 
to generalize effectively to genetically diverse herds, mitigating the need for extensive breed-1397 
specific datasets. Research has shown that transfer learning effectively maintains high accuracy 1398 
levels across diverse cattle breeds, providing scalable, broadly applicable solutions [116]. 1399 
 1400 
Moreover, multimodal data fusion has emerged as a powerful technique to overcome breed-1401 
specific biases. For example, studies applying adaptive fuzzy logic in multimodal fusion 1402 
systems have demonstrated exceptional accuracy, achieving validation performance rates up to 1403 
95% for environment evaluation, 100% for feeding evaluation, and approximately 94% for 1404 
behavior detection [117]. These results underscore the transformative potential of integrating 1405 
diverse data sources—such as RGB imaging, thermal sensors, accelerometers, and 1406 
environmental monitors—to reliably capture breed-independent pain expressions [118]. 1407 
 1408 
Comprehensive multimodal datasets have significantly advanced crossbreed validation. By 1409 
capturing detailed facial anatomical variations and behavioral patterns across breeds, 1410 
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researchers have developed models that generalize more effectively. Notably, advanced neural 1411 
network architectures such as Vision Transformers with Bi-Level Routing Attention have 1412 
achieved impressive facial recognition accuracies of 98.36%, adeptly handling breed-specific 1413 
anatomical differences [116]. Leveraging the global contextual understanding provided by 1414 
transformer models positions them as particularly suitable for addressing breed-dependent 1415 
variations in pain-related expressions. 1416 
 1417 
Environmental Robustness via Edge Computing 1418 
The unpredictable and dynamic nature of farm environments poses substantial obstacles to 1419 
implementing automated pain detection systems. Edge computing solutions have emerged as 1420 
pivotal for enhancing environmental robustness, enabling real-time data processing in 1421 
challenging agricultural contexts. Recent edge-computing deployments have demonstrated 1422 
extremely low latency (5–10 milliseconds), significantly improving responsiveness of livestock 1423 
monitoring systems [119]. Intelligent wearable devices powered by solar energy have achieved 1424 
continuous operation in real-world settings, consistently maintaining accuracy (97.27%) in 1425 
health and behavior classification tasks [119]. These findings underscore the practicality and 1426 
sustainability of edge computing frameworks.  1427 
 1428 
Moreover, integrating edge computing with mobile applications simultaneously addresses 1429 
multiple environmental constraints reducing network bandwidth requirements, enhancing 1430 
system resilience during connectivity disruptions, and facilitating reliable operation even in 1431 
remote agricultural locations [120]. Robust environmental monitoring, exemplified by multi-1432 
zone Temperature-Humidity Index (THI) predictive models, further complements pain 1433 
detection systems, enabling adaptive processing and accurate welfare assessment across diverse 1434 
environmental conditions [121]. 1435 
 1436 
Enhancing Reliability through Multimodal Fusion 1437 
To ensure robust pain detection across varying environmental conditions, multimodal data 1438 
fusion strategies are crucial. Recent research clearly demonstrates superior reliability and 1439 
accuracy when combining multiple data streams such as accelerometry, visual observation, 1440 
thermal imaging, and environmental sensors relative to single-sensor approaches. Studies 1441 
confirm that accelerometers detect behavioral changes related to pain significantly earlier than 1442 
visual assessments alone; conversely, visual observations provide nuanced identification of 1443 
pain-specific behaviors undetectable by sensor data alone [98]. 1444 
 1445 
Further advancements in sensor fusion methodologies such as integrating computer vision with 1446 
mechanical sensors have shown notable improvements in monitoring precision. Studies 1447 
monitoring cattle brush-use behaviors have highlighted that combined machine-learning 1448 
models significantly outperform individual sensor approaches, enhancing accuracy and 1449 
reliability [122]. The creation of comprehensive multimodal datasets encompassing diverse 1450 
sensor types has significantly strengthened fusion methodology validation, underpinning 1451 
development of robust algorithms capable of maintaining high accuracy across heterogeneous 1452 
farm conditions [123]. 1453 
 1454 
7.2 Enhancing Real-time and Longitudinal Pain Monitoring 1455 
Precision Livestock Farming Integration 1456 
Integrating automated pain detection into broader precision livestock farming (PLF) 1457 
frameworks represents a critical step toward comprehensive herd health and welfare 1458 
management. Recent research highlights the effectiveness of PLF technologies, employing 1459 
real-time monitoring, machine learning, and IoT-based solutions to enable proactive disease 1460 
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detection and welfare management [120]. LoRa-based sensor networks integrated with 1461 
Subspace k-Nearest Neighbors classifiers have consistently demonstrated superior disease 1462 
