1 Hastening meat production: A review of growth promoters

2 for traditional and cultured meat production

Ermie Jr. Mariano, Da Young Lee, Ji Won Park, Seok Namkung, So Young Choi, Chae Hyeon Bok, Woojin Lee, Yewon Shin, Colin Venter, Sun Jin Hur* Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Korea *Corresponding author: Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17456, Republic of Korea. Tel.: +82 31 670 4673; Fax: +82 31 670 3108. *E-mail address:* hursj@cau.ac.kr (S.J.H.)

ABSTRACT

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Time is an intangible yet important element in food production systems. It is often used as one of the bases for technology and production efficiency, with shorter production durations being favored. Meat is a staple source of protein for the human diet; therefore, efforts to improve and optimize production efficiency are always warranted. Growth promoters in traditional meat production are additives used to improve the performance and productivity of livestock animals while the enhancement of proliferation, differentiation, and maintenance capacity of cells are prioritized in cultured meat production. Although often put in opposition each other, traditional and cultured meat share a common purpose of providing meat and its products for food security. This review provides insight into the previous and current growth promoters used in both meat production systems. Differences in traditional meat and cultured meat production, in terms of nutrient allocation and production period, were given emphasis. Potential effects of shortened meat production duration to the environment were also discussed. In both production systems, plant-derived growth promoters are commonly used to improve production efficiencies and food safety, particularly in terms of antimicrobial resistance, hormonal residues, and toxicity. Antioxidants play an important role in both meat production and myogenesis, supporting animal and cell growth. Shortened production duration due to growth promoters can generally lead to lower production costs, as well as result in the commercialization and price competitiveness of traditional and cultured meat products.

41

- **Keywords:** Traditional meat, Cultured meat, Food safety, Growth promoters, Production
- 43 efficiency

1. Introduction

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

Time is a crucial factor in all food production systems, as technology efficiency is measured based on production yield over time. High yield within a short period is usually favored in a fast-paced system. In other words, quantity is prioritized over quality, as different processes and additives can be used to later improve the quality to meet consumer acceptance. In the field of meat production, fast growth rate and high feed conversion efficiency are favored to meet the demand for meat, whether for direct consumption or further processing (Brameld & Parr, 2016). Consequently, innovations related to meat production are aimed toward faster growth and higher muscle mass through improved breeding programs, development of high-quality feeds and additives, genetic modification of animals (e.g., disease resistance, double muscling, fast growth), improved housing conditions, and improvements in overall animal health (Bist et al., 2024; Terry et al., 2021; Tokach et al., 2016). Moreover, growth promoters have been developed that mainly target the improvement of feed utilization and accelerated growth rates (Brameld & Parr, 2016). Despite improvements in practices for livestock meat production, there remains a demand for slaughter-free products and sustainable food sources (Parlasca & Qaim, 2022). Cultivated meat production is a technology aimed at addressing welfare and sustainability issues in animal-based food production (Kirsch et al., 2023). The demand for alternative protein sources has been increasing as environmental and ethical concerns over conventional meat production continue to be magnified. This promising technology involves the mass-production of animal cells (e.g., embryonic stem cells, induced pluripotent stem cells [iPSCs], mesenchymal stem cells [MSCs], adipocytes, muscle satellite cells), which are grown in vitro, to provide raw materials essential in simulating conventional meat or meat products (Kirsch et al., 2023; Lee et al., 2024; Martin et al., 2024). One of the promises of

cultivated meat technology is the large-scale production of meat precursors in a shorter period than traditional meat production, which entails months to years of production time depending on the livestock species (Ding et al., 2021). However, the status of cultivated meat production remains at pre-commercialization level due to the relatively high production costs associated with scale-up and commercialization (Yun et al., 2024). Consequently, academic researchers and industry stakeholders are collaborating to address the high production costs by developing low-cost media components, three-dimensional (3D) biomaterials, and cell engineering, for example (Lee et al., 2025).

Ultimately, traditional and cultivated meat production both aim to ensure food security for future generations. Considering the effects of a continuously increasing global population and global warming, strategies and innovations must be developed to mitigate the impacts of these global issues on food security, specifically animal-based products. Thus, this review focuses on identifying growth promoters for traditional and cultivated meat production.

2. Comparison between traditional and cultured meat production

Meat, a popular animal-based food product, is an important source of nutrients (e.g., proteins, essential amino acids, vitamins, minerals) in human diets (Leroy et al., 2023). Traditional meat production encompasses several stages, such as animal rearing, slaughtering, processing, and packaging and distribution (Nethra et al., 2023). Conversely, cultivated meat production involves cell selection, mass cultivation, 3D formation/assembly, processing, and packaging and distribution (Kirsch et al., 2023). Meat from both production systems consists of animal cells and their metabolic products, based on the processes of myogenesis *in vivo* or *in vitro* (R. Warner, 2019). However, it is reasonable to conclude that traditional meat is more cell diverse, considering the presence of connective tissues and other cellular components from

adjacent organs (Reiss et al., 2021). Meanwhile, cultivated meat is currently a product of monocultured myogenic cells due to the current limitations in media formulations, scaffolding, bioreactors, and other variables that support *in vitro* cultivation (Martin et al., 2024; Pierezan & Verruck, 2024). Despite the technology for industrializing cultivated meat being in its nascent stage and a mass production process not yet established, cultivated meat holds promise as an alternative meat source for human consumption, provided it meets acceptable production efficiency and regulatory standards (Hubalek et al., 2022). This section reviews the differences between traditional and cultivated meat production in terms of time or production duration. It also explores previous and current growth promoters used as accelerators in either of these meat production systems.

2.1. Traditional meat production

104 2.1.1. Traditional meat production duration

Major meat types, including chicken, pork, and beef, undergo several processing steps before consumption. The largest difference among these meat types lies in the production process, particularly the rearing of animals until they reach physical maturity as a meat source (Bist et al., 2024; Terry et al., 2021; Tokach et al., 2016). Commonly, the acceptability for slaughter is based on weight and age (Kwon et al., 2022; Pandey et al., 2024; Park et al., 2021). For practical reasons, underperforming animals, in terms of meat production-relevant growth parameters, are culled at an earlier age to prevent wastage of animal feed, supplements, and other cost-incurring practices (Warner et al., 2022). Underperformance is typically measured by the feed conversion ratio (FCR), which is a metric that assesses feed intake and weight gain. Given the high cost of feeds, FCR has become an important measure and guide for livestock raisers, especially for meat production (Zampiga et al., 2021). However, it should be

noted that improved rearing and production time is just one consideration among others in meat production. Chickens have a significantly shorter meat production period compared to swine and beef cattle (Figure 1). Their short rearing time and high feed conversion efficiency make them a popular meat type due to the protein content and affordability (Biesek et al., 2020; Bosco et al., 2014). Meanwhile, pork production takes less than 6 months to reach slaughter weight (Guo et al., 2022; Hoar & Angelos, 2014) (Figure 1). This is significantly shorter than beef production, which takes approximately four times the duration of pork production (Greenwood, 2021; Hoar & Angelos, 2014). Both chicken and swine are monogastric animals, thus having a more direct digestion of feed as a source for muscle build-up (Cherian, 2019) compared to beef cattle, which rely heavily on their gut microbiome for feed digestion, as cellulose and hemicellulose are indigestible without microbial enzymes (Matthews et al., 2019). Differences in the digestive system, as well as the type of feed consumed, result in variations in the duration of meat production among these animals. Therefore, optimized feeding strategies are needed to expedite the production process and meet the increasing demand for meat.

2.1.2. Nutrient allocation from diet among live animals

The majority of the production cost in livestock raising is for feed/nutrition (Makkar, 2018). This is because the building blocks for the growth and development of animals come from their diet. For this reason, strategies to improve livestock production are directed toward optimizing their diets to provide optimal nutritional benefits, resulting in improved health, increased weight gain, and superior product quality (Anghelescu, 2024). Given the importance of nutrition, it is important to understand how nutrients are allocated after digestion.

There are generally five physiological functions in animals—maintenance, immune response, growth, reproduction, and fat storage, which differ based on factors such as species, age, health, genetic potential, and environmental conditions (Webb & Casey, 2010). Maintenance involves functions such as organ function and thermoregulation; thus, it lies at the top of the hierarchy for nutrient allocation (United States Food and Agriculture Organization [FAO], 2012). Depending on the animal's health and well-being, the immune response utilizes nutrients to provide active immunity and prevent damage from existing health issues, which explains why health management and disease prevention are important strategies for improving livestock production (Humphrey & Klasing, 2004). After satisfying maintenance needs, the growth of organs, bones, and muscles is then prioritized, which is the reason basal metabolic needs are considered in the computation for feed formulation to provide more than just the maintenance needs of an animal (Zhao et al., 2023). Reproduction, particularly gamete production and gestation, also utilizes nutrients (Zhao et al., 2023). Any excess from the previously mentioned functions is converted into fat, which is stored as an energy source for the animal (Hocquette et al., 2007). Decades of livestock research and development have led to numerous scientific breakthroughs enabling highly efficient animal production systems. Improvement in animal production is often attributed to a holistic approach, which involves considering multiple factors that the animals need to promote high growth and performance (Terry et al., 2021). For example, in terms of genetic improvement, the use of genetic markers to identify genetically superior individuals can fast-track the pooling of desirable production traits. This can be supported by improved management practices that ensure the health and welfare of animals, thereby allowing the favorable expression of desired traits. However, among production requirements,

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

nutritional optimization takes the lead as arguably the biggest factor affecting animal production (McGrath et al., 2018).

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

163

164

2.1.3. Growth promoters for meat production

Although optimized nutrition can lead to improved muscle gain, a shorter production period is still desired. As a solution, growth promoters have been introduced to improve animal growth rates, whether intentionally or unintentionally (i.e., as a side effect) (Ronquillo & Vargas-Bello-Pérez, 2022). In this review, five categories of growth promoters were identified, namely, antibiotic growth promoters (AGPs), hormonal growth promoters (HGPs), microbiome-based promoters (MPs), enzyme additives (EAs), and phytogenic additives (PAs). Table 1 lists the various categories of growth promoters along with representative products and the mechanism behind their growth-promoting effects. AGPs tend to benefit the animals by mainly enhancing their growth and efficiency, and preventing disease occurrence (Hosain et al., 2021; Ma et al., 2021; Patel et al., 2020; Plata et al., 2022). Generally, antibiotics have diverse mechanisms of action against bacteria, but mainly include the inhibition of cell wall, protein, and DNA synthesis, as well as the disintegration of the cytoplasmic membrane (Sung et al., 2025). In the study of Plate et al. (2022), it was determined that narasin can influence the nitrogen utilization of chicken gut microbiomes, leading to improved performance. However, a study using AGPs (e.g., virginiamycin, chlortetracycline, bacitracin methyl disalicylate, lincomycin, tylosin) in broiler production showed no significant effects on growth or feed efficiency, thereby calling for the reduction of AGP use as a precautionary measure toward antimicrobial resistance (Paul et al., 2022). Meanwhile, the use of tylosin in pigs did not yield a significant difference in weight gain but resulted in earlier maturation of swine gut microbiota (Kim et al., 2016). Similarly,

pigs fed with a combination of chlortetracycline, sulfathiazole, and penicillin did not show growth promotion but inhibited the growth of potential pathogenic bacteria in weaned piglets (Unno et al., 2015). In beef production, Bretschneider et al. (2008) reviewed and concluded that there is an increasing trend in the average daily gain and feed conversion of forage-fed beef cattle treated with increasing ionophore (e.g., lasalocid, tetronasin, lysocellin) dosage. Based on the reviewed reports, no single AGP can be concluded to be effective across species given the usual combination of multiple AGPs as treatments. This suggests that the use of AGPs differ among species. Although certain combination of AGPs have been found to improve animal gut health and performance, the disadvantages of using AGPs must also be taken into account. The most crucial consideration in the use of AGPs is the development of antimicrobial resistance among pathogenic microorganisms, which poses a threat to both animal and human health (Cameron & McAllister, 2016; Ronquillo & Hernandez, 2017). HGPs are natural or synthetic hormones primarily used to influence muscle deposition and improve feed conversion rates (Aroeira et al., 2021; Itana & Duguma, 2021). In broilers, Islam et al. (2022) found that dexamethasone supplementation negatively affected the feed intake, feed efficiency, and weight gain. The study also warned of the potential accumulation of dexamethasone in the meat (Islam et al., 2022). Meanwhile, after reviewing numerous studies that involved the use of HGPs in beef and pork production, Aroeira et al. (2021) noted that the administration of the correct dosage of HGPs in livestock animals can effectively meet production demands for animal protein. For example, Athayde et al. (2012) concluded that a 5 mg/kg ractopamine supplementation can improve the performance of pigs without affecting pork quality parameters (e.g., color, drip loss, marbling score, intramuscular fat content). Meanwhile, the use of zilpaterol hydrochloride improved live growth performance, carcass yield, and characteristics of beef steers (Walter et al., 2018). Given the advantages of

