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Abstract

SRY-box transcription factor 6 (Sox6) and folliculin-interacting protein 1 (Fnipl) play essential roles in muscle
fiber specification during muscle development. However, their involvement in chicken muscle development
remains largely unexplored. In this study, CRISPR-Cas9 was used to knock out (KO) Sox6 and Fnipl in a chicken
myoblast cell line (0CM cells). The functional significance and regulatory mechanisms of these genes were then
examined during cell proliferation and muscle fiber differentiation. The loss of Sox6 and Fnipl led to increased
expression of Type 1 muscle-specific genes, including myosin light chain 2 (MYL2), myosin heavy chains
(MYH1B, MYHI1E, and MYH7B), and ATPase sarcoplasmic/endoplasmic reticulum Ca2?" transporting 2
(ATP2A2). In KO pCM cells, the expression of muscle Type 2-specific genes, including MYL1 and Troponin C
(TnnC2), was significantly reduced. Moreover, mitochondrial abundance increased following gene deletion.
Simultaneously, genes associated with the tricarboxylic acid (TCA) cycle and oxidative phosphorylation exhibited
substantially elevated expression in KO pCM cells. Notably, the loss of Sox6 and Fnipl not only suppressed cell
proliferation but also impaired muscle fiber differentiation. Overall, these findings indicate that Sox6 and Fnipl

play a crucial role in regulating muscle fiber specification and differentiation in chickens.

Keywords: chicken, muscle, specification, differentiation, Sox6, Fnipl
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Introduction

Skeletal muscle consists of connective tissues and fascicles, which are composed of numerous muscle fibers
[1,2]. These muscle fibers are classified into distinct types, each with unique characteristics and structures,
enabling an efficient response to physical activity and exercise [1,2]. Based on the analysis of specific enzymes
and proteins, muscle fibers are categorized into Type 1 (slow-twitch) and Type 2 (fast-twitch) fibers [3-5]. This
classification primarily relies on the examination of myofibrillar adenosine triphosphatase (mATPase) and
succinate dehydrogenase (SDH) activity within myosin heavy chain (MHC) [6-8]. Type 1 muscle fibers appear
red due to their high content of mitochondria, blood vessels, and myoglobin, which facilitate oxygen delivery and
ATP production through the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) in
numerous mitochondria at a relatively slow rate [9,10]. In contrast, Type 2 muscle fibers contain fewer
mitochondria, blood vessels, and myoglobin, giving them a white appearance, and generate ATP more rapidly via

glycolysis [11,12].

Understanding the regulatory mechanisms of skeletal muscle development has practical applications in the
poultry industry [13]. However, research on muscle fiber specification in chickens remains limited. Therefore, we
selected candidate genes through comparative analyses with mammalian systems and examined their roles in
myogenic differentiation using chick' myoblasts because studies on myogenic specification-related genes in
chickens are extremely limited. Sox6 and Fnipl were prioritized for functional validation, as no prior reports have
described their involvement in avian myogenesis. This study provides the first functional characterization of Sox6
and Fnipl during chicken muscle differentiation. In our previous study, we established an immortalized chicken
myoblast cell line capable of differentiating into muscle myotubes under specific conditions [14]. We explored
the biofunctional roles of SRY-box transcription factor 6 (Sox6) and folliculin-interacting protein 1 (Fnipl), which
have been identified as key regulators of muscle fiber specification and differentiation in mammals [15, 16]. In
mammalian skeletal muscle, Sox6 functions as a transcriptional repressor of slow-twitch Type 1 myofiber genes,
thereby promoting fast-twitch Type 2 myofiber specification. Sox6-knockout mice exhibit enhanced slow-twitch
fiber composition, increased mitochondrial content, elevated oxidative metabolism, and improved fatigue
resistance, indicating that Sox6 loss-of-function shifts skeletal muscle toward an oxidative phenotype [16]. Fnipl
acts as a negative regulator of AMPK signaling through its interaction with folliculin (FLCN), and Fnip1 deletion

relieves AMPK inhibition, resulting in AMPK hyperactivation and downstream PGC-1a-mediated mitochondrial
4
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biogenesis. The Fnipl-deficiency-induced metabolic adaptation promotes slow-twitch oxidative fiber
differentiation and enhances fatigue resistance. The conserved roles of Sox6 and Fnipl in regulating myofiber
type specification and oxidative metabolism have been consistently demonstrated across mammalian species
including mice and humans [17]. Sox6 is a member of the SoxD subfamily within the Sox gene family and
functions as a transcription factor containing a high mobility group (HMG) box DNA-binding domain. This
domain enables Sox6 to regulate gene expression by directly binding to specific DNA elements, while its coiled-
coil domains facilitate interactions with other transcriptional proteins and microRNAs (miRNAs) [18-20]. Sox6
specifically binds to the '"AACAAT' sequences within slow fiber-specific genes (Myl2, MyI3, Myh1, Myh7, and
ATP2a2), repressing their transcription [16]. Fnip1, on the other hand, forms a complex with Fnip2 and Folliculin
(Fnip1/Fnip2/Folliculin) through its Longin domain at the N-terminus and DENN domain at the C-terminus [21].
This complex interacts with the mechanistic target of rapamycin complex 1 (mTORC1), which is activated in
nutrient-rich conditions [21]. Conversely, AMP-activated protein kinase (AMPK) becomes active under energy-
deficient conditions [21]. AMPK activation leads to the phosphorylation of threonine-177 and serine-538 on
peroxisome proliferator-activated receptor-y coactivator-1o (PGC-1a), which then interacts with multiple genes

to initiate mitochondrial biogenesis [22-27].

Oxidative-type muscle fibers (Type 1L and Type 2A), characterized by smaller myofiber diameter, higher fiber
density expressing red color, enhanced tenderness, improved water-holding capacity, and elevated flavor intensity
derived from higher phospholipid content [13]. Biochemically, these fibers maintain elevated glycogen stores and
lower ATP degradation rates, resulting in attenuated post-mortem glycolysis and stabilized pH values, thereby
mitigating the incidence of PSE (pale, soft, and exudative) meat defects [13]. These traits lead display superior
meat quality traits. Conversely, glycolytic-type fibers (Type 2B), characterized by larger fiber diameter and
reduced oxidative capacity, exhibit rapid glycolysis with accelerated pH decline post-slaughter, increased shear

force values, reduced tenderness, and compromised color stability [13].

In mammals, studies have demonstrated that the specific knockout of Sox6 and Fnipl leads to a shift from
Type 2 to Type 1 muscle fibers. However, research on muscle fiber specification in chickens remains limited. To
bridge this knowledge gap, the present study employs the clustered regularly interspaced short palindromic repeats

(CRISPR)-Cas9 system to knock out Sox6 and Fnipl in pCM cells, an immortalized chicken myoblast cell line.
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Materials and Methods

pCM Cell Culture and Myotube Differentiation

pCM cells, isolated from the pectoralis major of a 10-day-old chicken embryo, were cultured at 37°C in a 5%
CO: atmosphere with 60-70% relative humidity [14,28]. The cells were maintained in DMEM High Glucose
medium supplemented with 10% fetal bovine serum (FBS) and 1x antibiotic-antimycotic. Subculturing was
performed when the cells reached 80% confluency. To induce myotube differentiation, cells were grown to 80%
confluency, then washed twice with Dulbecco's Phosphate-Buffered Saline (DPBS; Gibco BRL, Grand Island,
NY). The culture medium was then replaced with DMEM High Glucose containing 2% FBS and 1x antibiotic-
antimycotic. This differentiation process was continued for seven days to promote myotube formation.
Quantitative morphological analysis was performed using ImageJ software. For each experimental group (WT,
Sox6 KO, and Fnipl KO), a minimum of 30 cells from at least 3 independent fields of view in each of 3 biological
replicates (total n > 90 cells per group) were manually traced and analyzed. Cell length was defined as the longest
axis from end to end of the cell body. Cell width was measured as the maximum perpendicular distance
perpendicular to the length axis. Cell area was calculated by tracing the entire cell boundary using ImageJ's
freehand drawing tool, and the software automatically computed the enclosed area in square micrometers (um?2).
All measurements were calibrated using the embedded scale bar, and values were converted from pixels to

micrometers.