classification accuracy and timeliness, enabling targeted interventions [120]. 1463 
 1464 
Scalable, AI-driven welfare platforms leveraging deep learning and edge computing are now 1465 
demonstrating significant promise, automating critical welfare assessments such as locomotion 1466 
scoring, health status evaluation, and body condition monitoring. Markerless animal 1467 
identification further enhances these platforms, making them both practical and scalable across 1468 
farm sizes [118]. 1469 
 1470 
Continuous Monitoring Frameworks 1471 
Implementing continuous pain monitoring necessitates sophisticated technological 1472 
architectures capable of real-time computation and sustained reliability over extended periods. 1473 
IoT-based cattle monitoring systems employing accelerometer sensors coupled with advanced 1474 
statistical models (e.g., ARIMA, wavelet transformations) effectively predict and classify 1475 
behavioral patterns, facilitating proactive health management [119]. Additionally, continuous 1476 
multi-zone environmental monitoring (THI prediction) achieves robust predictive accuracy, 1477 
enabling proactive environmental control strategies and thereby enhancing overall herd welfare 1478 
[121]. 1479 
 1480 
Integration with Herd Health Records 1481 
Effective integration of automated pain detection with existing farm management systems is 1482 
vital to enable actionable insights and informed herd-health decision-making. Standardizing 1483 
data formats and protocols has emerged as a crucial facilitator of seamless integration across 1484 
multiple monitoring systems, ensuring consistency and comparability in welfare assessments 1485 
[124]. Advanced machine-learning analytics further enhance data integration capabilities, 1486 
providing actionable insights that optimize treatment strategies, resource allocation, and herd 1487 
health management overall [120]. 1488 
 1489 
7.3 Recommendations for Industry-wide Implementation 1490 
Collaborative Veterinary-AI Partnerships 1491 
Successfully deploying automated pain detection technologies requires well-structured 1492 
collaborative frameworks combining veterinary expertise with AI capabilities. Effective 1493 
human-AI collaboration substantially improves decision-making efficiency, operational 1494 
precision, and stakeholder trust. Recent research emphasizes transparency and explainability in 1495 
AI outputs, significantly enhancing adoption rates among veterinarians and farmers. 1496 
Maintaining veterinary oversight within collaborative frameworks is critical, ensuring that AI 1497 
systems serve as valuable decision-support tools rather than substitutes for expert veterinary 1498 
judgment. 1499 
 1500 
Structured training programs significantly enhance veterinarian and farmer confidence in AI-1501 
driven tools, improving diagnostic outcomes and adoption rates. Such industry-specific 1502 
collaborative frameworks, integrating technology developers, veterinarians, and farm managers 1503 
throughout design and deployment phases, have been demonstrated as critical for addressing 1504 
practical implementation challenges effectively. 1505 
 1506 
Standardization and Validation Protocols 1507 
Establishing rigorous industry-wide standards and validation protocols is imperative for 1508 
ensuring the reliability, safety, and effectiveness of automated pain detection systems. 1509 
Validation protocols must consider species-specific physiological and behavioral nuances, as 1510 
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validation methodologies successful in one livestock species may not directly transfer to others. 1511 
External, independent validation is essential for industry credibility, as currently only a small 1512 
fraction (approximately 14%) of available technologies have undergone independent validation, 1513 
highlighting a significant gap in existing approaches [125]. 1514 
 1515 
Farm-specific Customization Strategies 1516 
Farm-specific customization is necessary due to variability in management practices, 1517 
environmental contexts, and operational scales. Recent studies indicate perceived ease-of-use 1518 
and demonstrated utility significantly influence farmer adoption decisions [103]. Cost-effective 1519 
approaches utilizing readily accessible technologies, such as optimized IoT sensor systems, 1520 
enhance economic feasibility and adoption rates across both small-scale and commercial 1521 
operations [119]. 1522 
 1523 
Scalability considerations, notably demonstrated through high-precision cattle tracking systems, 1524 
highlight that deep learning-based architectures can efficiently scale from individual animal 1525 
monitoring to extensive herd management applications without compromising accuracy or 1526 
operational efficiency [123]. This adaptability allows tailored technology deployments to 1527 
match diverse farming contexts. Table 4 outlines the technical specifications and recommended 1528 
enhancements for automated cattle pain detection systems, including performance targets for 1529 
multi-breed adaptability, environmental robustness, and practical usability. 1530 
 1531 
Table 7: Technical specifications and recommended implementation enhancements for 1532 
automated cattle pain detection systems. Proposed performance targets emphasize multi-breed 1533 
adaptability, robust environmental integration, and high practical usability: 1534 