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

HGPs in livestock production, countries such as the United States, Canada, and Australia still
permit their use, albeit under strict regulations (Qaid & Abdoun, 2022). The ban in Europe is
due to a report that found six HGPs to have deleterious effects (e.g., endocrine-disrupting,
genotoxic, immunotoxic, carcinogenic) on consumers' health (European Food Safety
Authority [EFSA], 2007; Qaid & Abdoun, 2022). The recognition of risks associated with the
use of HGPs has triggered numerous studies aimed at developing analytical methods for
detecting residues in animal meat and other products (Kamaly & Sharkawy, 2023; Nebbia et
al., 2011).
Instead of AGPs and HGPs, alternatives focusing on promoting beneficial gut microflora to
enhance immunity and nutrient absorption are being promoted. These MPs can be classified
into probiotics (e.g., Lactobacillus, Bifidobacterium), prebiotics (e.g., non-digestible
oligosaccharides, non-starch polysaccharides), and postbiotics (e.g., exopolysaccharides,
short-chain fatty acids, enzymes, cell-free supernatants) (Liu et al., 2023; Reuben et al.,
2021). Altogether, these MPs promote the proliferation of beneficial microorganisms while
decreasing the population of potential pathogenic ones, thereby improving overall gut health,
nutrient absorption and utilization, and immunity (Fu et al., 2023; Lambo et al., 2021).
EAs, conversely, improve nutrient availability by catalyzing the digestion of feed components
(Moita & Kim, 2022; Ramatsui et al., 2023). By facilitating feed digestion, the energy
typically needed to digest feed components is reduced, allowing for energy allocation toward
other physiological functions such as maintenance and growth. Some commonly used
enzymes include phytase, xylanase, and protease (Moita & Kim, 2022; Park et al., 2020;
Ramatsui et al., 2023). These enzymes not only increase digestibility but also reduce feed
cost. Additionally, phytase has been used in pig diets to reduce phosphate pollution in pigs

and poultry, thereby mitigating the environmental impact of pig and poultry production (Moita & Kim, 2022). Meanwhile, PAs are plant-derived feed additives that possess immunoregulatory, antimicrobial, antimutagenic, and/or antioxidative properties (Biswas et al., 2024). These beneficial properties can improve animal health, similar to the mechanism of MPs and AGPs. In broiler production, the use of Achyranthes japonica extract has been shown to improve growth efficiency, nutrient utilization, daily feed intake, and dry matter digestibility (Muniyappan et al., 2022; Park & Kim, 2019). Similarly, the extract from Silybum marianum was shown to enhance growth performance and nutrient absorption in both weaned piglets and fattening pigs (Dang et al., 2022; Zhang & Kim, 2022). In beef production, Digestarom®, a commercial phytogenic feed additive, improved the dry matter intake and carcass weight of beef steers (Filho et al., 2021). The increasing familiarity with AGP and HGP alternatives shows increasing awareness of antimicrobial resistance and its consequences, as well as considerations for animal welfare in commercial animal production systems. Overall, shorter production periods were never mentioned in any of the reports reviewed, mainly because production duration was kept constant, and differences in growth performance were primarily observed. From a different perspective, the increase or enhancement in average daily gain can be related to time: the higher the average daily gain, the faster the ideal slaughter weight is reached. This means that growth promoters can shorten production strictly based on the time it takes to reach the ideal slaughter weight. Thus, the increased growth performance and nutrient utilization efficiency could result in lower production costs due to shortened production duration and feed provision.

257 **2.2. Cultivated meat production**

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

As a developing technology geared toward sustainable animal-based food production, cultured meat represents a promising alternative protein source for human diets. Unlike traditional meat production, which uses feed components/stuff as a source of nutrients for growth and maintenance, cultured meat production relies on cell culture media as a direct source of essential nutrients for cell proliferation and maintenance. Analogous to FCR, media conversion ratio (MCR) can be used to determine nutrient utilization efficiency, which is calculated as the total mass of cultured meat produced divided by the total volume/mass of culture media used (O'Neill et al., 2022). This allows researchers and developers to assess cost efficiency, environmental sustainability, and scalability of cultured meat (Myers et al., 2023; O'Neill et al., 2022). In example, Santander et al. (2025) theoretically computed the conversion ratio of cultivated chicken using the current cultured meat production system estimating to be at 1.8 which is comparable to the FCR of traditional chicken production of 1.6–17. However, the cost of cultured meat is still significantly higher compared to traditional meat. Currently, pioneering cultured meat companies (e.g., Aleph Farms, GOOD Meat/Eat Just, UPSIDE Foods, Mosa Meat, Believer Meats, Meatable) have provided their approximate production times, offering insight into the typical duration of cultured meat production. Production duration depends on the time it takes to complete the main production stages, namely, cell expansion, differentiation/maturation, and harvest and postharvest processing (Gursel et al., 2022). Production scale can also affect production duration, with small-scale production estimated to be about four times longer than pilot-scale or early commercial production, assuming optimized processes (Harsini & Swartz, 2024). Some leading cultured meat companies provided estimates of production duration (Figure 1). Mosa Meat is estimated to produce beef within approximately 3 months, while Meatable claims to be able

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

to produce hybrid sausages containing cultured pork as quickly as 4 days (Michail, 2023; Papadopoulus, 2017). Meanwhile, UPSIDE Foods, the first to commercialize cultured chicken, claims to produce structured chicken filets in about 3 weeks (UPSIDE Foods, 2025). The relatively fast production reports of cultured meat companies already provide insight into the potential of this production system to provide sustainable and resource-efficient animal-based products. However, numerous factors should be considered before making direct comparisons based on production efficiency among companies. For example, companies would differ in the cells (e.g., primary myogenic, immortalized, engineered, fibroblasts, ESCs, iPSCs) or method (e.g., suspension, 3D-printing, scaffold-based) used, all depending on production strategy and goals. Thus, careful considerations must be taken prior to making conclusions regarding production efficiency.

2.2.1. Nutrient allocation in animal cell cultures

The culture medium contains all the essential building blocks for cells to grow and develop. In traditional animal production, culture media are synonymous with feeds, which function as the source of all essential and non-essential nutrients to maintain, promote, or influence physiological functions. For this reason, it is necessary to understand how nutrients are allocated *in vitro* in relation to cell proliferation and differentiation for cultured meat production.

Unlike live animals, which require a digestive system for digesting feed and a circulatory system for transporting nutrients, cell cultures have immediate access to nutrients available in the media (Basille et al., 2023; Golikov et al., 2022). The processes involved in feed conversion alone use energy and involve several body systems, which entail additional

nutrient and energy expenditures for maintenance and growth (Basille et al., 2023). Thus, the

direct utilization of nutrients by the cells in vitro is arguably more nutrient- and energyefficient. Generally, the culture media must be able to provide amino acids for protein synthesis, fatty acids for cell membrane development, carbohydrates (e.g., glucose, galactose, sucrose) as an energy source, and vitamins and minerals to support cell functioning (Good Food Institute [GFI], 2025; Lee et al., 2024). Cells in vitro differ from cells in vivo in their nutrient uptake, based on their growth phases. These phases are regulated by the activity of AMP-activated protein kinase (AMPK) and mammalian target of rapamycin complex 1 (mTORC1), which are involved in cellular metabolism (Yuan et al., 2013). For example, proliferating cells need more nutrients to increase in mass and number, while quiescent cells are less metabolically active, resulting in lower nutrient and energy requirements (Valcourt et al., 2012). The difference in the commitment of cells to either proliferate, differentiate, or become quiescent affects the overall utilization of nutrients in the culture media. This highlights the importance of growth factors, which regulate cell commitment, in optimizing cell culture efficiency. Generally, growth factors dictate cell fate by binding to cell-surface receptors that triggers a cascade of events such as receptor activation, signal transduction, and alteration of gene and protein expression leading to cell commitment (Syverud et al., 2016; Almada & Wagers, 2016). Without these growth factors, production goals such as proliferation and differentiation will not be achieved. Thus, the optimization of culture media composition, with high considerations towards growth factor supplementation, has become important in cost-reduction efforts in cultured meat production (Quek et al., 2024; Romero & Boyle, 2023).

327

328

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

2.2.2. Factors affecting MCR of cultivated meat production

Arguably, the most important component in cultured meat production is the cell type/line used. Each cell type/line used as the progenitor in cultured meat differs in metabolism, nutrient requirements, and growth patterns, thus making it an important consideration prior to large-scale cultivation (O'Neill et al., 2022; Reiss et al., 2021). The usual monoculture of cells in cultured meat production makes non-secretory progenitor cells rely on the growth factors and cytokines available from the growth medium. O'Neill et al. (2022) demonstrated that multiple cell types used for cultured meat exhibit significant differences in their culture media nutrient utilization. This suggests that specialized media formulation is needed depending on the cell type used. Additionally, cell passage numbers should also be considered, as differences in growth and metabolic rates, as well as cell functioning, have been observed (Pronsanto et al., 2013; Šrut et al., 2022). These changes are most likely due to repeated passaging of cells which can lead to genetic instability and phenotypic variability (Torres et al., 2023; Badur et al., 2015). Consequently, media conversion efficiency of the progenitor cells will dictate the cost efficiency and profitability of cultured meat. For example, bovine primary myoblasts require 20% FBS supplementation during proliferation, but fibroblast cells need only 10% FBS to proliferate. The difference in the amount of serum or growth factors used can directly impact the production cost (Specht, 2020). Thus, it can be inferred that the production efficiency in cultured meat production relies heavily on the cells used. Considering these factors, MCR of cultured meat production cannot be used as a sole determinant of production efficiency. As a direct impact of the progenitor cells, optimization of media composition ensues. It is estimated that the majority of the production cost is attributed to the culture media (Hubalek et al., 2022). There are two types of culture media used in production: proliferation/growth media and differentiation media. The culture media includes basal media, which comprises

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

the bulk of the total volume and contains the essential macro- and micronutrients for cell growth. It is typically supplemented with serum, which contains growth factors and cytokines that regulate cell metabolism and growth (Lee et al., 2024). However, animal sera have undefined chemical composition and are targeted for replacement or removal due to ethical issues, performance variability, and most importantly, high cost (Lee et al., 2022). The development of serum-free media can greatly reduce the costs of cultured meat production by eliminating animal serum in the media composition (GFI, 2024; Lee et al., 2022). Numerous reports provide promising results towards the development of serum-free media for cultured meat, with words such as simple, effective, and defined being common among recent reports (Messmer et al., 2022; Kolkmann et al., 2020; Stout et al., 2022). Good Meat has reportedly produced cultured chicken meat using serum-free media (Green Queen, 2023). Meanwhile, companies such as CellMeat and Multus Biotechnology continue to dedicate their efforts on serum-free media development (Mridul, 2025; Buxton, 2021).