Construction of Sox6 gRNA and Fnipl gRNA Expression Vector

The pUC-Amp vector was utilized to generate guide RNAs (JRNAs) targeting the sex-determining region
(SRY)-box 6 (Sox6; NCBI Gene ID: 423068) and folliculin-interacting protein 1 (Fnipl; NCBI Gene ID: 427642),
both of which function as transcription factors in pCM chicken myoblast cells. A gRNA for Sox6 was designed to
target exon 1 using the sequence: 5'-GCA TCA CGA GAC AAG GAA GA-3'. However, due to the absence of a
suitable protospacer adjacent motif (PAM) sequence in exon 1 of Fnipl, a target locus (5'-GGA CTG TGA GAG
AAG AGG A-3') was selected in exon 2, based on the PAM sequence (CGG). The gRNAs were transcribed under

the control of the U6 promoter and terminated by the U6 5-TTTTTTT-3' terminator sequence. The complete
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gRNA sequences were then inserted into the lacZ sequence at the multiple cloning sites (MCS) within the pUC-
Amp vector. The high-fidelity variant Cas9 (HF-Cas9) protein was obtained as the CMV-CAS9-2A-GFP plasmid

(Sigma-Aldrich, St. Louis, MO) (Suppl. Fig. 1).

Cell Transfection

To generate Sox6 knockout (KO) cells and Fnipl KO cells, the gRNA vectors were co-transfected with Cas9
vectors using Lipofectamine 3000 (Invitrogen, Waltham, MA) according to the manufacturer’s protocol. When
the cells reached 80% confluency in 6-well plates, they were washed twice with Dulbecco's Phosphate-Buffered
Saline (DPBS) and the media was replaced with 10% fetal bovine serum (FBS) without antibiotic-antimycotic. In
total, 7.5 pL of Lipofectamine reagent, 2 pg of gRNA vector, 2 pg of Cas9 expression vector, and 10 pL of p3000
reagent were mixed in 500 pL of Opti-MEM (Invitrogen) and added to each well. After a 5-hour incubation, the
cells were washed three times with DPBS, and fresh media containing 10% FBS and antibiotic-antimycotic was
added. The following day, fluorescence-activated cell sorting (FACS) was performed to isolate GFP-expressing

cells.

T-Vector Cloning to Obtain Knock-Out Sequence

Genomic PCR was performed to analyze the sequence. The PCR conditions were as follows: an initial
denaturation at 95°C for 3 minutes, followed by 40 cycles of denaturation at 95°C for 30 seconds, annealing at
60°C for 30 seconds, and extension at 72°C for 30 seconds. A final extension step was carried out at 72°C for 5
minutes. The PCR amplicons were then cloned into the pGEM®-T Easy Vector System kit (Promega, Madison,

WI) for subsequent genotype sequencing.

Quantitative RT-PCR Analysis

Total RNA was isolated from each cell line using guanidine acid-phenol extraction with Trizol reagent

(Invitrogen). The RNA quality and concentration were assessed using a NanoDrop 2000 spectrophotometer
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(Thermo Fisher Scientific, Waltham, MA). For cDNA synthesis, 1 g of total RNA was reverse transcribed using
the SuperScript™ First-Strand Synthesis System for quantitative reverse transcription polymerase chain reaction
(QRT-PCR; Invitrogen). Each 25 pL RT-PCR reaction mixture contained 2.5 pL of 10X eTaq reaction buffer
(Solgent, Daejeon, Korea), 2 pL of dNTP mixture (Takara, Tokyo, Japan), 10 pmol of forward and reverse primers,
0.2 uL of eTaq (Solgent), 1 pL of cDNA template, and 17.3 uL of ddH-O. The PCR conditions were as follows:
initial denaturation at 95°C for 3 minutes, followed by 40 cycles of 95°C for 30 seconds, 55-60°C (depending on
the primers) for 30 seconds, and 72°C for 30 seconds. The reaction was completed with a final extension at 72°C

for 5 minutes. The PCR products were then analyzed by electrophoresis on a 1.5% agarose gel.

After confirming a single band by electrophoresis, qRT-PCR was performed to quantify the transcripts
(Supplementary Table 1). Each reaction tube contained 2.5 pL of 10X eTaq reaction buffer (Solgent), 1 pL of
dNTP mixture (Takara), 10 pmol of forward and reverse primers, 1 pl: of EvaGreen (Biotium, Fremont, CA), 0.2
uL of eTaq, 16.3 pL of ddH-0, and 2 pL of cDNA template. The gRT-PCR conditions were as follows: an initial
denaturation at 95°C for 5 minutes, followed by 40 cycles of denaturation at 95°C for 30 seconds, annealing at a
temperature specific to the primers (55-60°C) for 30 seconds, and extension at 72°C for 30 seconds. The results
were normalized to the expression of B-actin (ACTB) and quantified using the 22°T method. All gRT-PCR

experiments were performed in quadruplicate.

Protein Extraction and Western Blotting

Cells were lysed with radioimmunoprecipitation assay (RIPA) buffer. Protein concentration was determined
using bovine serum albumin (BSA) and a protein assay dye (Bio-Rad, Hercules, CA). The protein samples were
then heated at 100°C for 10 minutes, mixed with 6x Laemmli SDS sample buffer (Thermo Scientific). Proteins
were separated on a 10% polyacrylamide gel and transferred to a 0.2 pm nitrocellulose membrane (Bio-Rad). The
membrane was blocked with skimmed milk for 2 hours, and primary antibodies were incubated overnight at 4°C.
The primary antibodies used were B-actin (Santa Cruz Biotechnology, Dallas, TX, cat#Sc-47778), anti-Pax7
(R&D Systems, Minneapolis, MN, cat#MAB1675), and anti-p53 (St. John’s Lab, London, UK, cat#STJ140114).
Horseradish peroxidase (HRP)-conjugated anti-mouse 1gG (Bio-Rad, cat#170-6516) and HRP anti-goat 1gG (Bio-

Rad, cat#172-1034) were used as secondary antibodies (Supplementary Table 2). Protein bands were detected

8
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using ECL substrate (Bio-Rad) and visualized with a ChemiDoc™ XRS+ imaging system (Bio-Rad).

Cell Proliferation Analysis

Cell proliferation was analyzed using two different methods: a hemocytometer counting method and a 5-
bromo-2'-deoxyuridine (BrdU) incorporation assay. For the hemocytometer method, cells were seeded into 12-
well culture plates at an initial density of 0.5%10* cells per well in complete culture medium. Cells were maintained
at 37°C in a humidified atmosphere containing 5% CO.. At designated time points (Day 0, 2, 4, and 6), cells were
detached using 0.05% trypsin-EDTA for 5 minutes at 37°C. Cell viability was determined by trypan blue (0.4%)
exclusion, with only viable (unstained) cells counted using a hemocytometer. For each sample, cell counts were
performed in duplicate from 4 wells per time point. Cell counts were calculated as the mean of 4 wells, and
experiments were performed in triplicate (n=3 independent experiments, total n=12 wells per time point per group).
Growth curves were generated by plotting total cell numbers against time. For the BrdU cell proliferation assay,
BrdU cell proliferation assay was conducted using BD Pharmingen™ BrdU Flow Kits (Becton, Dickinson and
Company, Franklin Lakes, NJ). The cells were seeded at a density of 0.2x10° exceed in 6-well plates two days
before BrdU labeling. After two days, 10 pM BrdU was added directly to the cell culture medium. Following a
two-hour incubation at 37°C, the cells were detached using Trypsin-EDTA and permeabilized using
Cytofix/Cytoperm Buffer and Cytoperm Permeabilization Buffer Plus. Subsequently, the samples were incubated
at 37°C for one hour with 300 pg/ml DNase to expose the BrdU epitope for antibody recognition, after which they
were stained for total DNA level using 7-amino-actinomycin D (7-AAD). Flow cytometry analysis was performed
on a BD FACSAria™. Cell cycle phases were defined as follows: GO/G1 phase (2n DNA content, BrdU-negative),
S phase (intermediate DNA content, BrdU-positive), and G2/M phase (4n DNA content, BrdU-negative).
Apoptotic cells were identified as sub-G1 population (DNA content < 2n). Data from a minimum of 10,000 events

per sample were acquired. Results represent mean + standard deviation from three independent experiments.