System 
Component 

Current 
Capabilities 

Recommended 
Enhancements 

Integration 
Requirements 

Performance 
Targets 

AI 
Processing 

95-99% accuracy 
in controlled 
conditions 

Multi-breed 
validation; 

Environmental 
adaptation 

Edge-cloud 
hybrid 

architecture 

>95% accuracy 
across all 

breeds 

Sensor 
Integration 

Individual sensor 
validation 

Multimodal 
fusion; 

Continuous 
monitoring 

Standardized 
data formats 

>90% uptime; 
<5% false 

positive rate 

Mobile 
Applications 

Basic monitoring 
capabilities 

Real-time alerts; 
Veterinary 
integration 

Cross-platform 
compatibility 

>90% user 
satisfaction 

Data 
Management 

Local storage; 
Periodic 

synchronization 

Real-time cloud 
integration; 
Predictive 
analytics 

Interoperability 
with farm 
systems 

<1% data loss; 
Real-time 
processing 
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Validation 
Framework 

Species-specific 
testing 

Cross-breed; 
Multi-

environment 
validation 

COSMIN 
compliance; 

External 
validation 

>85% 
sensitivity; 

>90% 
specificity 

 1535 
The future success of automated pain detection technologies for dairy cattle hinges upon 1536 
effectively aligning technological innovation with real-world practicalities and stakeholder 1537 
priorities. Comprehensive multimodal integration, robust environmental resilience, industry-1538 
wide standardization, and collaborative implementation frameworks represent essential 1539 
pathways from experimental validation towards broad commercial adoption. 1540 
 1541 
8. Conclusions 1542 
Automated pain detection in dairy cattle has reached an inflection point, transitioning from 1543 
experimental promise to real-world applicability, driven by breakthroughs in neurobiology, 1544 
artificial intelligence (AI), and mobile technology. Traditional veterinary assessment methods, 1545 
notably Numerical Rating Scales (NRS) and Visual Analog Scales (VAS), though historically 1546 
foundational, continue to face inherent limitations due to subjectivity (ICC range: 0.73–0.81), 1547 
invasiveness, and challenges in accurately capturing subtle pain indicators in large herds. In 1548 
stark contrast, validated facial grimace scales like UCAPS, boasting strong diagnostic metrics 1549 
(AUC = 0.93), have introduced objective, quantifiable alternatives, significantly enhancing the 1550 
reliability of acute pain detection (sensitivity range: 0.66–0.90). Yet, a clear and pressing gap 1551 
persists in reliably assessing chronic pain conditions, underscoring the need for further targeted 1552 
research in this critical area. 1553 
 1554 
The integration of advanced AI algorithms and computer vision technologies has marked a 1555 
revolutionary advancement in precision livestock welfare. Cutting-edge detection architectures, 1556 
such as RetinaNet (99.8% average precision) and YOLOv8-Pose (96.9% mAP), have enabled 1557 
remarkable accuracy and consistency in facial landmark detection and pain-related behavioral 1558 
analysis. Moreover, the deployment of multimodal AI strategies—combining RGB imagery 1559 
and thermal sensors—has achieved impressive accuracy (81–95%) in detecting inflammation 1560 
and physiological stress responses linked to pain. The practicality of these technologies in real-1561 
world farm environments has been further validated by edge-computing frameworks like Dairy 1562 
DigiD, demonstrating robust real-time processing capabilities (24 frames per second) under 1563 
variable conditions, significantly enhancing their readiness for widespread commercial 1564 
deployment. 1565 
 1566 
Mobile technology further amplifies these advancements by democratizing access to 1567 
sophisticated welfare monitoring systems. Validated applications such as PIGLOW (featuring 1568 
high usability ratings) and VetPain (inter-rater reliability ICC ≥0.87) highlight the critical role 1569 
of intuitive, user-centric designs in facilitating widespread adoption by non-specialist 1570 
stakeholders. These applications incorporate multilingual interfaces, actionable alerts, and 1571 