2.2.3. Growth promoters for cultivated meat

To meet the demand for cultured meat, time- and cost-efficient production systems are necessary. Time and resources are important considerations in assessing the efficiency and sustainability of cultured meat production, parallel to those in traditional meat production. In other words, a faster and less expensive production system is desirable. In response to this need, academic institutions and industry players have reported innovations focused on improving cell proliferation and differentiation in cultured meat production, which are vital for achieving high yields and similar physicochemical properties to traditional meat.

Cell proliferation is characterized by an increase in cell number, which is dependent on the ability of cells to produce clones/daughter cells as part of active mitotic cell division. This

process is guided by cell signaling through growth factors and cytokines that mediate the expression and suppression of related genes. *In vivo*, growth factors and cytokines are released from secretory organs and cells (Morán et al., 2013). Conversely, cell cultures rely on external sources such as animal sera, which remain undefined in terms of specific composition levels of growth factors and cytokines that promote cell proliferation (Chelladurai et al., 2021; Lee et al., 2022). Although animal sera have been regularly used, food-safe, ethically sourced, and inexpensive growth-promoting media components remain a priority in the cultured meat industry (GFI, 2025). Table 2 presents recent reports from the past 5 years that have focused on increasing the proliferation and differentiation potential of cultured meat progenitor cells. Numerous reports have focused on developing media components for cultured beef production compared to those for cultured porcine and chicken production. Generally, the beneficial effects of media additives used are based on the expression of myogenesis-related genes and proteins, such as myoblast determination protein 1 (MYOD), myogenin (MYOG), myosin heavy chain (MYHC), and desmin, determined via polymerase chain reaction (PCR), liquid chromatography-mass spectroscopy (LC-MS), western blotting, and enzyme-linked immunosorbent assay (ELISA) (Table 2). These biomarkers provide insight into the status of cell proliferation and differentiation in vitro. The changes in their expression could provide clues on the effect and potential mechanisms/metabolic pathways involved. Some commercial media components have shown potential in increasing the proliferation and differentiation capacity of bovine muscle cells. The use of insulin improved the expression of both proliferation (e.g., Ki67, proliferating cell nuclear antigen [PCNA]) and differentiation markers (e.g., MYOD, MYOG, MYHC) (Lee, Shaikh, Ahmad, et al., 2025). Insulin is commonly used for managing cellular glucose uptake in vivo and in vitro. Given the

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

importance of glucose as an energy source for cellular functions, improved glucose uptake can assist in enhancing proliferation and differentiation in vitro (Lee, Shaikh, Ahmad, et al., 2025; Norton et al., 2022). Meanwhile, Yu et al. (2024) reported that parthenolide and rutin can improve proliferation, while adenosine can be used to improve differentiation. Using antioxidants, such as rutin, can reduce hydrogen peroxide (H₂O₂)-induced cytotoxicity and help prevent muscle atrophy (Yu et al., 2024). This can also be observed with vitamin C and N-acetylcysteine, which have been reported to reduce oxidative stress and senescence of bovine cells (Naseem et al., 2025). Food-grade and food-derived media additives have also been reported for cultured beef production. A common denominator among these media additives is their potential to improve differentiation and myotube formation, which are important considerations for the eventual buildup of muscle mass, rather than undifferentiated cell mass (Choi et al., 2025; Lee et al., 2024; Oh et al., 2025). Among these additives, Citrus sunki peel extract was used on fibro-adipogenic progenitor cells, unlike other additives used in studies focused only on muscle progenitor cells (Oh et al., 2025). In cultured pork production, similar media additives used for cultured beef can be observed, such as vitamin C and N-acetylcysteine, which confirms their effectiveness in culturing muscle cells (Fang et al., 2022; Song et al., 2023). A potent antioxidant, quercetin, has also been used in combination with icariin and 3,2'-dihydroxyflavone, with quercetin improving differentiation and 3,2' dihydroxyflavone improving proliferation and stemness (Guo et al., 2022). In cultured meat production, both cell proliferation and stemness are important for providing an ample number of cells for 3D culture (e.g., scaffolds, 3D printing, microcarriers) to achieve traditional meat-like characteristics or to increase cell mass in suspension cultures for hybrid cultured meat products. Lysophosphatidic acid has been used to regulate the Hippo-Yes-associated protein (YAP) signaling pathway, which is involved in cell contact

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

inhibition, allowing increased proliferation of porcine muscle cells (Liu et al., 2025). Some natural products, such as naringenin and diarylheptanoid derivatives, have been used to regulate insulin growth factor 1 (IGF-1) signaling and Wnt/β-catenin signaling, respectively (Suriya et al., 2024; Yan et al., 2022). Both signaling pathways are closely related to cell proliferation and differentiation and are commonly used as targets for improving cultured meat production. There are limited studies on improving cultured chicken production through the use of media additives. Lee, Shaikh, Lee, et al. (2025) utilized Glycyrrhiza uralensis crude water extract and licochalcone A and B in culturing chicken muscle progenitor cells, which resulted in improved cell proliferation and adhesion in spheroid cultures, as well as enhanced antioxidant activity during proliferation. Another study determined that black soldier fly hydrolysates can upregulate myogenic proliferation and differentiation markers (Park et al., 2025). However, it was concluded that there is an inverse effect on the differentiation capacity of cells cultured with increasing concentrations of black soldier fly hydrolysates. Some studies used multiple livestock cells to prove their applicability in cultured meat production. Similar to the results of Guo et al. (2022) on quercetin use, Ahmad et al. (2024) demonstrated the ability of quercetin to inhibit myostatin (MSTN), activin type-2B (ACVR2B), and SMAD2/3, leading to improved differentiation and myotube formation of bovine, porcine, and chicken muscle cells. Laxogenin (LAX) and 5-alpha-hydroxy-laxogenin (5HLAX) can also inhibit MSTN expression, effects similar to those of quercetin (Lim et al., 2025). Considering all the reviewed reports, the use of antioxidants (e.g., quercetin, LAX, 5HLAX, G. uralensis crude water extract, licochalcone A and B, naringenin, vitamin C) in cultured meat production generally favors cell proliferation, differentiation, myotube formation, and prevention of

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

muscle degradation (Table 2). This highlights the importance of antioxidants as components of media formulation for cultured meat production. It also recognizes the general considerations for improving mitochondrial functions, given that mitochondria are directly involved in the generation and accumulation of reactive oxygen species (ROS).

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

449

450

451

452

3. Critical perspectives on shortening the duration of traditional and cultured meat

production

Reducing the time required for conventional meat production through improved breeding methods, better feeding schedules, and faster growth technology has a number of effects on the economy, the environment, ethics, and human health. Livestock raisers can increase turnover rates, cut production costs, and increase profitability by shortening the time it takes for animals to reach market weight. This allows for more meat to be produced in the same amount of time, which could stabilize prices and increase customer availability. The effects on the ecosystem, however, should still be monitored and considered. Another benefit of shorter production cycles is that they can result in lower total resource inputs per unit of meat produced, including feed, water, and land. However, the use of antibiotics, growth hormones, and concentrates, which are frequently linked to faster meat production, can result in increased greenhouse gas emissions per animal, water pollution, as well as increased risk of antibiotic resistance (Biswas et al., 2024; FAO, 2006; Patel et al., 2020). Ronquillo & Hernandez (2017) extensively reviewed the potential environmental impacts of AGPs and HGPS citing numerous reports that support how excessive and unmetabolized growth promoters can lead to environmental pollution and antibiotic resistance. Furthermore, the change in gut microbiome due to AGP use could result in increased methane emissions (Danielsson et al., 2019).

Rapid meat production generates serious ethical questions regarding the well-being of animals (Fraser, 2005). The quality of life of live animals is sometimes compromised by intensive farming methods intended to enhance development, which result in cramped living quarters, restricted mobility, and increased disease susceptibility (Fraser et al., 2013). Animals raised for fast growth may also experience biological stress, which can result in persistent pain, organ failure, and physical abnormalities. The misuse and overuse of antibiotics to accelerate animal growth and prevent disease, even in healthy animals, have contributed to antimicrobial resistance, which poses major health hazards to both animals and humans (Ma et al., 2021; Patel et al., 2020). Furthermore, the nutritional composition of meat from animals bred under such rigorous settings may differ from that of meat from animals raised more slowly and naturally (Davoodi et al., 2022; Średnicka-Tober et al., 2016). Therefore, reducing the time needed to produce meat may have some logistical and financial benefits, but it also presents challenges pertaining to environmental sustainability, animal welfare, and public health (Kai & Abdoun, 2022; Ma et al., 2021; Patel et al., 2020). Similar to traditional meat production, reducing production time in cultured meat production can improve the ecological efficiency of cultured meat compared to both traditional and slower cellular agriculture methods by lowering the energy, water, and nutritional inputs needed per unit of meat (Kumar et al., 2021; Mancini & Antonioli, 2022). This can hasten its potential to lower water use, land use, and greenhouse gas emissions, making it a more practical approach to addressing the environmental issues associated with traditional meat production. Moreover, shorter production cycles translate into faster scaling, lower operational costs per batch, and increased market competitiveness. These factors may help cultured meat overcome one of its main obstacles, which is high production costs. As a result,

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

consumers may find it easier to obtain, which might promote broad adoption and acceptability.

Although these developments can increase productivity, they also raise concerns about the long-term safety and nutritional value of the finished product. For instance, tissue structure, flavor development, or nutrient composition may be impacted by the components used for cell culture, necessitating further processing or formulation to satisfy consumer demands.

However, the need for accelerated growth must also consider consumer perception, regulatory supervision, and biosecurity, particularly when using synthetic chemicals or novel growth factors (Monaco et al., 2024). Cutting the time needed to produce cultured meat could greatly forward the goal of developing scalable, sustainable, and ethical meat substitutes. However, in order to achieve long-term success, quality, safety, and public opinion must be carefully considered.

