JAST (Journal of Animal Science and Technology) TITLE PAGE Upload this completed form to website with submission

ARTICLE INFORMATION	Fill in information in each box below
Article Type	Fin in information in each box below
••	Research
Article Title (within 20 words without	Evaluation of mineral digestibility and physiological status in adult
abbreviations)	dogs fed an organic mineral-based diet
Running Title (within 10 words)	Mineral digestibility and physiology in dogs fed organic minerals
Author	Seyeon Chang ¹⁺ , Kangmin Seo ²⁺ , Han Tae Bang ¹ , Kyoung-Min So ¹ , Min Young Lee ¹ , Sang-Yeob Lee ¹ , Woo-Do Lee ¹ , Hyun-Woo Cho ¹ , Won Yong Jung ¹ , Kihyun Kim ^{3*} , Ju Lan Chun ^{1*}
Affiliation	¹ Animal Welfare Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
	² Ingredient Examination Diversion, National Agricultural Products Quality Management Service, Ministry of Agriculture, Food and Rural Affairs, Gimcheon 39660, Korea
	³ Academic-Industrial Cooperation Organization, Sunchon National University, Suncheon 57922, Korea
ORCID (for more information, please visit https://orcid.org)	Seyeon Chang / csy0127@korea.kr (https://orcid.org/0000-0002-5238-2982)
ntipol//oreintorg/	Kangmin Seo / kmseo@korea.kr (https://orcid.org/0000-0001-6152-8536)
	Han Tae Bang / banght80@korea.kr(https://orcid.org/0000-0003-0441-3542)
	Kyoung-Min So / ls2273@korea.kr (https://orcid.org/0000-0001- 9497-3345)
	Min Young Lee / mylee1231@korea.kr (https://orcid.org/0000- 0003-4860-6290)
	Sang-Yeob Lee / sangnext@korea.kr (https://orcid.org/0000-0001-8024-1135)
	Woo-Do Lee / woodo92@korea.kr (https://orcid.org/0000-0003-4861-4637)
	Hyun-Woo Cho / jhwoo3856@korea.kr (https://orcid.org/0000-0002-3620-9952)
	Won Yong Jung / jwy95@korea.kr (https://orcid.org/0000-0002-1751-8418)
	Kihyun Kim / kihyun@scnu.ac.kr (https://orcid.org/0000-0002-9834-2126)
	Ju Lan Chun / julanchun@korea.kr (https://orcid.org/0000-0002-4618-586X)
Competing interests	No potential conflict of interest relevant to this article was reported.
Funding sources	This work was carried out with the support of "Cooperative
State funding sources (grants, funding sources,	Research Program for Agriculture Science & Technology
equipment, and supplies). Include name and number of grant if available.	Development (Project No. PJ01560103)" Rural Development Administration, Republic of Korea.
Acknowledgements	This study was supported by the 2025 RDA Fellowship Program of National Institute of Animal Science, Rural Development Administration, Republic of Korea.

Availability of data and material	All data generated or analyzed during this study are included in this published article.
Authors' contributions	Conceptualization: Kim K, Chun JL
Please specify the authors' role using this form.	Data curation: Chang S, Seo K,
	Formal analysis: Lee SY, Lee W, Lee MY
	Methodology: Lee MY, Cho HW
	Software: Jung W, Lee W, Cho HW
	Validation: Bang HT, So KM, Kim K, Chun JL
	Investigation: Chang S, Seo K, Jung W, Cho HW, Lee MY, Lee
	SY, Lee W
	Writing - original draft: Chang S, Seo K, Jung W, Kim K, Chun JL.
	Writing - review & editing: Chang S, Seo K, Jung W, Cho HW, Lee
	MY, Lee SY, Lee W, Bang HT, So KM, Kim K, Chun JL.
Ethics approval and consent to participate	This experiment was approved by the Animal Care and Use
	Committee National Institute of Animal Science, Wanju, Korea
	(NIAS2021-0516).