Mitochondrial DNA Analyses

After mitochondrial DNA extraction, the relative abundance of mitochondrial DNA was quantified by gPCR
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using primers specific to each DNA type (Supplementary Table 3) [29,30]. To determine the mitochondrial DNA

content, the following equation was used:

2x22CT where ACT = (nucDNA CT-mtDNA CT)

Mitochondria Staining

Cells were washed three times with DPBS for staining. The cells were then incubated with 200 nM
MitoTracker® Red CMXRos (Cell Signaling, Danvers, MA) in FluoroBritt™ DMEM (Gibco) containing 10%
FBS at 37°C for 20 minutes. Afterward, the cells were washed three times with-DPBS, and cold methanol was
added. The cells were incubated at -20°C for 15 minutes. The stained cells were measured on a total of 20 cells
per each group of three biological replicates (6-7 cells per well from 3 independent wells) using Cytation™
imaging Readers (BioTek, Winooski, VT). Using Cytation™, the area corresponding to each individual cell was

automatically delineated, and data were quantified based on the median intensity within each defined area.

Statistical Analysis

All quantitative data were analyzed using one-way ANOVA followed by Dunnett's multiple comparison test
to compare each knockout group against the WT control. Statistical significance was denoted as follows: *, **,
*xx *x* ndicate p < 0.05, p. < 0.01, p < 0.0005, and p < 0.0001, respectively. All statistical analyses were
performed using GraphPad Prism 8.0.1 software. Data are presented as mean + standard deviation (SD) from a

minimum of three independent experiments.
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Results

Schematic Diagram of Knockout Target Design and Mutant Genotype

To investigate the effects of Sox6 and Fnipl on chicken muscle cells, we performed CRISPR-Cas9-mediated
knockout (KO) of each gene in the pCM cell line, a chicken myaoblast isolated from the pectoralis major of a 10-
day-old embryo (14,28). After knockout, single-cell-derived sublines with frameshift mutations were identified
and selected. Specifically, Sox6 KO#2 and Fnipl KO#3 were obtained, exhibiting frameshift mutations of a 4
nt/16 nt deletion and a 5 nt deletion/1 nt insertion, respectively (Fig. 1). These frameshift mutations resulted in

the production of dysfunctional proteins (Fig. 1).

Morphological Characterization and Analysis of Cell Growth Curve in WT Cells, Sox6 KO, and Fnipl KO

Cells

After identifying the single-cell-derived KO sublines, morphological differences between wild-type (WT)
and Sox6 or Fnipl KO sublines were compared (Fig. 2A). The cell length of Sox6 KO cells was significantly
reduced compared to WT cells, while no significant difference was observed in Fnipl KO cells (Fig. 2B). In
contrast, the width of Sox6 KO cells was significantly increased compared to WT cells, with no significant change
in Fnipl KO cells. Interestingly, both KO cell types exhibited a significant increase in cell area. These changes in
length and width contributed to a rounded phenotype in Sox6 KO cells (Fig. 2A). Regarding cell proliferation,
both Sox6 and Fnipl KO cells displayed a significant reduction in proliferation compared to WT cells (Fig. 2C),

with Fnipl KO cells exhibiting the lowest proliferation rate (Fig. 2C).

Analysis of Sox6 or Fnipl on Cell Proliferation

To investigate the functional effects of Sox6 and Fnipl on cell proliferation, we analyzed cell cycle gene
expression patterns using gRT-PCR and Western blotting. The expression of cyclin D1 (CCND1), which forms
the CCND1-CDK4 complex essential for regulating the G1/S transition, was significantly reduced in both Sox6

KO and Fnipl KO cells (Fig. 3A). Additionally, proliferating cell nuclear antigen (PCNA), a cofactor for DNA

11
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polymerase, was markedly decreased in both Sox6 KO and Fnipl KO cells (Fig. 3A). Insulin-like growth factor
1 receptor (IGF1R), which plays a crucial role in cell growth, was also significantly downregulated in both KO
cells (Fig. 3A). Next, we examined gene expression patterns related to the G2/M transition. The expression levels
of Cyclin B1 (CCNBL1) and Cyclin-Dependent Kinase 1 (CDKZ1), key components of the CCNB1-CDK1 complex
that regulate G2/M progression, were reduced in both Sox6 KO and Fnipl KO cells (Fig. 3B). Furthermore, a
significant decrease in the expression of Aurora Kinase B (AURKB) and Polo-like Kinase 1 (PLK1), which are
involved in spindle formation and attachment, was observed (Fig. 3B). Finally, Western blot analysis was
performed to assess p53, a master regulator of tumor suppression and cell cycle control. The results demonstrated
significantly elevated p53 protein expression in both Sox6 KO and Fnipl KO cells.compared to WT cells (Fig.
3C). Quantification showed p53 increased approximately 2-fold in Sox6 KO cells (p < 0.0001) and 1.5-fold in
Fnipl KO cells (p < 0.01). p53 acts as a cellular stress sensor that induces cell cycle arrest by activating the CDK
inhibitor p21/WAF1, which prevents cyclin-CDK complex activity and blocks G1/S phase progression. The
correlation between elevated p53 levels and reduced cell proliferation in both knockout cells, suggests that p53-

dependent cell cycle checkpoints play a critical role in-mediating the growth suppression.

In the subsequent experiment, cell cycle analysis was conducted using the 5-bromo-2’-deoxyuridine (BrdU)
incorporation assay (Fig. 4A). The results revealed a significant suppression of the S phase in Sox6 KO (12.1 £
0.4%) and Fnipl KO cells (3.5 + 0.2%) compared to WT cells (25.9 + 0.2%) (Fig. 4B). Moreover, the proportion
of cells arrested in the G2/M phase was notably higher in Sox6 KO (15.8 £ 0.1%) and Fnipl KO cells (25.0 +
1.0%) compared to WT cells (5.0 + 0.1%) (Fig. 4B). These findings suggest that Sox6 and Fnipl play a role in

regulating the cell cycle pathway and influencing proliferation in chicken myoblast cells.

Characterization of Sox6 KO and Fnipl KO cells in the undifferentiated state

We analyzed the gene expression patterns associated with muscle fiber types in Sox6 KO and Fnipl KO cells.
The expression of paired box 7 (Pax7), a key myoblast marker in the undifferentiated stage, and MyoD, a
myogenic regulatory factor (MRF), was significantly downregulated in both Sox6 KO and Fnipl KO cells (Fig.
5A). Additionally, Western blotting confirmed the reduced expression of Pax7 in Sox6 KO and Fnipl KO cells

compared to WT cells (Fig. 5B). Next, we examined the expression of muscle fiber-specific genes, including

12
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myosin light chain 2 (MYL2) and naked cuticle homolog 1 (NKD1), which are highly expressed in Type 1 muscle
fibers. The expression of Type 1 muscle fiber-specific genes was significantly increased in Sox6 KO and Fnipl
KO cells, except for MYL2 in Fnipl KO cells (Fig. 5C). Type 2 muscle fiber-specific genes, including MYL1, a
fast skeletal muscle-specific myofibrillar protein gene, troponin C2 (TnnC2), a cardiac troponin subunit gene, and

ryanodine receptor 1-like (RYRZ1), were significantly downregulated in Sox6 KO and Fnipl KO cells (Fig. 5D).