4. Conclusion

The benefits and drawbacks of reducing the time it takes to produce both traditional and cultured meat are complicated and represent larger concerns about public health, ethics, and food sustainability. Accelerated timelines in traditional meat production may increase profitability and efficiency, but they frequently come at the expense of increased health hazards, environmental degradation, and animal welfare. Conversely, reducing the time required to produce cultured meat has the potential to lower resource consumption and improve scalability, but it still confronts obstacles related to technology, regulations, and consumer acceptance. The desire to produce meat more quickly—whether through traditional or cultured meat technology—must be directed by a well-rounded strategy that places equal

519	emphasis on efficiency and speed as well as long-term sustainability and the integrity of the
520	food chain.
521	
522	Conflict of Interest
523	The authors declare no potential conflict of interest.
524	
525	Funding sources
526	This work was conducted with the support of Chung-Ang University. This work has
527	supported by the National Research Foundation of Korea (NRF) grant funded by the Korea
528	government (MSIT)(No.2023R1A2C100608811). This work was supported by Korea
529	Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET)
530	through High Value-added Food Technology Development Program, funded by Ministry of
531	Agriculture, Food and Rural Affairs (MAFRA) (RS-2025-02215727).
532	
533	Acknowledgements
534	Not applicable
535	
536	Author Contributions
537	Ermie Jr. Mariano: Conceptualization, Investigation, Writing - original draft, Writing -
538	review & editing. Sun Jin Hur: Supervision, Writing - original draft. Da Young Lee:
539	Investigation, Writing - review & editing. Ji Won Park: Investigation, Writing - review &
540	editing. Seok Namkung: Investigation, Writing - review & editing. So Young Choi:
541	Investigation, Writing - review & editing. Woojin Lee: Investigation, Writing - review &
542	editing. Chae Hyeon Bok: Investigation, Writing - review & editing. Yewon Shin:

Investigation, Writing - review & editing. Colin Venter: Investigation, Writing - review &
 editing.

Ethics approval and consent to participate

This article did not require ethics approval because there are no human and animal used.

References

546

- 549 Ahmad, M., Qureshi, S., Akbar, M. H., Siddiqui, S. A., Gani, A., Mushtaq, M., Hassan, I., &
- Dhull, S. B. (2022). Plant-based meat alternatives: Compositional analysis, current
- development and challenges. *Appl Food Res*, 2(2), Article 100154.
- 552 https://doi.org/10.1016/j.afres.2022.100154.
- 553 Ahmad, S. S., Lim, J. H., Ahmad, K., Chun, H. J., Hur, S. J., Lee, E. J., & Choi, I. (2024).
- Targeting myostatin using quercetin as a media supplement to improve myogenesis for
- cultured meat production: An in silico and in vitro study. Curr Res Food Sci, 8, Article
- 556 100678. https://doi.org/10.1016/j.crfs.2024.100678.
- Almada, A. E., & Wagers, A. J. (2016). Molecular circuitry of stem cell fate in skeletal
- muscle regeneration, ageing and disease. *Nat Rev Mol Cell Biol*, 17(5), 267–279.
- 559 https://doi.org/10.1038/nrm.2016.7
- Angelescu, I. (2024). Sustainable livestock farming: Progress since 1950. Retrieved from
- 561 https://ew-nutrition.com/sustainability-livestock-farming/
- Aroeira, C. N., Feddern, V., Gressler, V., Contreras-Castillo, C. J., & Hopkins, D. L. (2021).
- A review on growth promoters still allowed in cattle and pig production. *Livest Sci*, 247,
- Article 104464. https://doi.org/10.1016/j.livsci.2021.104464.
- Athayde, N. B., Costa, O. A. D., Roça, R. O., Guidoni, A. L., Ludtke, C. B., & Lima, G. J. M.
- M. (2012). Meat quality of swine supplemented with ractopamine under commercial

567 conditions in Brazil. J Anim Sci, 90(12), 4604–4610. https://doi.org/10.2527/jas.2012-568 5102. 569 Badur, M. G., Zhang, H., & Metallo, C. M. (2015). Enzymatic passaging of human embryonic 570 stem cells alters central carbon metabolism and glycan abundance. Biotechnol J, 10(10), 571 1600–1611. https://doi.org/10.1002/biot.201400749 572 Basile, E. J., Launico, M. V., & Sheer, A. J. (2023). Physiology, nutrient absorption. 573 StatPearls Publishing. 574 Biesek, J., Kuźniacka, J., Banaszak, M., Kaczmarek, S., Adamski, M., Rutkowski, A., 575 Zmudzińska, A., Perz, K., & Hejdysz, M. (2020). Growth performance and carcass 576 quality in broiler chickens fed on legume seeds and rapeseed meal. Anim, 10(5), Article 577 846. https://doi.org/10.3390/ani10050846. Bist, R. B., Bist, K., Poudel, S., Subedi, D., Yang, X., Paneru, B., Mani, S., Wang, D., & 578 579 Chai, L. (2024). Sustainable poultry farming practices: a critical review of current strategies and future prospects. Poult Sci, 103(12), Article 104295. 580 581 https://doi.org/10.1016/j.psj.2024.104295. 582 Biswas, S., Ahn, J. M., & Kim, I. H. (2024). Assessing the potential of phytogenic feed 583 additives: A comprehensive review on their effectiveness as a potent dietary 584 enhancement for nonruminant in swine and poultry. J Anim Physiol Anim Nutr, 108(3), 585 711–723. https://doi.org/10.1111/jpn.13922. 586 Bosco, A. D., Mugnai, C., Amato, M. G., Piottoli, L., Cartoni, A., & Castellini, C. (2014).

25

Effect of slaughtering age in different commercial chicken genotypes reared according to

the organic system: 1. Welfare, carcass and meat traits. Ital J Anim Sci, 13(2), Article

3308. https://doi.org/10.4081/ijas.2014.3308.

587

588

- Brameld, J. M., & Parr, T. (2016). Improving efficiency in meat production. *Proc Nutr Soc*,
- 591 75(3), 242–246. https://doi.org/10.1017/s0029665116000161.
- Bretschneider, G., Elizalde, J. C., & Pérez, F. A. (2008). The effect of feeding antibiotic
- growth promoters on the performance of beef cattle consuming forage-based diets: A
- review. *Livest Sci*, 114(2–3), 135–149. https://doi.org/10.1016/j.livsci.2007.12.017.
- Buxton, A. 2021. South Korea's CellMEAT makes fetal bovine Serum-Free cell culture
- media for 100% ethical cultivated meat. Green Queen.
- 597 https://www.greenqueen.com.hk/cellmeat-fetal-bovine-
- 598 serum/#:~:text=Ethical%20Cultivated%20Meat-,South%20Korea's%20CellMEAT%20
- 599 Makes% 20Fetal% 20Bovine% 20Serum% 2DFree% 20Cell% 20Culture, For% 20100% 25%
- 20Ethical%20Cultivated%20Meat&text=CellMEAT%20has%20unveiled%20its%20feta
- 1,medium%20that%20has%20global%20implications. Accessed September 15, 2025.
- 602 Cameron, A., & McAllister, T. A. (2016). Antimicrobial usage and resistance in beef
- production. *J Anim Sci Biotechnol*, 7(1), Article 68. https://doi.org/10.1186/s40104-016-
- 604 0127-3.
- 605 Challis, J. K., Sura, S., Cantin, J., Curtis, A. W., Shade, K. M., McAllister, T. A., Jones, P. D.,
- Giesy, J. P., & Larney, F. J. (2021). Ractopamine and other growth-promoting
- compounds in beef cattle operations: fate and transport in feedlot pens and adjacent
- environments. Environ Sci Technol, 55(3), 1730–1739.
- 609 https://doi.org/10.1021/acs.est.0c06450.
- 610 Chelladurai, K. S., Christyraj, J. D. S., Rajagopalan, K., Yesudhason, B. V., Venkatachalam,
- S., Mohan, M., Vasantha, N. C., & Christyraj, J. R. S. S. (2021). Alternative to FBS in
- animal cell culture An overview and future perspective. *Heliyon*, 7(8), Article e07686.
- 613 https://doi.org/10.1016/j.heliyon.2021.e07686.

- 614 Cherian, G. (2019). A guide to the principles of animal nutrition. Oregon State University.
- 615 Choi, N., Park, S., Park, G., Oh, S., Lee, S.-H., Lee, J., Kim, H., Bang, G., & Choi, J. (2025).
- Drone pupae extract enhances Hanwoo myosatellite cell function for cultivated meat
- 617 production. J Anim Sci Technol, 67(1), 252–272. https://doi.org/10.5187/jast.2024.e98.
- Danielsson, R., Lucas, J., Dahlberg, J., Ramin, M., Agenäs, S., Bayat, A., Tapio, I., Hammer,
- T., & Roslin, T. (2019). Compound- and context-dependent effects of antibiotics on
- greenhouse gas emissions from livestock. R Soc Open Sci, 6(10), 182049.
- 621 https://doi.org/10.1098/rsos.182049
- Dang, D. X., Cho, S., & Kim, I. H. (2022). Silybum marianum seed extract supplementation
- positively affects the body weight of weaned piglets by improving voluntary feed intake.
- *J Anim Sci Technol*, 64(4), 696–706. https://doi.org/10.5187/jast.2022.e39.
- Davoodi, P., Ehsani, A., Torshizi, R. V., & Masoudi, A. A. (2022). A meta-analysis
- comparing the composition and quality differences between chicken meats produced
- under the free-range and conventional systems. World's Poult Sci J, 78(2), 353–375.
- 628 https://doi.org/10.1080/00439339.2022.2008781.
- Ding, S., Post, M. J., & Zhou, G. (2021). Perspectives on cultured meat. Food Mater Res,
- 630 1(1), Article 3. https://doi.org/10.48130/fmr-2021-0003.
- EFSA. (2007). Opinion of the Scientific Panel on contaminants in the food chain (CONTAM)
- related to hormone residues in bovine meat and meat products. EFSA J, 5(7), Article 510.
- 633 https://doi.org/10.2903/j.efsa.2007.510.
- Ettinger, J. 2025. Singapore Approves Good Meat's Serum-Free Media In a Cultivated Meat
- First. Green Queen. https://www.greenqueen.com.hk/singapore-approves-good-meats-
- serum-free-media-cultivated-meat/. Accessed September 15, 2025.

- 637 Fang, J., Li, M., Zhang, G., Du, G., Zhou, J., Guan, X., & Chen, J. (2022). Vitamin C
- enhances the ex vivo proliferation of porcine muscle stem cells for cultured meat
- 639 production. *Food & Func*, 13(9), 5089–5101. https://doi.org/10.1039/d1fo04340d.
- FAO. (2006). Livestock's role in climate change and air pollution. In Livestock's long shadow
- 641 (pp. 79 \(\text{124}\)). Retrieved from https://www.fao.org/4/a0701e/a0701e03.pdf. Accessed
- 642 May 15, 2025.
- FAO. (2012). Impact of animal nutrition on animal welfare Expert consultation 26–30
- September 2011 FAO Headquarters, Rome, Italy. Animal production and health report.
- No. 1. Rome. Retrieved from https://www.fao.org/4/i3148e/i3148e00.pdf. Accessed May
- 646 5, 2025.
- Filho, F. A. P., Turner, T. D., Mueller, I., & Daniel, J. L. P. (2021). Influence of phytogenic
- feed additive on performance of feedlot cattle. Front Anim Sci, 2, Article 767034.
- 649 https://doi.org/10.3389/fanim.2021.767034.
- Fraser, D. (2005). Animal welfare and the intensification of animal production. FAO.
- Retrieved from https://openknowledge.fao.org/server/api/core/bitstreams/48b57445-
- aca9-449b-b006-1e278bd9a6bf/content. Accessed May 15, 2025.
- Fraser, D., Duncan, I. J. H., Edwards, S. A., Grandin, T., Gregory, N. G., Guyonnet, V.,
- Hemsworth, P. H., Huertas, S. M., Huzzey, J. M., Mellor, D. J., Mench, J. A., Spinka,
- M., & Whay, H. R. (2013). General principles for the welfare of animals in production
- systems: the underlying science and its application. *Vet J*, 198(1), 19-27.
- 657 https://doi.org/10.1016/j.tvjl.2013.06.028.
- Fu, C., Shah, A. A., Khan, R. U., Khan, M. S., & Wanapat, M. (2023). Emerging trends and
- applications in health-boosting microorganisms-specific strains for enhancing animal