CORRESPONDING AUTHOR CONTACT INFORMATION

For the corresponding author (responsible for correspondence, proofreading, and reprints)	Fill in information in each box below
First name, middle initial, last name	Kihyun Kim
Email address – this is where your proofs will be sent	kihyun@scnu.ac.kr
Secondary Email address	
Address	Academic-Industrial Cooperation Organization, Sunchon National University, Suncheon 57922, Korea
Cell phone number	+82-10-7677-8393
Office phone number	+82-61-750-3238
Fax number	+82-61-750-6149

For the corresponding author (responsible for correspondence, proofreading, and reprints)	Fill in information in each box below
First name, middle initial, last name	Ju Lan Chun
Email address – this is where your proofs will be sent	julanchun@korea.kr
Secondary Email address	
Address	Animal Welfare Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
Cell phone number	+82-10-4157-7314
Office phone number	+82-63-238-7321
Fax number	+82-63-238-7347

Abstract

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

The daily requirement for minerals is minor; nevertheless, they are essential for the metabolism, growth, and reproduction of dogs. Therefore, European Pet Food Industry Federation, Nutrient Research Council, and Association of American Feed Control Officials (AAFCO) recommend minimum levels of essential minerals in pet food. This study examined the potential availability and safety of organic minerals in adult dogs. Five-year-old, neutered female beagle dogs were fed an inorganic (IMD) or organic (OMD) mineral-based diet twice daily for two weeks each in a crossover design. The IMD included Ca(IO₃)₂, FeSO₄, MnSO₄, ZnSO₄, and CuSO₄; the OMD included Ca(IO₃)₂, glycine-chelated Fe (Fe-Gly), Mn (Mn-Gly), Zn (Zn-Gly), and Cu (Cu-Gly). The experimental diets were provided in an amount individually estimated by the maintenance energy requirement equation proposed by AAFCO, and water was provided ad libitum. No significant differences in food and energy intake, body weight, body condition score, and fecal score were observed between the IMD and OMD groups. The OMD group had significantly higher mineral (K, P, Na, Ca, Fe, Zn, Cu, and Mn) and nutrient (organic matter, dry matter, nitrogen-free extract, crude protein, and crude ash) digestibility than the IMD group. All parameters of complete blood count remained within the normal physiological range, despite significant differences in some parameters between these two groups. Therefore, OMD may positively influence nutritional metabolism by improving mineral and nutrient digestibility without negatively affecting body weight, body condition score, and digestive and physiological parameters in adult dogs. **Keywords**: Apparent total tract digestibility, Beagle dog, Hematological and biochemical parameters, Nutrition, Organic mineral

Introduction

Pet food is composed of major nutrients (e.g., protein, fat, and carbohydrates) and micronutrients (e.g.,
minerals and vitamins). European Pet Food Industry Federation (FEDIAF), Nutrient Research Council
(NRC), and Association of American Feed Control Officials (AAFCO) provide recommended levels for a
balanced supply of these ingredients [1-3]. In particular, minerals are found in bones, most tissues, and
body fluids, and are essential for maintaining the function and structure of living tissues [4]. Although the
daily requirement for minerals is minor, they are essential for a dog's metabolism, growth, and
reproduction [4]. Therefore, a balanced supply is emphasized [5], and their excess or deficiency should be
carefully considered as it can negatively impact animal health [6, 7]. Therefore, FEDIAF, NRC, and
AAFCO provide minimum and, in some cases, maximum recommended levels for essential minerals (e.g.,
Ca, P, K, Na, Cl, Mg, Cu, I, Fe, Mn, Se, and Zn) in pet food, and the importance of mineral research in
canine nutrition is constantly emphasized [8–11].
Traditionally, mineral supplements for livestock or companion animals have mainly been used as
inorganic minerals such as oxides, carbonates, chlorides, and sulphates [12, 13]. Inorganic minerals often
form insoluble complexes during digestion because of pH changes or interactions with other digestive
compounds, leading to their excretion without absorption in the intestine [14, 15]. This limited absorption
through the small intestine can lead to either mineral deficiency or oversupply in animals, which has
raised concerns among researchers. However, organic minerals, which are composed of complexes with
organic compounds, such as amino acids, proteins, and carbohydrates, can minimize interactions with
dietary components during digestion and can be effectively absorbed through the amino acid or peptide
transport pathways [16-18]. These obvious advantages have led to increased usage of various types of
organic minerals [15]. Meanwhile, although studies on the bioavailability of specific organic minerals (Zn,
P, Se) in companion dogs have been reported [19, 20], those examining the digestibility and physiological
safety of a wide range of essential minerals are very limited.
Therefore, this study was conducted to examine the potential availability and safety of organic minerals
in the nutrition of adult dogs.