Knockout of Sox6 and Fnipl enhances mitochondrial content in skeletal muscle cells

Type 1 muscle fibers contain a higher abundance of mitochondria compared to Type 2 muscle fibers.
Therefore, we assessed mitochondrial content in WT and KO cells using the MitoTracker reagent (Fig. 6A). The
red fluorescence intensities of the MitoTracker reagent were measured and compared between WT and KO cells,
revealing significantly higher intensities in Sox6 KO and Fnipl KO cells relative to WT cells (Fig. 6B). These
findings were consistent with qRT-PCR data showing increased mitochondrial DNA content and upregulation of
mitochondrial biogenesis genes, including peroxisome proliferator-activated receptor gamma coactivator 1-alpha
(PGC-1a), as well as its downstream regulatory genes nuclear respiratory factor 1 (NRF1) and mitochondrial
transcription factor A (TFAM) (Fig. 6C). Overall, these results suggest that the absence of Sox6 and Fnipl

promotes mitochondrial biogenesis in chicken myoblast cells.

Knockout of Sox6 and Fnipl inhibits myocyte differentiation

pCM cells, as myoblasts, have the potential to differentiate into myocytes and myotubes under specific
conditions (Suppl Fig. 2A). Interestingly, the expression levels of Sox6 and Fnipl in WT cells gradually and
significantly increased during myocyte differentiation, from day O (undifferentiated) to day 7 (Suppl Fig. 2B). In
contrast, Sox6 KO and Fnipl KO cells exhibited a dramatic reduction in myotube formation compared to WT
cells, with significantly decreased myotube differentiation percentages and areas (Fig. 7). Additionally, the nuclear
fusion rates within each myotube were significantly lower in Sox6 KO and Fnipl KO cells after 7 days of
differentiation (Fig. 7C). gRT-PCR data revealed similar gene expression patterns in Sox6 KO and Fnipl KO cells

after myotube differentiation (Fig. 8). The expression levels of Pax7 and MyoD, which are muscle-specific genes

13
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in the undifferentiated state, as well as myogenin and desmin, which are key myogenic genes, were downregulated
in both Sox6 KO and Fnipl KO cells (Fig. 8A). These findings suggest that Sox6 and Fnipl play a crucial role in

regulating myogenic pathways in chicken muscle development.

Effects of Sox6 and Fnipl on muscle fiber specification in chicken

We investigated the effects of Sox6 and Fnipl on muscle fiber specification during myocyte differentiation.
gRT-PCR analysis revealed a significant increase in Type 1 muscle fiber-specific gene expression in both Sox6
KO and Fnipl KO cells after myotube differentiation (Fig. 8B). The expression levels of myosin heavy chain 7B
(MYH7B), myosin heavy chain 1B (MYH1B), and myosin heavy chain 1E (MYHL1E), which encode slow
myofibrillar proteins, were markedly elevated in Sox6 KO and Fnipl KO cells: Additionally, myosin light chain
2 (MYL2) and ATPase sarcoplasmic/endoplasmic reticulum Ca?* transporting 2 (ATP2A2), which are highly
expressed in Type 1 muscle fibers, were also significantly upregulated (Fig. 8B). These findings suggest that Sox6
and Fnipl are also involved in muscle fiber specification, particularly in the regulation of slow-twitch muscle

fiber formation.

The absence of Sox6 and Fnipl enhances glucose metabolism activity.

Type 1 muscle fibers rely more heavily on mitochondria than Type 2 muscle fibers, enabling efficient ATP
production through the TCA cycle and OXPHOS. Given our previous findings of increased mitochondrial volume
in Sox6 KO and Fnipl KO cells, we conducted a comparative gene expression analysis of glucose metabolism
and mitochondrial regulatory pathways between WT and mutant pCM sublines (Sox6 and Fnipl KO) following
myotube differentiation. Notably, the expression of v-myc avian myelocytomatosis viral oncogene homolog (C-
MY C), which interacts with both Sox6 and Fnipl, was upregulated. Increased C-MYC expression is known to
directly activate the transcription of nearly all related genes. To investigate its impact, we examined the expression
levels of glucose transporter type 1 (GLUT1) and glucose transporter type 3 (GLUT3), which interact with C-
MYC. The results showed that GLUT1 and GLUT3 expression was elevated in Sox6 KO and Fnipl KO cells

compared to WT cells (Fig. 9A). Since higher GLUT expression facilitates increased glucose uptake, the
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expression of enzymes involved in glucose metabolism was also upregulated. The expression levels of
phosphoglucomutase 1 (PGM1) and phosphoglucomutase 2 (PGM2) genes encoding phosphoglucomutase which
is an enzyme responsible for converting glucose 1-phosphate to glucose 6-phosphate, were significantly elevated
in Sox6 KO and Fnipl KO cells compared to WT cells. Furthermore, hexokinase 1 (HK1), which encodes
hexokinase catalyzing the conversion of glucose to glucose 6-phosphate, was notably upregulated in Sox6 KO
and Fnipl KO cells relative to WT cells. Interestingly, we also observed increased expression of glucose-6-
phosphate isomerase (GPI), the enzyme that interconverts glucose 6-phosphate and fructose 6-phosphate, in both
Sox6 KO and Fnipl KO cells. Additionally, lactate dehydrogenase A (LDHA), which facilitates the conversion of

pyruvate to lactate, was significantly overexpressed in Sox6 KO and Fnipl KO cells.compared to WT (Fig. 9B).

It is well established that pyruvate generated in this process must be converted into acetyl-CoA to
successfully enter the TCA cycle. As a result, acetyl-CoA conversion is more prevalent in muscle Type 1 fibers
than in muscle Type 2 fibers. To investigate this, we examined the expression levels of pyruvate dehydrogenase
E1 subunit beta (PDHB), which encodes the pyruvate dehydrogenase complex, as well as dihydrolipoamide S-
acetyltransferase (DLAT) and dihydrolipoamide dehydrogenase (DLD). The results revealed that PDHB, DLAT,
and DLD expression was elevated in Sox6 KO-and Fnipl KO cells compared to WT cells (Fig. 9C). Additionally,
we analyzed gene expression related to-the mitochondrial electron transport system. This included succinate
dehydrogenase complex flavoprotein subunit A (SDHA), a key component of respiratory chain complex II;
cytochrome C (CYCS), which facilitates electron transfer between respiratory chain complexes Ill and 1V;
cytochrome C oxidase subunit 5A (COX5A), involved in complex IV; and ATP synthase F1 subunit alpha
(ATP5A1), which encodes part of the ATP synthase complex. The expression levels of these genes were
significantly increased in Sox6 KO and Fnipl KO cells relative to WT cells (Fig. 9D). These findings suggest that

the knockout of Sox6 and Fnipl enhances glucose metabolism activity.
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Discussion

This study employs the CRISPR/Cas9 system to knock out Sox6 and Fnipl in pCM, a myoblast cell line
derived from chicken pectoral muscle. The goal was to investigate the effects of these genes on chicken muscle
cells, not only regarding muscle fiber specification but also in relation to cell proliferation, differentiation,
mitochondrial biogenesis, and glucose metabolism. The key conclusion of this study is that Sox6 and Fnip1 form
an essential signaling pathway involved in the specification of skeletal muscle fibers in chickens. These findings
align with observations made in the mammalian model, particularly in mice [15, 16], indicating that these two

genes have a conserved function across species.