- health. *Microb Pathog*, 183, Article 106290.
- https://doi.org/10.1016/j.micpath.2023.106290.
- Fulton, J. O., Block, J. J., Underwood, K. R., Zuelly, S. M. S., Olson, K. C., & Blair, A. D.
- 663 (2024). Effects of zilpaterol hydrochloride supplementation on growth performance,
- carcass characteristics and meat quality for steers differing in breed type. *Anim*, 14(4),
- Article 607. https://doi.org/10.3390/ani14040607.
- 666 Golikov, M. V., Valuev-Elliston, V. T., Smirnova, O. A., & Ivanov, A. V. (2022).
- Physiological media in studies of cell metabolism. *Mol Biol*, 56(5), 629–637.
- https://doi.org/10.1134/s0026893322050077.
- Good Food Institute (GFI). (2024). What's in cell culture media?. Retrieved from
- https://gfi.org/science/the-science-of-cultivated-meat/#Media. Accessed March 20, 2025.
- Good Food Institute (GFI). (2025). Deep dive: Cultivated meat cell culture media. Retrieved
- from https://gfi.org/science/the-science-of-cultivated-meat/deep-dive-cultivated-meat-
- 673 cell-culture-media/. Accessed March 20, 2025.
- 674 Greenwood, P. L. (2021). Review: An overview of beef production from pasture and feedlot
- globally, as demand for beef and the need for sustainable practices increase. *Anim*,
- 676 15(Suppl. 1), Article 100295. https://doi.org/10.1016/j.animal.2021.100295.
- 677 Guo, Y., Ding, S.-J., Ding, X., Liu, Z., Wang, J.-L., Chen, Y., Liu, P.-P., Li, H.-X., Zhou, G.-
- H., & Tang, C.-B. (2022). Effects of selected flavonoids on cell proliferation and
- differentiation of porcine muscle stem cells for cultured meat production. *Food Res Int*,
- 680 160, Article 111459. https://doi.org/10.1016/j.foodres.2022.111459.
- 681 Guo, Z., Chen, X., Chen, D., Li, M., Yin, J., Yu, B., He, J., & Huang, Z. (2022). Effects of
- slaughter age on carcass traits and meat quality of crossbred (Duroc \times Landrace \times

- 683 Yorkshire) finishing pigs. *Anim Biotechnol*, 33(2), 339–345. 684 https://doi.org/10.1080/10495398.2021.1916512. 685 Gursel, I. V., Sturme, M., Hugenholtz, J., & Bruins, M. (2022). Review and analysis of 686 studies on sustainability of cultured meat. Retrieved from 687 https://edepot.wur.nl/563404#:~:text=5.,more%20structured%20products%20like%20ste 688 ak. Accessed May 12, 2025. 689 Harsini, F. & Swartz, E. (2024). Trends in cultivated meat scale-up and bioprocessing. 690 Retrieved from https://gfi.org/wp-content/uploads/2024/04/Trends-in-cultivated-meat-691 scale-up-and-bioprocessing.pdf. Accessed May 10, 2025. 692 Hassan, F., Arshad, M. A., Ebeid, H. M., Rehman, M. S., Khan, M. S., Shahid, S., & Yang, C. 693 (2020). Phytogenic additives can modulate rumen microbiome to mediate fermentation kinetics and methanogenesis through exploiting diet-microbe interaction. Front Vet Sci, 694 695 7, Article 575801. https://doi.org/10.3389/fvets.2020.575801. 696 Hoar, B. & Angelos, J. (2014). Production cycle of swine. Retrieved from 697 https://www.wifss.ucdavis.edu/wp-698 content/uploads/2015/FDA/feed/animalclass_swine_FINAL.pdf. Accessed May 5, 2025. 699 Hocquette, J. F., Tesseraud, S., Cassar-Malek, I., Chilliard, Y., & Ortigues-Marty, I. (2007). 700 Responses to nutrients in farm animals: implications for production and quality. Anim, 701 1(9), 1297–1313. https://doi.org/10.1017/s1751731107000602.
 - https://doi.org/10.14202/vetworld.2021.210-221.

702

703

704

Hosain, M. Z., Kabir, S. M. L., & Kamal, M. M. (2021). Antimicrobial uses for livestock

production in developing countries. Vet World, 14(1), 210–221.

- Hubalek, S., Post, M. J., & Moutsatsou, P. (2022). Towards resource-efficient and cost-
- efficient cultured meat. Curr Opin Food Sci, 47, Article 100885.
- 707 https://doi.org/10.1016/j.cofs.2022.100885.
- Humphrey, B. D., & Klasing, K. C. (2004). Modulation of nutrient metabolism and
- homeostasis by the immune system. World's Poult Sci J, 60(1), 90–100.
- 710 https://doi.org/10.1079/wps20037.
- 711 Islam, R., Sultana, N., Ayman, U., Islam, M. R., & Hashem, M. A. (2022). Role of steroid
- growth promoter on growth performance and meat quality traits in broiler. *Poult*
- 713 *Sci*, 101(7), Article 101904. https://doi.org/10.1016/j.psj.2022.101904.
- 714 Itana, D. D., & Duguma, A. (2021). The role and impacts of growth hormones in maximizing
- animal production ☐ A review. Turk J Agric Food Sci Technol, 9(6), 975–981.
- 716 https://doi.org/10.24925/turjaf.v9i6.975-981.3852.
- 717 Kamaly, H. F., & Sharkawy, A. A. (2023). Hormonal residues in chicken and cattle meat: A
- 718 risk threat the present and future consumer health. *Food Chem Toxicol*, 182, Article
- 719 114172. https://doi.org/10.1016/j.fct.2023.114172.
- 720 Kim, C. H., Lee, H. J., Jung, D. Y., Kim, M., Jung, H. Y., Hong, H., Choi, Y.-S., Yong, H. I.,
- 8 Jo, C. (2023). Evaluation of fermented soybean meal and edible insect hydrolysates as
- potential serum replacement in pig muscle stem cell culture. Food Biosci, 54, Article
- 723 102923. https://doi.org/10.1016/j.fbio.2023.102923.
- 724 Kim, J., Guevarra, R. B., Nguyen, S. G., Lee, J.-H., Jeong, D. K., & Unno, T. (2016). Effects
- of the antibiotics growth promoter tylosin on swine gut microbiota. *J Microbiol*
- 726 *Biotechnol*, 26(5), 876–882. https://doi.org/10.4014/jmb.1512.12004.

- Kirsch, M., Morales-Dalmau, J., & Lavrentieva, A. (2023). Cultivated meat manufacturing:
- Technology, trends, and challenges. *Eng Life Sci*, 23(12), Article e2300227.
- 729 https://doi.org/10.1002/elsc.202300227.
- Kolkmann, A.M., Post, M.J., Rutjens, M.A.M. et al. Serum-free media for the growth of
- primary bovine myoblasts. *Cytotechnology*, 72, 111–120 (2020).
- 732 https://doi.org/10.1007/s10616-019-00361-v
- Kumar, P., Sharma, N., Sharma, S., Mehta, N., Verma, A. K., Chemmalar, S., & Sazili, A. Q.
- 734 (2021). In-vitro meat: a promising solution for sustainability of meat sector. *J Anim Sci*
- 735 *Technol*, 63(4), 693–724. https://doi.org/10.5187/jast.2021.e85.
- 736 Kwon, K.-M., Nogoy, K. M. C., Jeon, H.-E., Han, S.-J., Woo, H.-C., Heo, S.-M., Hong, H.
- K., Lee, J.-I., Lee, D. H., & Choi, S. H. (2022). Market weight, slaughter age, and yield
- grade to determine economic carcass traits and primal cuts yield of Hanwoo beef. *J Anim*
- 739 *Sci Technol*, 64(1), 143–154. https://doi.org/10.5187/jast.2021.e136.
- Lambo, M. T., Chang, X., & Liu, D. (2021). The recent trend in the use of multistrain
- probiotics in livestock production: An overview. *Anim*, 11(10), Article 2805.
- 742 https://doi.org/10.3390/ani11102805.
- 743 Lee, D. Y., Lee, S. Y., Yun, S. H., Jeong, J. W., Kim, J. H., Kim, H. W., Choi, J. S., Kim, G.-
- D., Joo, S. T., Choi, I., & Hur, S. J. (2022). Review of the current research on fetal
- bovine serum and the development of cultured meat. Food Sci Anim Resour, 42(5), 775–
- 746 799. https://doi.org/10.5851/kosfa.2022.e46.
- 747 Lee, D. Y., Park, J., Han, D., Choi, Y., Kim, J. S., Mariano Jr., E., Lee, J., Yun, S. H., Lee, S.
- Y., Park, S., Bhang, S. H., & Hur, S. J. (2025). Analysis of current technology status for
- the industrialization of cultured meat. *Crit Rev Food Sci Nutr*, 65(13), 2506 □ 2537.
- 750 https://doi.org/10.1080/10408398.2024.2345817.

- 751 Lee, D. Y., Yun, S. H., Lee, J., Mariano Jr., E., Choi, Y., Han, D., Park, J., Kim, J. S., Lee, S.
- Y., & Hur, S. J. (2024). The roles of media ingredients in muscle cell culture for cultured
- meat production—A mini-review. *Future Foods*, 10, Article 100403.
- 754 https://doi.org/10.1016/j.fufo.2024.100403.
- 755 Lee, E. J., Shaikh, S., Ahmad, S. S., Lim, J. H., Baral, A., Hur, S. J., Sohn, J. H., & Choi, I.
- 756 (2025). The role of insulin in the proliferation and differentiation of bovine muscle
- satellite (STEM) cells for cultured meat production. *Int J Mol Sci*, 26(9), Article 4109.
- 758 https://doi.org/10.3390/ijms26094109.
- Lee, E. J., Shaikh, S., Lee, J. H., Hur, S. J., & Choi, I. (2025). Glycyrrhiza uralensis crude
- water extract and licochalcone A and B to enhance chicken muscle satellite cell
- differentiation for cultured meat production. *Sci Rep*, 15(1), Article 14350.
- 762 https://doi.org/10.1038/s41598-025-98386-1.
- 763 Lee, J.-H., Kim, T.-K., Kang, M.-C., Park, M.-K., Park, S.-H., Choi, J.-S., & Choi, Y.-S.
- 764 (2024). Effect of crude polysaccharides from Ecklonia cava hydrolysate on cell
- proliferation and differentiation of Hanwoo muscle stem cells for cultured meat
- production. *Foods*, 13(4), Article 563. https://doi.org/10.3390/foods13040563.
- 767 Lee, S. Y., Lee, D. Y., Yun, S. H., Lee, J., Mariano Jr., E., Park, J., Choi, Y., Han, D., Kim, J.
- 768 S., & Hur, S. J. (2024). Current technology and industrialization status of cell-cultivated
- 769 meat. J Anim Sci Technol, 66(1), 1–30. https://doi.org/10.5187/jast.2023.e107.
- Leroy, F., Smith, N. W., Adesogan, A. T., Beal, T., Iannotti, L., Moughan, P. J., & Mann, N.
- 771 (2023). The role of meat in the human diet: evolutionary aspects and nutritional value.
- 772 *Anim Front*, 13(2), 11–18. https://doi.org/10.1093/af/vfac093.
- 773 Lim, J. H., Ahmad, S. S., Hwang, Y. C., Baral, A., Hur, S. J., Lee, E. J., & Choi, I. (2025).
- The effects of laxogenin and 5-alpha-hydroxy-laxogenin on myotube formation and