Materials and Methods

This study was conducted on eight healthy beagle dogs (all neutered females, five-year-old) owned by the National Institute of Animal Science (NIAS). All experiments were conducted for four weeks following the methods approved by the Animal Care and Use Committee NIAS, Wanju, Republic of Korea (NIAS2021-0516). All experimental animals were housed in individual indoor spaces (1.7 m × 2.1 m/dog) and maintained under constant temperature (22–24°C) and consistent lighting cycles (12-h light and 12-h dark). During the experimental period, all dogs were allowed approximately 6 h of outdoor activity each day in an individual outdoor space (2.8 m × 2.5 m/dog) connected to the indoor area. The experimental diets were provided diets twice daily at an amount individually estimated by the maintenance energy requirement equation (Eq. 1) proposed by AAFCO [3], and water was provided *ad libitum*.

Maintenance energy requirement = $132 \times \text{Metabolic body weight (mBW, kg; BW}^{0.75})$ (1)

Preparation of experimental diets

All ingredients for the experimental diets were available in powdered form from commercial sources, except for lard, and no flavoring agents or preservatives were included. The inorganic mineral diet (IMD) included Ca(IO₃)₂, FeSO₄, MnSO₄, ZnSO₄, and CuSO₄; the organic mineral diet (OMD) included Ca(IO₃)₂, glycine-chelated Fe (Fe-Gly), Mn (Mn-Gly), Zn (Zn-Gly), and Cu (Cu-Gly). All experimental diets were formulated to meet the nutrient requirements suggested by the AAFCO guidelines [3], and both diets contained equivalent nutrient levels (Tables 1, 2). Experimental diets were prepared as previously described [21].

Experimental design and sample collection

Each experimental diet (IMD or OMD) was fed for a total of 14 days in a crossover design, including a three-day adaptation period and a four-day fecal sampling period [22]. During the experimental period, food intake and fecal output were daily recorded, and body weight (BW) was weekly measured. For analyzing nutrient digestibility, fecal samples were collected for 4 consecutive days, beginning on day 10 after the initiation of each experimental diet. Fecal samples were collected from each dog and used for analysis. Blood samples were collected from the cephalic vein of the forelimbs at the start and end of intake of each experimental diet, and were immediately divided into EDTA (BD Vacutainer; Becton Dickinson, NJ, USA) and serum (BD Vacutainer, Becton Dickinson) vacutainer tubes. Whole blood in EDTA vacutainer tubes was analyzed within 30 min after collection. Whole blood in serum vacutainer tubes was centrifuged (2000 ×g, 10 min) to collect serum samples that were stored at -80°C until analysis.

Analysis

Body condition scores (BCS) were weekly assessed according to the 9-point BCS scale [23]. Fecal scores were daily measured using a 5-point fecal score scale (1 = dry to 5 = liquid feces) according to the Waltham feces scoring system [24] and expressed as an average during the intake period of each experimental diet (14 days). The nutritional compositions of the experimental diet and feces were analyzed for moisture (AOAC method 934.01), crude protein (CP; AOAC method 984.13), ether extract (EE; AOAC method 920.39), crude ash (CA; AOAC method 942.05), and crude fiber (CF; AOAC method 978.10) [25]. Nitrogen-free extract (NFE) and metabolizable energy (ME) were calculated as follows:

101 NFE (%) =
$$100 - (Moisture + CP + CF + EE + CA)$$
 (2)

102 and

103 ME in a diet (kcal/kg) =
$$\{(CP \times 3.5) + (EE \times 8.5) + (NFE \times 3.5)\} \times 10$$
 (3)

Mineral levels in the experimental diets and feces were analyzed as previously described [26]. Dried feces (1 g) and experimental diet were mixed in 10 mL of 70% nitric acid (Daejung, Siheung, Republic of Korea) and acid-decomposed at 190°C for 24 h. Completely decomposed samples were diluted with