An increase in cell size was observed in Sox6 KO and Fnipl KO cells compared to WT cells, likely linked
to cell cycle arrest. Previous studies have shown that when the cell cycle isarrested due to genetic or environmental
factors, cells continue to grow until they reach a specific size [31]. This phenomenon supports the hypothesis that
the cell cycle arrest caused by the deletion of Sox6 and Fnipl contributes to the observed increase in cell size.
Additionally, the larger cell size may also be associated with an increase in mitochondrial content. A higher
number of mitochondria was observed in Sox6 KO and Fnipl KO cells, suggesting that these cells may require a
larger cytoplasmic space to accommodate the increased mitochondrial population. Therefore, mitochondrial

expansion is also a contributing factor to the observed increase in cell size.

Cell cycle arrest plays a crucial role in-muscle cell differentiation [32], as it typically facilitates myoblast
differentiation. Once myablasts exit the cell cycle, myogenic regulatory factors such as MyoD and MyoG drive
muscle differentiation [33]. However, in this study, despite the inhibition of cell proliferation, the expression of
MyoD and MyoG which are key genes involved in myogenic differentiation, was significantly suppressed in Sox6
KO and Fnipl KO cells compared to WT cells. Similarly, desmin, a marker of terminal myotube differentiation,
was also downregulated. During muscle development, MyoD and Sox6 play essential and closely interacting roles.
MyoD undergoes histone H4 acetylation and binds to myotubes during muscle differentiation, while Sox6 also
binds to myotubes during myogenesis. Notably, the majority (96%) of MyoD and Sox6 binding sites either overlap
or are located within 50 base pairs of each other [34]. Furthermore, the E-box motif, identified within Sox6 binding
sites, is predominantly linked to genes regulating muscle differentiation. Consequently, in the absence of Sox®6,

MyoD is unable to bind to these sites, disrupting the precise regulation of muscle-specific gene expression [35].
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We observed increased expression of MYH7B, MYH1B, MYL2, ATP2A2, and MYHLE in myocyte-
differentiated Sox6 KO cells, consistent with findings from previous researches. Studies on the interaction
between Fnipl and PGC-1a have predominantly reported elevated expression of muscle Type 1 fiber marker
MYH7 and enhanced mitochondrial activity [15,35,36]. However, this study presented a unique finding: an
increase in the expression of genes associated with slow myofibers. Notably, at the myoblast stage, the deletion
of Sox6 and Fnip1l led to increased expression of NKD1. Given that Wnt/p-catenin signaling is known to drive
the conversion of slow myofibers into fast myofibers, and NKD1 acts as a potent inhibitor of this pathway [37,38],
the elevated NKD1 expression following Sox6 and Fnipl deletion suggests that it may contribute to the

maintenance of slow myofiber characteristics by suppressing Wnt/B-catenin signaling:

Fnipl has been shown to interact with AMPK, folliculin (FLCN), Fnip2, and HSP90. In a study on renal
cancer cells, FLCN deletion led to increased PGC-1a expression, enhancing mitochondrial function and oxidative
metabolism [23,37]. Similarly, in Fnip1-deficient skeletal muscle, elevated PGC-1a/p expression and upregulation
of mitochondrial components (ATP5g, Cox5a, Cycs, Pdk4, Ndufs8, Ucp3) involved in the electron transport chain
(ETC) and TCA cycle [15,23]. Likewise, the deletion of either Fnipl or FLCN alone has been found to increase
PGC-1a expression. This occurs because Fnipl and FLL.CN regulate the phosphorylation of PGC-1a at threonine-
177 [23]. In line with these findings, we speculate that the deletion of Fnipl in this study leads to PGC-la
activation, subsequently promoting mitochondrial biogenesis. Additionally, we observed that the knockout of
Sox6 also increased PGC-1a expression, which aligns with recent studies suggesting a Sirt6-CREB-Sox6 axis. A
previous study proposed that Sirtuin 6 (Sirt6) enhances PGC-1a expression by activating CAMP response element-
binding protein (CREB) while inhibiting Sox6 [38]. By directly inhibiting Sox6, which plays a central role in this

axis, we found that Sox6 suppression resulted in increased PGC-1a expression.

Previous research has shown that slow-twitch muscles exhibit low glycolytic enzyme activity, whereas fast-
twitch muscles primarily generate ATP via the glycolytic pathway to enable rapid muscle contraction [36]. In this
study, Sox6 KO and Fnipl KO cells displayed several notable changes compared to wild-type (WT) cells. Firstly,
the expression of GLUT1 and GLUT3 was elevated, leading to an increase in glycolysis-related enzymes,
including HK1, PGM1, PGM2, PGI, and LDHA. Additionally, genes encoding enzymes involved in the
conversion of pyruvate to acetyl-CoA (DLD, PDHB, DLAT) and genes associated with the electron transport

chain (SDHA, CYCS, COX5A, ATP5A1) were also upregulated. These findings suggest that Sox6 KO and Fnipl
17



381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

KO cells have undergone a shift from fast-twitch to slow-twitch muscle characteristics. On the other hand, Sox6
directly binds to an upstream region of the c-Myc sequence, inhibiting its expression [37]. Therefore, the deletion
of Sox6 and Fnipl may promote c-Myc expression. Sox6 knockout removes the direct repression of c-Myc, while
the Fnipl knockout leads to indirect upregulation of c-Myc through the activation of STAT3 signaling [38]. The
elevated expression of c-Myc results in increased GLUT1 expression, which enhances glucose uptake [39].
Studies using D-glucose protectable cytochalasin B binding in adult rodent skeletal muscle fibers have shown that
GLUT1 expression is higher in the plasma membrane of red muscle than in white muscle [40]. Similarly, GLUT3
has been reported to exhibit greater expression in human slow-twitch muscle fibers, as identified by NADH-
tetrazolium reductase staining [41]. Both GLUT1 and GLUTS3 contribute to basal glucose uptake. The increased
mitochondrial content observed in Sox6 KO and Fnipl KO cells suggests enhanced oxidative ATP production
capacity, which requires a higher basal glucose supply to sustain glucose oxidation. Consequently, we propose
that the upregulation of GLUT1 and GLUT3 in Sox6 KO and Fnipl KO cells is likely driven by elevated c-Myc
expression. Thus, the Sox6 KO and Fnipl KO cells in this study have activated glycolysis through enhanced c-
Myc expression. Moreover, myoblast differentiation is inhibited by the upregulation of glucose uptake, which in
turn decreases the expression of MyoD and MyoG [42]. These findings may help explain the disruption of

differentiation observed in both Sox6 KO and Fnip1 KO cells.

This study examined the roles of Sox6 and Fnipl in chicken muscle cells through loss-of-function
experiments. The deletion of Sox6 and Fnipl impairs cell proliferation and differentiation, while simultaneously
activating glucose metabolism. Conclusively, these genes are involved in muscle fiber specification in chicken

(Fig. 10).
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Figure Legends

Figure 1. The mutant genotypes of (A) Sox6 and (B) Fnipl genes generated via CRISPR-Cas9. (A) The Sox6
knockout (KO) pCM subline#2 exhibited 4nt and 16nt deletions. (B) The Fnipl KO pCM subline#3 carried a 5nt
deletion and a 1nt insertion. Both mutant sublines introduced frameshift mutations, resulting in premature stop
codons within the open reading frames (asterisks denote stop codons in the boxed sequences). Target sequences
are highlighted in yellow, while protospacer-adjacent motif (PAM) sequences are highlighted in green. Deletion

or insertion mutations are represented by red lines.