- maturation during cultured meat production. *Int J Mol Sci*, 26(1), Article 345.
- 776 https://doi.org/10.3390/ijms26010345.
- 777 Liu, C., Ma, N., Feng, Y., Zhou, M., Li, H., Zhang, X., & Ma, X. (2023). From probiotics to
- postbiotics: Concepts and applications. *Anim Res One Health*, 1(1), 92–114.
- 779 https://doi.org/10.1002/aro2.7.
- Liu, Q., Xie, L., & Chen, W. (2025). Recombinant porcine FGF1 promotes muscle stem cell
- proliferation and mitochondrial function for cultured meat production. *J Agric Food*
- 782 *Chem*, 73(3), 2008 2018. https://doi.org/10.1021/acs.jafc.4c09215.
- 783 Liu, Z., Lin, L., Zhu, H., Wu, Z., Ding, X., Hu, R., Jiang, Y., Tang, C., Ding, S., & Guo, R.
- 784 (2021). YAP promotes cell proliferation and stemness maintenance of porcine muscle
- stem cells under high-density condition. *Cells*, 10(11), Article 3069.
- 786 https://doi.org/10.3390/cells1011306.
- Ma, F., Xu, S., Tang, Z., Li, Z., & Zhang, L. (2021). Use of antimicrobials in food animals
- and impact of transmission of antimicrobial resistance on humans. *Biosaf Health*, 3(1),
- 789 32–38. https://doi.org/10.1016/j.bsheal.2020.09.004.
- 790 Makkar, H. P. S. (2018). Review: Feed demand landscape and implications of food-not feed
- strategy for food security and climate change. *Anim*, 12(8), 1744–1754.
- 792 https://doi.org/10.1017/s175173111700324x.
- Mancini, M. C., & Antonioli, F. (2022). The future of cultured meat between sustainability
- expectations and socio-economic challenges. In R. Bhat (Ed.), Future foods (pp. 331–
- 795 350). Elsevier. https://doi.org/10.1016/b978-0-323-91001-9.00024-4.
- Martins, B., Bister, A., Dohmen, R. G. J., Gouveia, M. A., Hueber, R., Melzener, L.,
- Messmer, T., Papadopoulos, J., Pimenta, J., Raina, D., Schaeken, L., Shirley, S.,
- Bouchet, B. P., & Flack, J. E. (2024). Advances and challenges in cell biology for

- cultured meat. Annu Rev Anim Biosci, 12(1), 345–368. https://doi.org/10.1146/annurev-
- animal-021022-055132.
- Matthews, C., Crispie, F., Lewis, E., Reid, M., O'Toole, P. W., & Cotter, P. D. (2019). The
- rumen microbiome: a crucial consideration when optimising milk and meat production
- and nitrogen utilisation efficiency. *Gut Microbes*, 10(2), 115–132.
- 804 https://doi.org/10.1080/19490976.2018.1505176.
- McGrath, J., Duval, S. M., Tamassia, L. F. M., Kindermann, M., Stemmler, R. T., de Gouvea,
- V. N., Acedo, T. S., Immig, I., Williams, S. N., & Celi, P. (2018). Nutritional strategies
- in ruminants: A lifetime approach. Res Vet Sci, 116, 28–39.
- 808 https://doi.org/10.1016/j.rvsc.2017.09.011.
- 809 Messmer, T., Klevernic, I., Furquim, C., Ovchinnikova, E., Dogan, A., Cruz, H., Post, M. J.,
- & Flack, J. E. (2022). A serum-free media formulation for cultured meat production
- supports bovine satellite cell differentiation in the absence of serum starvation. *Nature*
- 812 *Food*, 3(1), 74-85. https://doi.org/10.1038/s43016-021-00419-1
- Michail, N. (September 26, 2023). Scaling up cultured meat: Meatable goes 'from cell to
- sausage' in eight days. Retrieved from https://insights.figlobal.com/protein/scaling-up-
- cultured-meat-meatable-goes-from-cell-to-sausage-in-eight-days. Accessed March 20,
- 816 2025.
- Moita, V. H. C., & Kim, S. W. (2022). Nutritional and functional roles of phytase and
- xylanase enhancing the intestinal health and growth of nursery pigs and broiler chickens.
- 819 *Anim*, 12(23), Article 3322. https://doi.org/10.3390/ani12233322.
- Moloney, A. P., & McGee, M. (2023). Factors influencing the growth of meat animals. In F.
- Toldrá (Ed.), Lawrie's meat science (9th ed., pp. 21–49). Elsevier.
- 822 https://doi.org/10.1016/b978-0-323-85408-5.00006-6.

- Monaco, A., Kotz, J., Masri, M. A., Allmeta, A., Purnhagen, K. P., & König, L. M. (2024).
- Consumers' perception of novel foods and the impact of heuristics and biases: A
- systematic review. *Appetite*, 196, Article 107285.
- 826 https://doi.org/10.1016/j.appet.2024.107285.
- Morán, G. A. G., Parra-Medina, R., Cardona, A. G., Quintero-Ronderos, P., & Rodríguez, É.
- G. (2013). Cytokines, chemokines and growth factors. In J.-M. Anaya, Y. Shoenfeld, A.
- Rojas-Villarraga, R. A. Levy, & R. Cervera (Eds.), Autoimmunity (pp. 133 164). El-
- 830 Rosario University Press.
- Mridul, A. 2025. British Startup Multus Taps AI & Automation to Create Serum-Free Media
- for Cultivated Meat. Green Queen. https://www.greenqueen.com.hk/multus-animal-fetal-
- bovine-serum-free-culture-media-cultivated-
- meat/#:~:text=UK%20firm%20Multus%20Biotechnology%20has,for%20producers%20i
- n%20this%20space. Accessed September 15, 2025.
- Muniyappan, M., Jeon, S. Y., Choi, M.-K., & Kim, I. H. (2022). Dietary inclusion of
- Achyranthes japonica extract to corn-soybean meal-wheat-based diet on the growth
- performance, nutrient digestibility, cecal microflora, excreta noxious gas emission, and
- meat quality of broiler chickens. *Poult Sci*, 101(6), Article 101852.
- 840 https://doi.org/10.1016/j.psj.2022.101852.
- Myers, G. M., Jaros, K. A., Andersen, D. S., & Raman, D. R. (2023). Nutrient recovery in
- cultured meat systems: Impacts on cost and sustainability metrics. Front Nutr, 10, Article
- 843 1151801. https://doi.org/10.3389/fnut.2023.1151801.
- 844 Naseem, S., Xuan, M.-F., Hua, H., Park, S., Manzoor, A., Teng, H., Jin, H., Li, X., & Li, Q.
- 845 (2025). Vitamin C and N-acetylcysteine promotes bovine AD-MSCs proliferation and

- differentiation via Akt/mTOR/P70S6K signaling pathway for cultured meat production.
- 847 *Anim Biosci*. Advance online publication. https://doi.org/10.5713/ab.24.0776.
- Nebbia, C., Urbani, A., Carletti, M., Gardini, G., Balbo, A., Bertarelli, D., & Girolami, F.
- 849 (2011). Novel strategies for tracing the exposure of meat cattle to illegal growth-
- promoters. *Vet J*, 189(1), 34–42. https://doi.org/10.1016/j.tvjl.2010.06.016.
- Nethra, P. V., Sunooj, K. V., Aaliya, B., Navaf, M., Akhila, P. P., Sudheesh, C., Mir, S. A.,
- Shijin, A., & George, J. (2023). Critical factors affecting the shelf life of packaged fresh
- red meat A review. *Meas Food*, 10, Article 100086.
- https://doi.org/10.1016/j.meafoo.2023.100086.
- Norton, L., Shannon, C., Gastaldelli, A., & DeFronzo, R. A. (2022). Insulin: The master
- regulator of glucose metabolism. *Metab*, 129, Article 155142.
- https://doi.org/10.1016/j.metabol.2022.155142.
- O'Neill, E. N., Ansel, J. C., Kwong, G. A., Plastino, M. E., Nelson, J., Baar, K., & Block, D.
- E. (2022). Spent media analysis suggests cultivated meat media will require species and
- cell type optimization. npj Sci Food, 6(1), Article 46. https://doi.org/10.1038/s41538-
- 861 022-00157-z.
- 862 Oh, S., Park, G., Park, S., Park, Y., Choi, N., Lim, Y., Jang, S., Kim, Y., Choi, H., Oh, S., &
- Choi, J. (2025). Citrus sunki peel extract enhances proliferation and differentiation of
- fibro-adipocyte progenitors in Holstein cattle for cultivated meat production. *Food Sci*
- Anim Resour. Advance online publication. https://doi.org/10.5851/kosfa.2025.e17.
- 866 Pandey, S., Kim, S., Kim, E. S., Keum, G. B., Doo, H., Kwak, J., Ryu, S., Choi, Y., Kang, J.,
- Kim, H., Chae, Y., Seol, K.-H., Kang, S. M., Kim, Y., Seong, P. N., Bae, I.-S., Cho, S.-
- H., Jung, S., & Kim, H. B. (2024). Exploring the multifaceted factors affecting pork meat
- quality. J Anim Sci Technol, 66(5), 863–875. https://doi.org/10.5187/jast.2024.e56.

870 Papadopoulos, M. (May 10, 2017). In the Field: Dr. Mark Post, Professor, Maastricht 871 University. Retrieved from http://pote.com/CS/cooksscience.com/articles/interview/in-872 the-field-dr-mark-post/index.html. Accessed March 20, 2025. 873 Park, J. H., & Kim, I. H. (2019). Effects of dietary Achyranthes japonica extract 874 supplementation on the growth performance, total tract digestibility, cecal microflora, 875 excreta noxious gas emission, and meat quality of broiler chickens. *Poult Sci.*, 99(1), 876 463–470. https://doi.org/10.3382/ps/pez533. 877 Park, J. H., Lee, S. I., & Kim, I. H. (2020). The effect of protease on growth performance, 878 nutrient digestibility, and expression of growth-related genes and amino acid transporters 879 in broilers. J Anim Sci Technol, 62(5), 614–627. https://doi.org/10.5187/jast.2020.62.5.614. 088 Park, S.-H., Oh, S.-H., Park, G.-T., Jang, S.-Y., Lim, Y.-H., Oh, S.-K., Lee, T.-H., Lee, S.-H., 881 882 Kim, J.-H., & Choi, J.-S. (2025). Effects of black soldier fly larvae hydrolysate on 883 culture of primary myogenic and adipogenic cells isolated from broilers for cultured 884 meat development. *Foods*, 14(4), Article 678. https://doi.org/10.3390/foods14040678. 885 Park, S.-Y., Byeon, D.-S., Kim, G.-W., & Kim, H.-Y. (2021). Carcass and retail meat cuts 886 quality properties of broiler chicken meat based on the slaughter age. J Anim Sci Technol, 63(1), 180–190. https://doi.org/10.5187/jast.2021.e2. 887 888 Parlasca, M. C., & Qaim, M. (2022). Meat consumption and sustainability. Annu Rev Resour 889 Econ, 14(1), 17–41. https://doi.org/10.1146/annurev-resource-111820-032340. 890 Patel, S. J., Wellington, M., Shah, R. M., & Ferreira, M. J. (2020). Antibiotic stewardship in 891 food-producing animals: Challenges, progress, and opportunities. Clin Therap, 42(9),

1649–1658. https://doi.org/10.1016/j.clinthera.2020.07.004.