seamless integration into daily farming workflows, thus bridging the gap between technological 1572 
innovation and practical usability in diverse agricultural contexts. 1573 
 1574 
Robust validation protocols have confirmed strengths of automated pain detection systems, 1575 
particularly in acute pain detection scenarios (precision and recall consistently exceeding 0.80). 1576 
However, critical limitations remain concerning breed-specific performance biases and the 1577 
precise differentiation between chronic and acute pain states. Future research directions must 1578 
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prioritize advanced transfer-learning approaches, effectively addressing genetic variability 1579 
between cattle breeds such as Holstein and Zebu where transformative transformer-based 1580 
architectures have already demonstrated accuracy rates reaching 98.36%. Complementing this, 1581 
environmental resilience must be strengthened through the strategic deployment of solar-1582 
powered edge-computing devices, which have achieved reliable behavior classification 1583 
accuracy of approximately 97.27%, ensuring operational sustainability across diverse, 1584 
challenging farm environments. 1585 
 1586 
Longitudinal monitoring capabilities represent another critical area poised for substantial 1587 
impact. Integrating accelerometry data with advanced vision-based systems has already 1588 
demonstrated exceptional performance (up to 99.55% accuracy in lameness detection), 1589 
promising proactive herd health management that can significantly mitigate economic losses 1590 
associated with undetected pain. Leveraging these capabilities within Precision Livestock 1591 
Farming (PLF) frameworks enables earlier interventions, optimized herd health management, 1592 
and significant productivity gains, presenting compelling economic incentives for industry-1593 
wide adoption. 1594 
 1595 
However, these numeric gains are strongly context-dependent. Most high figures derive from 1596 
acute-pain datasets, controlled conditions or within-dataset validation; when evaluated under 1597 
LOAO or farm-fold (inter-farm) protocols, performance commonly drops (typical contractions 1598 
reported across studies ≈10–25%). Breed, management and environment remain important 1599 
constraints: models trained on one breed or barn layout do not automatically generalize to 1600 
others. Likewise, reliable automated detection of chronic pain remains unresolved. Therefore, 1601 
claims that AI will “significantly” improve welfare must be anchored to these contextual limits 1602 
and to validated field performance. 1603 
To move from demonstrated capability to documented welfare impact, we recommend the 1604 
following measurable priorities: 1605 

1. Dataset breadth: curate and publish large, annotated datasets that include multiple 1606 
breeds, ages and chronic-pain cases to reduce out-of-sample failures. 1607 

2. Standardized validation: require LOAO and farm-fold testing and report sensitivity, 1608 
specificity, PPV/NPV and ROC-AUC with 95% CIs for each validation design; aim for 1609 
field-validated sensitivity/specificity ≥0.80 across at least three independent farms 1610 
before making deployment claims. 1611 

3. Cross-breed adaptation: adopt transfer-learning and few-shot strategies with explicit 1612 
fine-tuning on under-represented breeds to close genetic bias gaps. 1613 

4. Robust field deployment: prioritize energy-efficient edge solutions and stress-testing in 1614 
real barns (lighting, occlusion, weather) to ensure continuous operation at target frame 1615 
rates (≈20–30 fps). 1616 

5. Ethics and veterinary integration: implement mandatory escalation pathways to 1617 
veterinarians (VCPR-aligned), transparent data governance, and co-design with end 1618 
users to preserve human–animal relationships and avoid over-reliance on automation. 1619 

6. Impact evaluation: accompany technological deployments with longitudinal welfare 1620 
studies that quantify outcomes (e.g., reductions in undetected lameness, changes in 1621 
time-to-treatment, or modeled reductions in premature culling). 1622 