Figure 2. Morphological differences and proliferation rate comparisons between wild-type (WT) and mutant pCM
sublines (Sox6 and Fnipl KO). (A) Morphological variations between WT and mutant pCM sublines (Sox6 and
Fnipl KO, Scale bar = 200 pm). (B) Comparative analysis of cell length, width, and area among WT, Sox6 KO,
and Fnipl KO pCM cells. Data are presented as mean £ SD (*, **, **** represent p < 0.05, p < 0.0005, and p <

0.0001, respectively; n = 30). (C) Proliferation rates of WT, Sox6 KO, and Fnipl KO pCM cells. Growth rates of

WT, Sox6 KO, and Fnip1 KO cells are represented by circles (), rhombuses (4), and triangles (A ), respectively

(* denotes p < 0.05, **** denotes p < 0.0001).

Figure 3. Comparative gene expression analysis of cell cycle regulators in WT and mutant pCM sublines (Sox6
and Fnipl KO). (A) Quantitative RT-PCR analysis of cell cycle regulatory genes involved in the G1/S transition.
(B) Quantitative RT-PCR analysis of genes regulating the G2/M transition. (C) Western blot analysis and relative
expression levels of p53 protein in WT and mutant pCM sublines (Sox6 and Fnipl KO). Data are presented as
mean = SD (*, **, *** **** denote p < 0.05, p < 0.01, p < 0.0005, and p < 0.0001, respectively; n = 4 for gRT-

PCR and n = 3 for Western blot).
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Figure 4. Cell cycle analysis using BrdU incorporation assay and 7-AAD staining. (A) Flow cytometry was
performed to assess the cell cycle after BrdU incorporation and 7-AAD staining. (B) Comparison of cell cycle
distribution between WT and mutant pCM sublines (Sox6 and Fnipl KO). The percentage distribution of cells in
each phase of the cell cycle is shown. Data are presented as mean + SD (*** and **** denote p < 0.0005 and p <

0.0001, respectively; n = 3).

Figure 5. Comparative expression analysis of myogenic and muscle fiber-specific genes in WT and mutant pCM
sublines (Sox6 and Fnipl KO). (A) gRT-PCR analysis of myogenic genes (Pax7 and MyoD). (B) Western blotting
and relative expression analysis of Pax7 protein in undifferentiated WT and mutant pCM sublines (Sox6 and Fnipl
KO). (C) Comparative expression analysis of muscle fiber-specific genes. MYL2 and NKD1 are markers for type
1 (slow-twitch) muscle fibers, while MYL1, TnnC2, and RYR1 are specific to type 2 (fast-twitch) muscle fibers.
Data are presented as mean + SD (*, **, *** **** jndicate p < 0.05, p < 0.01, p < 0.0005, and p < 0.0001,

respectively; n = 4 for gRT-PCRs and n =3 for Western blotting).

Figure 6. Analysis of mitochondrial content and comparative gene expression in WT and mutant pCM sublines
(Sox6 and Fnipl KO). (A) MitoTracker® staining to assess mitochondrial content in WT, Sox6 KO, and Fnipl
KO pCM cells. (B) Quantification of MitoTracker® intensities and mitochondrial DNA (mtDNA) levels via gPCR,
expressed as the ratio of mitochondrial (D-loop) to nuclear (VIM) DNA in WT and mutant pCM sublines. (C)
Comparative gene expression analysis of mitochondrial biogenesis using gRT-PCR. Data are presented as mean

+ SD (*, **, and *** indicate p < 0.05, p < 0.01, and p < 0.0005, respectively; n = 4).
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Figure 7. Morphological changes in WT and mutant pCM sublines (Sox6 and Fnipl KO) during myotube
differentiation. (A) Morphological changes and (B) DAPI-stained nuclei of WT, Sox6, and Fnipl KO pCM cells
following myotube differentiation. Arrows indicate multinucleated myotubes under differentiation conditions. (C)
Comparative analysis of morphological differences post-differentiation. The percentage of the differentiated area
was calculated as the ratio of the differentiated area to the total area. The number of fused nuclei was determined
by averaging the nuclei count in differentiated myotubes after DAPI staining. The area per myotube represents
the average area of differentiated myotubes in WT, Sox6, and Fnipl KO pCM cells. Data are presented as mean

+ SD (**** indicates p < 0.0001; n = 30).

Figure 8. The comparative expression analysis of myogenic and muscle fiber-specific genes between WT and
mutant pCM sublines (Sox6 and Fnipl KO) following myotube differentiation. (A) gRT-PCR analysis of
myogenic genes (pax7 and MyoD) and markers of myotube differentiation (Myogenin and Desmin). (B)
Comparative expression analysis of muscle fiber Type 1-specific genes (slow-twitch muscle). All data are

presented as mean + SD (** p < 0.01, *** p < 0.0005, **** p < 0.0001; n = 4 for qRT-PCRs).

Figure 9. The comparative gene expression analysis of glucose metabolism and mitochondrial regulatory
pathways between WT and mutant pCM sublines (Sox6 and Fnipl KO) following myotube differentiation. gRT-
PCR analysis of (A) glucose transporters (c-myc, GLUT1, and GLUT3) and (B) glucose metabolism-related genes
(HK1, PGM1, PGM2, GPI, and LDHA). Gene expression analysis of (C) pyruvate dehydrogenase complex genes
(PDHB, DALT, and DLD) and (D) electron transport chain genes (SDHA, CYCS, COX5A, and ATP5A1). All

data are presented as mean + SD (* p < 0.05, ** p < 0.01, *** p < 0.0005, **** p < 0.0001; n = 4).
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Figure 10. The regulatory models for muscle fiber specification pathways in chickens. (A) The regulatory
networks of Sox6 and Fnipl in the proliferation and specification of chicken myoblast cells (pCM cells). (B) The
regulatory pathway for glucose metabolism and mitochondrial biogenesis during chicken muscle fiber

differentiation.

Supplementary Figure 1. The genomic structure of (A) target loci and (B) gRNA expression vectors for knocking
out the chicken Sox6 and Fnipl genes. (A) Exons are highlighted in blue (exon 1 of Sox6 and exon 2 of Fnipl),
while the target sequences are in red and the protospacer-adjacent motif (PAM) sequences in green. Primer
sequences are underlined. (B) The U6 promoter is shown in blue, with CRISPR RNAs (crRNAS) and trans-
activating crRNAs (tracrRNAs) represented in red and yellow, respectively. U6 terminators are marked in purple.
These fragments were inserted between the EcoR1 and Hindlll restriction sites within the multiple cloning site

(MCS) of the pUC57-Amp vector.

Supplementary Figure 2. Morphological changes and gene expression analysis of wild-type pCM cells during
myotube differentiation. (A) Morphological changes observed in pCM cells over four days under differentiation
conditions. (B) Expression dynamics of Sox6 and Fnipl genes during myotube differentiation. Data are presented

as mean = SD (**, *** and **** indicate p < 0.01, p <0.0005, and p < 0.0001, respectively; n = 4).
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605 Figure 1.