892

- Paul, S. S., Rao, S. V. R., Hegde, N., Williams, N. J., Chatterjee, R. N., Raju, M. V. L. N.,
- Reddy, G. N., Kumar, V., Kumar, P. S. P., Mallick, S., & Gargi, M. (2022). Effects of
- dietary antimicrobial growth promoters on performance parameters and abundance and
- diversity of broiler chicken gut microbiome and selection of antibiotic resistance genes.
- 897 Front Microbiol, 13, Article 905050. https://doi.org/10.3389/fmicb.2022.905050.
- Pierezan, M. D., & Verruck, S. (2024). Cattle, swine, poultry and fish cells for meat
- production: addressing challenges of co-culture and the innovative approaches for
- muscle and fat integration. Curr Opin Food Sci, 60, Article 101230.
- 901 https://doi.org/10.1016/j.cofs.2024.101230.
- 902 Plata, G., Baxter, N. T., Susanti, D., Volland-Munson, A., Gangaiah, D., Nagireddy, A.,
- Mane, S. P., Balakuntla, J., Hawkins, T. B., & Mahajan, A. K. (2022). Growth promotion
- and antibiotic induced metabolic shifts in the chicken gut microbiome. Commun Bio,
- 905 5(1), Article 293. https://doi.org/10.1038/s42003-022-03239-6.
- 906 Pronsato, L., La Colla, A., Ronda, A. C., Milanesi, L., Boland, R., & Vasconsuelo, A. (2013).
- High passage numbers induce resistance to apoptosis in C2C12 muscle cells. *Biocell*,
- 908 $37(1), 1 \square 9.$
- Qaid, M. M., & Abdoun, K. A. (2022). Safety and concerns of hormonal application in farm
- animal production: a review. J App Anim Res, 50(1), 426–439.
- 911 https://doi.org/10.1080/09712119.2022.2089149.
- 912 Quek, J. P., Gaffoor, A. A., Tan, Y. X., Tan, T. R. M., Chua, Y. F., Leong, D. S. Z., Ali, A.
- 913 S., & Ng, S. K. (2024). Exploring cost reduction strategies for serum free media
- 914 development. npj Sci Food, 8(1), Article 107. https://doi.org/10.1038/s41538-024-00352-
- 915 0.

916 Ramatsui, L., Sithole, T., Mzimkulu-Ncoyi, N. H., Malgas, S., & Pletschke, B. I. (2023). The 917 use of xylanases as additives to feeds: a mini-review of their effect on feed digestion and 918 growth performance of monogastric animals. In P. Shukla (Ed.), Microbial bioprocesses 919 (pp. 83–105). Elsevier. https://doi.org/10.1016/b978-0-323-95332-0.00003-x. 920 Reiss, J., Robertson, S., & Suzuki, M. (2021). Cell sources for cultivated meat: Applications 921 and considerations throughout the production workflow. Int J Mol Sci, 22(14), Article 922 7513. https://doi.org/10.3390/ijms22147513. 923 Reuben, R. C., Sarkar, S. L., Roy, P. C., Anwar, A., Hossain, M. A., & Jahid, I. K. (2021). 924 Prebiotics, probiotics and postbiotics for sustainable poultry production. World's Poult 925 Sci J, 77(4), 825–882. https://doi.org/10.1080/00439339.2021.1960234. 926 Romero, S. G., & Boyle, N. (2023). Systems biology and metabolic modeling for cultivated 927 meat: A promising approach for cell culture media optimization and cost reduction. 928 Compr Rev Food Sci Food Saf, 22(4), 3422–3443. https://doi.org/10.1111/1541-929 4337.13193. 930 Ronquillo, M. G., & Hernandez, J. C. A. (2017). Antibiotic and synthetic growth promoters in 931 animal diets: Review of impact and analytical methods. Food Control, 72, 255–267. 932 https://doi.org/10.1016/j.foodcont.2016.03.001. 933 Ronquillo, M. G., & Vargas-Bello-Pérez, E. (2022). Editorial: The use of growth promoters 934 and their alternatives in livestock production. Front Vet Sci, 9, Article 945308. 935 https://doi.org/10.3389/fvets.2022.945308. 936 Santander, C. 2025. Cultivated meat: A sustainable & profitable protein revolution? | Arthur 937 D. Little. https://www.adlittle.com/en/insights/viewpoints/cultivated-meat-sustainable-938 profitable-protein939 revolution#:~:text=In%20addition%20to%20cost%20improvements,the%20largest%20p 940 roportion%20of%20costs. Accessed September 15, 2025. 941 Skoupá, K., Št'astný, K., & Sládek, Z. (2022). Anabolic steroids in fattening food-producing 942 animals—A review. Anim, 12(16), Article 2115. https://doi.org/10.3390/ani12162115. 943 Smith, Z. K., & Johnson, B. J. (2020). Mechanisms of steroidal implants to improve beef 944 cattle growth: a review. J App Anim Res, 48(1), 133–141. 945 https://doi.org/10.1080/09712119.2020.1751642. 946 Song, W.-J., Liu, P.-P., Meng, Z.-Q., Ding, S.-J., & Li, H.-X. (2023). N-acetylcysteine 947 promotes the proliferation of porcine adipose-derived stem cells during in vitro long-term 948 expansion for cultured meat production. Food Res Int, 166, Article 112606. 949 https://doi.org/10.1016/j.foodres.2023.112606. 950 Specht, L. (2020). An analysis of culture medium costs and production volumes for cultivated 951 meat. Retrieved from https://gfi.org/wp-content/uploads/2021/01/clean-meat-production-952 volume-and-medium-cost.pdf. Accessed May 10, 2025. 953 Średnicka-Tober, D., Barański, M., Seal, C., Sanderson, R., Benbrook, C., Steinshamn, H., 954 Gromadzka-Ostrowska, J., Rembiałkowska, E., Skwarło-Sońta, K., Eyre, M., Cozzi, G., 955 Larsen, M. K., Jordon, T., Niggli, U., Sakowski, T., Calder, P. C., Burdge, G. C., 956 Sotiraki, S., Stefanakis, A., . . . Leifert, C. (2016). Composition differences between 957 organic and conventional meat: a systematic literature review and meta-analysis. British 958 J Nutr, 115(6), 994–1011. https://doi.org/10.1017/s0007114515005073. 959 Šrut, M., Peer, B., Fiechtner, B., Egg, M., Sandbichler, A. M., & Höckner, M. (2022). Aging 960 cell culture - genetic and metabolic effects of passage number on zebrafish Z3 cells. Cell

Physiol Biochem, 56(1), 50–65. https://doi.org/10.33594/00000494.

961

- 962 Stout, A.J., Mirliani, A.B., Rittenberg, M.L. et al. Simple and effective serum-free medium 963 for sustained expansion of bovine satellite cells for cell cultured meat. Commun Biol, 5. 964 466 (2022). https://doi.org/10.1038/s42003-022-03423-8 965 Stout, A. J., Zhang, X., Letcher, S. M., Rittenberg, M. L., Shub, M., Chai, K. M., Kaul, M., & 966 Kaplan, D. L. (2024). Engineered autocrine signaling eliminates muscle cell FGF2 967 requirements for cultured meat production. Cell Rep Sustain, 1(1), Article 100009. 968 https://doi.org/10.1016/j.crsus.2023.100009. 969 Sung, J. Y., Deng, Z., & Kim, S. W. (2025). Antibiotics and opportunities of their alternatives 970 in pig production: mechanisms through modulating intestinal microbiota on intestinal 971 health and growth. Antibiotics, 14(3), Article 301. 972 https://doi.org/10.3390/antibiotics14030301. 973 Suriya, U., Srikuea, R., Chokpanuwat, T., Suksen, K., Watcharanapapan, W., Saleepimol, P., 974 Laohasinnarong, D., Suksamrarn, A., Myint, K. Z., Janvilisri, T., Chairoungdua, A., & 975 Bhukhai, K. (2024). A diarylheptanoid derivative mediates glycogen synthase kinase 3ß
- 978 https://doi.org/10.1016/j.bbrc.2024.150850.
- 979 Syverud, B. C., VanDusen, K. W., & Larkin, L. M. (2016). Growth factors for skeletal muscle tissue engineering. *Cells Tissues Organs*, 202(3–4), 169–179.

production. Biochem Biophys Res Commun, 736, Article 150850.

to promote the porcine muscle satellite cell proliferation: Implications for cultured meat

981 https://doi.org/10.1159/000444671

976

977

- 982 Terry, S. A., Basarab, J. A., Guan, L. L., & McAllister, T. A. (2021). Strategies to improve
- the efficiency of beef cattle production. Can J Anim Sci, 101(1), 1–19.
- 984 https://doi.org/10.1139/cjas-2020-0022.

- Tokach, M. D., Goodband, B. D., & O'Quinn, T. G. (2016). Performance-enhancing
- technologies in swine production. Anim Front, 6(4), $15 \square 21$.
- 987 https://doi.org/10.2527/af.2016-0039.
- 988 Torres, M., Betts, Z., Scholey, R., Elvin, M., Place, S., Hayes, A., & Dickson, A. J. (2023).
- Long term culture promotes changes to growth, gene expression, and metabolism in
- CHO cells that are independent of production stability. *Biotechnol Bioeng*, 120(9), 2389–
- 991 2402. https://doi.org/10.1002/bit.28399
- 992 Unno, T., Kim, J., Guevarra, R. B., & Nguyen, S. G. (2015). Effects of antibiotic growth
- promoter and characterization of ecological succession in swine gut microbiota. J
- 994 *Microbiol Biotechnol*, 25(4), 431–438. https://doi.org/10.4014/jmb.1408.08063.
- 995 UPSIDE Foods. (2025). Cultivated meat. It's science (but not rocket science). Retrieved from
- https://upsidefoods.com/innovation. Accessed May 10, 2025.
- 997 Valcourt, J. R., Lemons, J. M. S., Haley, E. M., Kojima, M., Demuren, O. O., & Coller, H. A.
- 998 (2012). Staying alive. Cell Cycle, 11(9), 1680–1696. https://doi.org/10.4161/cc.19879.
- 999 Walter, L.-A. J., Schmitz, A. N., Nichols, W. T., Hutcheson, J. P., & Lawrence, T. E. (2018).
- Live growth performance, carcass grading characteristics, and harvest yields of beef
- steers supplemented zilpaterol hydrochloride and offered ad libitum or maintenance
- energy intake. *J Anim Sci*, 96(5), 1688–1703. https://doi.org/10.1093/jas/sky105.
- Warner, D., Dallago, G. M., Dovoedo, O. W., Lacroix, R., Delgado, H. A., Cue, R. I., Wade,
- 1004 K. M., Dubuc, J., Pellerin, D., & Vasseur, E. (2022). Keeping profitable cows in the
- herd: A lifetime cost-benefit assessment to support culling decisions. *Anim*, 16(10),
- 1006 Article 100628. https://doi.org/10.1016/j.animal.2022.100628.
- Warner, R. D. (2019). Review: Analysis of the process and drivers for cellular meat
- production. *Anim*, 13(12), 3041–3058. https://doi.org/10.1017/s1751731119001897.