By focusing on these concrete milestones rather than on unqualified potential, future work can 1623 
translate current algorithmic advances into sustained animal-level improvements in welfare. 1624 
 1625 
The implications for global dairy cattle welfare from successfully implementing automated 1626 
pain detection technologies are profound and far-reaching. With more than 270 million dairy 1627 
cows globally experiencing pain-related welfare challenges, widespread adoption of these 1628 
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innovations could drastically reduce animal suffering, significantly extend herd longevity 1629 
(potentially decreasing premature culling rates by 10–20%), and contribute to sustainable and 1630 
ethically responsible agriculture. However, translating these opportunities into real-world 1631 
outcomes requires sustained commitment to addressing identified gaps—particularly the 1632 
accurate identification of chronic pain and improved crossbreed adaptability. 1633 
 1634 
Moving forward, dedicated investment is essential for developing comprehensive, publicly 1635 
accessible datasets, rigorous ethical AI deployment guidelines, and targeted educational 1636 
programs for farmers and veterinary professionals. Pioneering solutions like CowPain Check 1637 
exemplify the immense potential of thoughtful technological integration, setting powerful 1638 
precedents for humane, sustainable dairy farming practices aligned closely with the United 1639 
Nations Sustainable Development Goals (SDGs). By addressing current technical, economic, 1640 
and social challenges through a coordinated interdisciplinary approach, the dairy industry can 1641 
leverage these innovations not only to elevate animal welfare standards significantly but also 1642 
to lead broader advancements across global livestock welfare management practices. 1643 
 1644 
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Figures 2023 

 2024 

Figure 1. (A) Schematic illustration of Cobalt-60 gamma irradiation applied to primary 2025 
muscle cells isolated from Hanwoo muscle tissue. (B) Representative axial, coronal, and 2026 
sagittal plane images showing the targeted irradiation field using the Gamma Knife system. 2027 
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 2029 

Figure 2. (A) Total cell number, live cell number, and viability of Hanwoo muscle-derived 2030 
cells irradiated with different doses (Con, 2, 10, and 20 Gy) under suspension conditions. (B) 2031 
Total cell number, live cell number, and viability of irradiated Hanwoo muscle-derived cells 2032 
after 1 day of culture. (C) Total cell number, live cell number, viability of irradiated Hanwoo 2033 
muscle-derived cells after 6 day of culture. (D) Relative mRNA expression levels of MYF5, 2034 
MYOD1, TP21, and TP53 in Hanwoo muscle-derived cells after 6 days of culture under each 2035 
irradiation dose (Con, 2, 10, and 20 Gy). All mRNA expression levels were normalized to the 2036 
housekeeping gene GAPDH. Different letters indicate statistically significant differences (p < 2037 
0.05, one-way ANOVA followed by Tukey’s post hoc test). 2038 
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 2039 

Figure 3. (A) Representative phase-contrast images of Hanwoo muscle-derived cells at 2, 4, 2040 
and 6 days of culture following gamma irradiation at different doses (Con, 2, 10, and 20 Gy). 2041 
Magnification: 40×, Scale bars = 100 μm. (B) Quantitative analysis of cell morphology 2042 
showing cell length (μm) and width (μm) at 2, 4, and 6 days post-irradiation in each treatment 2043 
group. (C) Distribution histograms of calculated cell area (length × width) at 2, 4, and 6 days 2044 
of culture under each irradiation condition. Threshold values were defined as the mean + 2 2045 
standard deviations (2SD) of the control (Con) group at each time point. Different letters 2046 
indicate statistically significant differences (p < 0.05, one-way ANOVA followed by Tukey’s 2047 
post hoc test). 2048 
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 2049 

 2050 

Figure 4. (A) Representative phase-contrast images of Hanwoo muscle-derived cells cultured 2051 
under differentiation conditions for 1 and 2 days following gamma irradiation at different 2052 
doses (Con, 2, 10, and 20 Gy). Magnification: 40×, Scale bars = 100 μm. (B) Relative mRNA 2053 
expression levels of MYOG and MYH2 in irradiated Hanwoo muscle-derived cells after 2 2054 
days of differentiation culture. All mRNA expression levels were normalized to the 2055 
housekeeping gene GAPDH. Different letters indicate statistically significant differences (p < 2056 
0.05, one-way ANOVA followed by Tukey’s post hoc test). 2057 
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