(A) (B)
ACCCAGGACTTAGCATCACGAGACAAGABIMICAACAGTGATCAGC dbpdeletion TGTGTATCAGGACTGCGAGAGGAMMEAATGTCTTGTTTGACTCC Shpdeition
ACCCAGGACTTAGCATCACGAGACAAGGAAGABEIEIC AACAGTGAT WT TETGTATCAGGACTGCGAGAGAAGAGGARIEIN: ATGTCTTGTTTG WT
GCCAGGACTTAGAGABIGIBIC AAGCAGTGATCAGGACGCGACOTETO 16bp deletion AGAGAAG -A_iG_G. T 1bp insertion
ACCCAGBACTTAGCATCACGAGACAAGGAAGARNEEIC AACAGTGAT WT TGTGTATCAGGACTGCGAGAGAAGAGGANEIGI: ATGTCTTGTTTG WY
Sox6 wild-type Fnip1 wild-type
CAGGACTTAGCATCACGAGACAAGGAAGAGGGCAACAGTGA TGTGTATCAGGACTGTGAGAGAAGAGGACGGAATGTCTTGTT
Sox6 KO#2: 4nt/16nt del Fnip1 KO#3: 5nt del/1nt in
CAGGACTTAGCATCACGAGACAAG----AGGGCAACAGTGA int del TGTGTATCAGGACTGTGAGAG---—- GACGGAATGTCTTGTT 5nt del
CAGGACTTAG——-———-———————————, AGAGGGCAACAGTGA 1lént del TGTGTATCAGGACTGTGAGAaGAAGAGGACGGAATGTCTTGTT 1nt in
Sox6 wild-type (exont) Fnip1 wild-type (exon1/2)
MSSKQATSPFACAADGEETMTQDLASRDKEEGNSDQHATSHLPLHNVMHNKPHSE MPPTLFQKLFNKKHGLTSPARDARDDCVFSWPLPEFDPSQIRLIVYQDCERRGRNVLF
ELPTLVTTIQQDAEWDGVISAQHRM DSSAKRKIEDVSVS
Sox6 KO#2 (4nt del) Fnip1 KO#3 (Snt del)
MSSKQATSPFACAADGEETMTQDLASRDKRATVISTRPLICLYIM* MPPTLFQKLFNKKHGLTSPARDARDDCVFSWPLPEFDPSQIRLIVYQDCERTECLYV*
Sox6 KO#2 (16nt del) Fnip1 KO#3 (1nt in)
607 MSSKQATSPFACAADGEETMTQDLERATVISTRPLICLYIM* MPPTLFQKLFNKKHGLTSPARDARDDCVFSWPLPEFDPSQIRLIVYQDCERRRTECLV*
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Figure 6.
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Figure 7.

630

631

©

o
o

wre
o
&
&

& & &
=] =3 =1
g & 8
o w o~
rE_.:wn_._E»E 18d eary
H
) O.v\
1 %
H o, ¥
%,
9 °
o o (=] (=] o o
n - ~ o~ -
aqnjoAw Jad
|212nuU pasny jo Jaquinu
H O.*..«
: %
k ¥
i 0._.
&
o ®
E 3 ] e °

(%)ea.e pajeusiapip
Jo abejuadlad

632

633

33



Figure 8.
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Figure 9.
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646

Supplementary Table 1. Primer list of quantitative RT-PCRs

target gene sequences size annealing
SOX6 F: 5’-CACGACCATCCAACAAGATG-3’

(NM_001398398.1) R:5-TCAGCTGGGTGATCATGGTA-3’ 419bp  60°C
FNIP1 F: 5’-CCCTGGGTGACAGTGAAAGT-3’

(NM_001398212.1) R:5-CCAGGTGCATGACACAAAAG-3’ 498bp  60°C
PAXT F: 5’-AGGTACCAAGAGACGGGCTC-3’

(NM_205065.1) R: 5’-CTCGGCAGTGAAAGTGGTCC-3’ 411bp  60°C
MYOD F:5’-ACACGTCGGACATGCACTTC-3’

(NM_204214.3) R: 5’-TCTGACTCCCCGCTGTAGTG-3’ 433bp  60°C
CCND1 F: 5’-AATAGTCGCCACTTGGATGC-3’

(NM_205381.2) R: 5’-TTTTCTGCGGTCAGAGGAAT-3’ 195bp  60°C
PCNA F: 5’-GCTCTGAGGGCTTCGACAC-3’

(NM_204170.3) R: 5’-ACAACGAGAGGAACATCTGCA-3’ 553bp -~ 60°C
IGF1R F: 5’-GCTAGAGTTCAGGCCACGTC-3’

(NM_205032.3) R: 5’-TGCTTGCAGACTCATTGACC-3’ 418bp  60°C
CDK1 F: 5’-CCTTTCCATGGACCTCAAGA-3’

(NM_205314.2) R:5’-TTGTTGGGTGTCCCTAAAGC-3’ 429bp  60°C
CCNB1 F:5’-GCTTGTCCAGGTCCACTCAA-3’

(NM_001004369.2) F:5-CGACGTTCTTGGCCATATGC-3’ 53%bp 60°C
AURKB F: 5’-CAATCAGACAACGCAGCAGC-3’

(XM_425725.8) R: 5’-TTTCTGGCTTGATGTCCCGG-3’ 593bp  60°C
PLK1 F: 5’-AGATCGGTGACTTTGGCCTG-3’

(NM_001030639.2) R:5-TGGGAGCGATTGAAAACCGA-3’ 417bp  60°C
PPARGC1A F:5’-GATTCTTCACCTGGGTGGCA-3’

(NM_001006457.2) R:5’-TGTGTCCCATCCCAAGGGTA-3’ 347bp  60°C
NRF1 F: 5’-GAGCTGCTTGGGTCCATGAC-3’

(NM_001030646.2) R:5’-TCAGTGCTTGGGTCCATGAC-3’ 345bp  60°C
TFAM F: 5’-GGCTGGCAAAACGAAGATCC-3’

(NM_204100.2) R: 5’-CAGTTTCGCCAGGCTTTTCAC-3’ 374bp  60°C
MYL2 F: 5-AGACGGCTTCATCGACAAGG-3’

(NM_001271929.1) R:5’-TGTGTGATGACGTGGACGAG-3’ 360bp  60°C
NKD1 F: 5’-GATCCAAGCCACATCAACCT-3’

(XM_040680815.2) R:5’-TTTGCCCTCTGCTTATGCTT-3’ 278bp  60°C
MYL1 F: 5-TTGACAGGACTGGTGATGCC-3’

(NM_001044632.2) R:5-CCGTTGGAGTCTTCCTGACC-3’ 355bp  60°C
TnnC2 F: 5’-TCCTCAGCGAGGAGATGATT-3’

(NM_205450.3) R: 5’-GATGAACCCATCAGCGTTCT-3’ 302bp  60°C
RYR1 F: 5’-CCAAGAGCTGTCACATCGAA-3’

(XM_040694226.2) R:5’-TCCAACATCTTCTGCTGCAC-3’ 274bp  60°C
MYOG F: 5’-AGCCTCAACCAGCAGGAGC-3’

(NM_204184.2) R: 5’-TGCGCCAGCTCAGTTTTGGA-3’ 279%p  60°C
DES F:5’-CTGGAGAGACGCATCGAGTC-3’

(NM_001396679.1) R:5’-CGATCTCGCAGGTGTAGGAC-3’ 334bp  60°C
MYH7B F: 5’-ACAAGACCCTGGAGACCAAG-3’

(NM_204587.4) R: 5’-TTCGAGGATGGACAGGATTC-3’ 275bp  60°C
MYH1B F: 5’-GCAAAGAAACAGGGAAGGTC-3’

(NM_204228.4) R: 5’-AGGCCCGAGTAGGTGTAGAT-3’ 169bp  58°C
MYL2 F:5’-AGACGGCTTCATCGACAAGG-3’

(NM_001271929.1) R:5’-TGTGTGATGACGTGGACGAG-3’ 360bp  60°C

ATP2A2

F: 5 -AAGGGCGTGCAATTTACAAC-3’
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(NM_001271973.2) R:5’-TGGCTCAGCTGGTAAAAGGT-3’ 370bp  60°C
MYH1E F: 5-GGAGACCTGAACGAAATGGA-3’

(NM_001397409.1) R:5-TCTGCATGTGGAGAAGTTGC-3’ 301bp  55°C
C-MYC F: 5-GGAGAACGACAAGAGGCGAA-3’

(KU981087.1) R:5-GTTCTCTCCTCCGCCTCAAC-3’ 224bp  60°C
GLUT1 F: 5-ACAACAGATGTCAGCAGCGA-3’