- 1009 Webb, E.C.., & Casey, N. H. (2010). Physiological limits to growth and the related effects on
- 1010 meat quality. Livest Sci, 130(1–3), 33–40. https://doi.org/10.1016/j.livsci.2010.02.008.
- 1011 Yan, Q., Fei, Z., Li, M., Zhou, J., Du, G., & Guan, X. (2022). Naringenin promotes myotube
- formation and maturation for cultured meat production. *Foods*, 11(23), Article 3755.
- 1013 https://doi.org/10.3390/foods11233755.
- 1014 Yang, W. Z., Lima, P. M. T., Ramirez, S., Schwandt, E., & McAllister, T. A. (2023). Effects
- of a phytogenic feed additive on growth performance, feed intake, and carcass traits of
- beef steers. *App Anim Sci*, 39(6), 423–432. https://doi.org/10.15232/aas.2023-02421.
- 1017 Yu, I.-S., Choi, Y. R., Choi, J., Kim, M. K., Jung, C. H., Um, M. Y., & Kim, M. J. (2024).
- Discovery of novel stimulators of Pax7 and/or MyoD: Enhancing the efficacy of cultured
- meat production through culture media enrichment. *Biosensors*, 14(1), Article 24.
- 1020 https://doi.org/10.3390/bios14010024.
- 1021 Yuan, H.-X., Xiong, Y., & Guan, K.-L. (2013). Nutrient sensing, metabolism, and cell growth
- 1022 control. Molecular Cell, 49(3), 379–387. https://doi.org/10.1016/j.molcel.2013.01.019.
- 1023 Yun, S. H., Lee, D. Y., Lee, J., Mariano Jr., E., Choi, Y., Park, J., Han, D., Kim, J. S., & Hur,
- S. J. (2024). Current research, industrialization status, and future perspective of cultured
- meat. Food Sci Anim Resour, 44(2), 326–355. https://doi.org/10.5851/kosfa.2024.e13.
- Zamojska, D., Nowak, A., Nowak, I., & Macierzyńska-Piotrowska, E. (2021). Probiotics and
- postbiotics as substitutes of antibiotics in farm animals: a review. *Anim*, 11(12), Article
- 1028 3431. https://doi.org/10.3390/ani11123431.
- Zampiga, M., Calini, F., & Sirri, F. (2021). Importance of feed efficiency for sustainable
- intensification of chicken meat production: implications and role for amino acids, feed
- enzymes and organic trace minerals. World's Poult Sci J, 77(3), 639–659.
- 1032 https://doi.org/10.1080/00439339.2021.1959277.

1033 Zhang, Q., & Kim, I. H. (2022). Micelle silymarin supplementation to fattening diet augments 1034 daily gain, nutrient digestibility, decreases toxic gas emissions, and ameliorates meat 1035 quality of fattening pigs. Czech J Anim Sci, 67(4), 125–136. 1036 https://doi.org/10.17221/184/2021-cjas. 1037 Zhao, L., Liu, X., Gomez, N. A., Gao, Y., Son, J. S., Chae, S. A., Zhu, M.-J., & Du, M. 1038 (2023). Stage-specific nutritional management and developmental programming to 1039 optimize meat production. J Anim Sci Biotechnol, 14(1), Article 2. 1040 https://doi.org/10.1186/s40104-022-00805-0.

 Table 1. Growth promoters used for traditional meat production.

Category	Product examples	General mechanism	References
Antibiotic growth promoters (AGPs)	Tylosin, Bacitracin, Virginiamycin	Improve growth rates and	(Ma et al., 2021;
		feed efficiency by	Patel et al., 2020;
		modifying gut flora.	Plata et al., 2022)
Hormonal growth promoters (HGPs)	Trenbolone acetate, Zeranol, Estradiol	Increase muscle deposition	(Challis et al., 2021;
	(active ingredient, ractopamine)	and feed conversion rates.	Fulton et al., 2024;

	(Paylean®, Optaflexx®), Zilpaterol		Kai & Abdoun,
			2022; Moloney &
			McGee, 2023;
			Skoupá et al., 2022;
			Smith & Johnson,
			2020)
Microbiome-based growth promoters	Lactobacillus, Bifidobacterium, Inulin,	Promote beneficial gut	(Liu et al., 2023;
(e.g., probiotics, prebiotics, postbiotics,	Fructooligosaccharides	microflora and enhance	Reuben et al., 2021;
parabiotics)		immunity and nutrient	Zamojska et al.,
		absorption.	2021)

Enzyme additives	Phytase, Xylanase, Protease	Improve nutrient availability	(Moita & Kim,
		by breaking down complex	2022; Park et al.,
		feed components such as	2020; Ramatsui et
		non-starch polysaccharides.	al., 2023)

Phytobiotics/Phytogenics	Plant oils, Spices, Oleoresins, Plant	Have antimicrobial activity,	(Biswas et al., 2024;
	extracts	anti-inflammatory activity,	Filho et al., 2021;
		and enzyme-enhancing	Hassan et al., 2020;
		activity, which can improve animal health and productivity	Yang et al., 2023)

 Table 2. Growth promoters used for cultivated meat production.

Target species	Component	Mechanism	References
Bovine	Insulin	Increased proliferation marker	(Lee, Shaikh, Ahmad, et al.,
		expressions (e.g., Ki67, PCNA);	2025)
		Differentiation marker expression	
		(e.g., MYOD, MYOG, MYH)	
		related to myogenesis.	
	Parthenolide (0.5 and 1 µM) and	Reduced H ₂ O ₂ -induced	(Yu et al., 2024)
	rutin (100 and 200 μM) for	cytotoxicity; Increased	
	proliferation; Adenosine for	expressions of myogenic proteins	
	differentiation	(e.g., MyoD, MyoG, MHC	
		RNA); prevention of muscle	
		atrophy	
	Engineered autocrine signaling	Increased FGF-2 and RasG12V	(Stout et al., 2024)

	production, leading to myogenic	
	stability but reduced myotube	
	formation	
Crude polysaccharides from	Increased cell migration activity	(Lee et al., 2024)
brown seaweed (Ecklonia cava)	related to the HGF/MET pathway	
hydrolysate	and FAK pathway;	
	Improved differentiation marker	
	expressions (e.g., MYH2, MYH7,	
	MYOG)	
Vitamin C and N-acetylcysteine	Decreased oxidative stress and	(Naseem et al., 2025)
	senescence;	
	Activated Akt/mTOR/P70S6K	
	signaling pathway	
Citrus sunki peel extract	Increased gene expression	(Oh et al., 2025)

		(CEBPA, CEBPB, PPARG) and	
		protein expression (FASN,	
		CEBPB, PPARG) of fibro-	
		adipogenic progenitor cells	
		during culture	
	Drone pupae extract	Increased differentiation and (Choi et al., 2025)	
		myotube formation based on	
		increased differentiation markers	
		(e.g., MYH2, MYOG, DES)	
Porcine	Quercetin, Icariin, 3,2'-	Quercetin (50 nM) improved (Guo et al., 2022)	
	Dihydroxyflavone	differentiation based on increased	
		MyHC expression;	
		$3,2'$ -dihydroxyflavone (10 μ M)	
		increased the expression of PAX7	
		related to proliferation and	

	stemness	
Vitamin C	Activation of PI3K/AKT/mTOR	(Fang et al., 2022)
	pathway through the IGF-1	
	signaling	
Recombinant Porcine Fibroblast	Activation of ERK-dependent	(Liu et al., 2025)
Growth Factor 1	phosphorylation of DRP1 at	
	Ser616, resulting in improved	
	mitochondrial function and	
	proliferation	
Naringenin	Upregulation of IGF-1 signaling	(Yan et al., 2022)
N-acetylcysteine	Upregulation of PI3K-AKT	(Song et al., 2023)
	pathway	
Diarylheptanoid derivative	Regulation of Wnt/β-catenin	(Suriya et al., 2024)
	signaling	

	YAP and lysophosphatidic acid	Activation of YAP proteins using	(Liu et al., 2021)
	(LPA)	LPA increased proliferation;	
		Regulation of Hippo-YAP	
		signaling involved in cell contact	
		inhibition	
	Fermented soybean meal and	Promoted cell proliferation (0.01–	(Kim et al., 2023)
	edible insect hydrolysates	5% FAB-H and FB-H, 0.01-1%	
		TM-H, or 0.01–0.1% GB-H);	
		50% FBS replacement	
		maintained cell proliferation and	
		differentiation capacity (0.01 and	
		0.1% of FAB-H, FB-H, and TM-	
		H)	
Chicken	Glycyrrhiza uralensis crude water	Antioxidant activity during	(Lee, Shaikh, Lee, et al., 2025)
	extract and licochalcone A and B	differentiation;	

		Promoted cell proliferation and	
		adhesion in spheroid culture	
	Black soldier fly hydrolysates	Upregulated myogenic markers (Par	k et al., 2025)
		(e.g., PAX7, NCAM1, MYF5,	
		MYOD1);	
		BLH50 promoted cell	
		proliferation but decreased	
		differentiation capacity with	
		increasing BLH concentration	
Bovine-Porcine-Chicken	Quercetin	Upregulated myogenic gene and (Ahr	mad et al., 2024)
		protein expressions (e.g., MYOD,	
		MYOG, MYH);	
		Inhibited MSTN, ACVR2B, and	
		SMAD2/3, resulting in improved	
		differentiation and myotube	

	formation	
Laxogenin (LAX), Laxogenin-5-	MSTN inhibition using 10 nM (Lim et al.	, 2025)
alpha-hydroxy-laxogenin	LAX and 5HLAX;	
(5HLAX)	Promoted myogenesis, and	
	myotube formation and	
	maturation;	
	Antioxidant activity by serving as	
	agonists for ROS-downregulating	
	factors	
	alpha-hydroxy-laxogenin	Laxogenin (LAX), Laxogenin-5- MSTN inhibition using 10 nM (Lim et al. alpha-hydroxy-laxogenin LAX and 5HLAX; (5HLAX) Promoted myogenesis, and myotube formation and maturation; Antioxidant activity by serving as agonists for ROS-downregulating

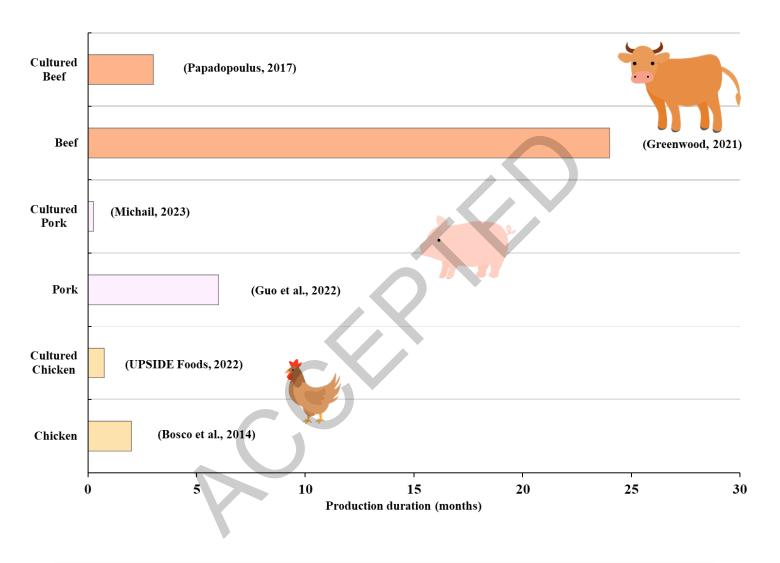


Figure 1. Difference in production duration of major livestock animals for traditional meat production.