(NM_205209.2) R:5’-ATCCAGGGCATTTGGTCCAG-3’ 392bp  60°C
GLUT3 F:5-TTCTTCAAAAGCTCCGTGGT-3’

(NM_205511) R: 5-TCTTCAGAGCCAAAGCAAT-3’ 397bp  60°C
HK1 F:5-AGTCTGGACGCTGGTATCCT-3’

(NM_204101.2) R:5’-CCTTGCTCACCATCCACCAT-3 275bp  60°C
PGM1 F: 5’-CATCCAGATCATCGTCCGCA-3’

(NM_001038693.3) R:5’-CAATGGTACCCAGGTCCACC-3’ 302bp  60°C
PGM2 F: 5-ATATGTGCTGCCCTGCTGTT-3’

(NM_001031383.2) R:5-CATTGTGGCCACTCCTCCAT-3’ 386bp  60°C
GPI F: 5 -CCAGCAGGGTGACATGGAAT-3’

(NM_001006128.2) R:5’-CAAGGCCTCAGTCTGAGCAA-3’ 253bp _60°C
LDHA F: 5’-CATGGCAGCCTCTTCCTCAA-3’

(XM_046917898.1) R:5’-GAGTCCAGATTGCAGCCACT-3’ 302bp. 60°C
DLD F:5-GTGTTGAAGGGATGGCTGGA-3’

(NM_001030727.3) R:5’-CTTTGCCAAAAGACGCTGCT-3’ 399%p  60°C
PDHB F: 5-AAGCGATCGACCAGGTCATC-3’

(NM_001198620.2) R:5’-AGGCCTAGAGTGTGCCACTA-3’ 383bp - 60°C
DLAT F:5-TCAGCAACATTCGGAGGGTC-3’

(XM_417933.8) R: 5-ACCTTCTCGGGCTTTAGCTG-3’ 380bp  60°C
SDHA F: 5’-AAGGATGTCGTGGAGAGGGA-3’

(NM_001277398.1) R:5’-CACGACCAAAGACCACCAGA-3’ 471bp  60°C
CYCS F: 5’-CCCAGTGCCATACGGTTGAA-3’

(NM_001398298.1) R:5’-GCATCTGTGTAAGAGAAGCCCT-3° 109%p 60°C
COX5A F: 5-GGGTCACAGGAGTCAGATGAAG-3'
(XM_040680176.2) R:5-CCTCTGGAGTGGAGATTCCTAGT-3* 301bp  60°C
ATP5A1 F: 5-TGTTGTGAAGAGGACCGGTG-3’

(AF332870.1) R: 5-GAAGGGGTGCAGCATCAGAT-3’ 470bp  60°C
ACTB F: 5-AGAAAATCTGGCACCACACC-3’

(NM_001101) R: 5’-CTCCTTAATGTCACGCACGA-3’ 395bp  60°C
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648 Supplementary Table 2. The antibody list for Western blotting

Antibody Company Dilution ratio Cat# Host
B-actin Santa Cruz 1:1000 SC-47778 Mouse
Pax7 R&D systems 1:500 MAB1675 Mouse

P53 St John’s Lab 1:500 STJ140114 Goat

Goat anti-Mouse Bio-Rad 1:1000 170-6516 Goat
Rabbit anti-Goat Bio-Rad 1:1000 172-1034 Rabbit
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Supplementary Table 3. Primer list for quantification of mitochondria DNA

target gene sequences size annealing
VIM F: 5’-GCAGATGCAGTAGGCATTCA-3’

(nucDNA) R: 5’-GCTGCACTTAGGGCACAAAT-3’ 154bp 60°C
D-loop F: 5’-ACCCCTGCCTGTAATGTACTT-3’

(MtDNA) R: 5’-CACGGACTAAAGAGGGGAAGA-3’ 183bp 60°C
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Supplementary Figure 1.

(A)

Gallus gallus Sox6 (exonl)

cttcatctca gtggtttgga tttggttccc caaacctgtg cttttatgag
tactttcctt gactgtgtat gattaatttt atttgatgta ggcaagtgta
ccttctatac cttctatctg gtgtgtatag aggactgttt gagtttgatt
tttttgtttyg acacaaatgt tttectttttg tctcecttatt ttgcagaaga
ATGTCTTCCA AGCAGGCTAC CTCTCCATTIT GCATGTGCAG CTGATGGAGA
GGAAACAATG ACCCAGGACT TAGCATCACG AGACAAGGAA GAGGGCAACA

Gallus gallus Fnipl (exon2)

agggtttgat gaaatgacat tgcatttgtt ggattttctg ctttaataag
gttggctata gagataatgc agaaagaaca gtgcattaaa gagctgtggt
aattgatcct tctggtgttc tgtgttttaa ttaaagCTGG CCTTTGCCGG
AGTTCGACCC AAGTCAGATC CGACTGATTG TGTATCAGGA CTGTGAGAGA
AGAGGACGGA ATGICTTGTT TGACTCCAGT GCTAARAAGGA AAATAGAGGA
TGTTICTGTG TCGgtgagta ttgtgctcat gecctgtatte tatattttte

GTGATCAGCA CGCGACCTCT CATCTGCCTC TACATAATGT AATGCACAAC aacgtaagat tgataaagta taaaagttct gctttagcca tattaacatt

AAACCTCACT CTGAGGAGCT ACCAACTCTA GTCACGACCA TCCAACAAGA taaactttgg ttacatgcag agctatattt aaaagctgca aattattcag

TGCTGAGTGG GATGGAGTCA TCTCAGCCCA ACACAGAATG gtgagtttca gcttcagtga tttcactctt agcagtttta agtgccatgg tgatctettt

EcoRl Hindll Enlaﬁ.l H-nIu\I
| |

[ |acpmmma>_{ I2c operator U6 pmvrulzr> Sox6 gRNA [ LacZa Amp - pucon lac pranm:>_( lac aperator usnrommef>‘ Fnip1 GRNA ]-I[Laczu S amp
EcoR 1
TGTACAAAAAAGC AGGCT TT AAAGGAACC AATTCAGTCGAC TGGATCCGGT ACCAAGE TCGGGCAGGAAGAGGGCC TATTTCCCATGATTC EcoR 1 S . gl . S T,
CTTCATATTTGCATATACGATACAAGGCTGT TAGAGAGAT AATTAGAATTAATTTGAC TG TAAAC AC AMAAGATATTAGTACAAMMATACGTG TETACAARAAAGCAGGCTTT AAAGGAACCAATT CAGTCRREIRSG ATCC I GG TCCGGCARGAAGAGEGCC TATT TCCCATGAT T

ACGTAGAAAGT AATAATT TC TTGGETAGT TTGCAGTTTTAARAT TATGTTT TAAAATGGACTATCATATGC TTACCGTAACT TGAAAGTAT
TTCGATTTCTTGGCTTTATATATC TTGTGGAAAGGACGAAAC ACCGGCATC ACGAGAC AAGGAAGA

TTTTTTTCTAGACCCAGCTTTCTTGTACAAAGTTGGCATT
A Hindlll

41

CCTTCATATTTGCATATACGATACAAGGL TG TTAGAGAGATAAT TAGAATT AAT TTGACTGTAAACACAAAGATAT TAGT ACARAATACG
TGACGTAGAAAGT AATAATTTC TTGGGTAGT TTGEAGTTT TAAMATTATGT TTTAAAATGGACTATCATATGC TTACCGTAACTTGAAAG
TATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGAC GAAACAC C GGGAC TGTGAGAGAAGAGGA

GT6GL TTTTTTTCTAGACCCAGCTTTCTTGTACARBAGTTGE
CATTA Hindlll



654  Supplementary Figure 2.
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