107 deionized distilled water to a total volume of 50 mL. Minerals were quantitatively analyzed using 108 inductively coupled plasma-atomic emission spectrometry (ICPS-7510; Shimadzu, Kyoto, Japan). The 109 reliability of mineral analysis was evaluated through recovery analysis by spiking the experimental diets 110 with each standard solution, and the recovery rates for K, Mg, P, Na, Ca, Fe, Zn, Cu, and Mn were 111 101.8%, 100.9%, 102.7%, 100.7%, 99.8%, 98.9%, 102.3%, 99.3%, and 100.8%, respectively, indicating 112 the accuracy of analysis. 113 Apparent total tract digestibility (ATTD) of nutrients and minerals was estimated using the total 114 collection method and calculated as follows: 115 116 ATTD (%) = {(Amount of nutrient intake - Amount of fecal nutrient excretion)/Amount of nutrient 117 intake $\} \times 100$ (4) 118 119 Complete blood count was analyzed using an automatic hematology analyzer (BC-5000; Shenzhen 120 Mindray Bio-medical Electronics Co. Ltd., Shenzhen, China), and serum biochemical parameters were 121 analyzed using an automatic biochemical analyzer (Hitachi 7180; Hitachi High-Technologies Co., Tokyo, 122 Japan). 123 124 **Statistical analysis** 125 All statistical analyses were performed using SPSS v.17.0 (SPSS Statistics, IL, USA). Data are 126 presented as mean ± standard error. Significant differences between the IMD and OMD groups, excluding 127 BCS and fecal scores, were analyzed using student's t-test. The BCS and fecal score between the two 128 groups were compared using the nonparametric test with a Chi-squared test. Differences were considered 129 significant at p < 0.05.

131 Results

Food intake and body parameters

130

Average daily food and metabolic energy intake for each dog were not changed significantly (Table 3). No significant differences were found in BW, BCS, and fecal score between the IMD and OMD groups.

ATTD of minerals

Tables 4 and 5 show the effects of organic minerals on the average daily macro- (Table 4) and micro- (Table 5) mineral intake, excretion (fecal), and ATTD. No significant differences were observed in average daily intake of K, Mg, P, Ca, and Zn between the two groups. For Na and Fe, significantly lower (p < 0.05) intakes were observed in the OMD group than in the IMD group, and for Cu and Mn, significantly higher (p < 0.05) intakes were observed in the OMD group than in the IMD group. The average daily excretion of Mg and Cu showed no difference between the two groups, whereas K, Mg, P, Na, Ca, Fe, Zn, and Mn excretion were significantly lower (p < 0.05) in the OMD group than in the IMD group. The ATTD of macro- and micro-minerals was significantly higher (p < 0.05) in the OMD group than in the IMD group for K, P, Na, Ca, Fe, Zn, Cu, and Mn; whereas that of Mg was significantly lower (p < 0.05) in the OMD group than in the IMD group.

ATTD of nutrients

The effects of organic minerals on the nutrient intake, excretion, and digestibility of beagle dogs are shown in Table 6. There was no difference in the average daily intake of organic matter (OM), dry matter (DM), CP, EE, CA, and NFE between the IMD and OMD groups. For CF, the OMD group showed a significantly higher (p < 0.05) digestibility than did the IMD group. No differences were observed in the average daily excretion of DM, CP, and CA between the two groups. The excretion of OM and NFE was significantly lower (p < 0.05) in the OMD group than in the IMD group, whereas those of EE and CF were significantly higher (p < 0.05) in the OMD group than in the IMD group. The ATTD of OM, DM, and NFE was significantly higher (p < 0.05) in the OMD group than in the IMD group, whereas EE was significantly lower (p < 0.05) in the OMD group than in the IMD group. The ATTD of CP and CA tended to be higher (CP, p = 0.055; CA, p = 0.066) in the OMD group than in the IMD group.

Hematological and biochemical parameters

The serum biochemical parameters of all groups were within the normal reference range, and no significant differences in the values of these parameters were observed between the IMD and OMD groups (Tables 7 and 8). Meanwhile, the numbers of lymphocytes (LYM) and monocytes (MONO) measured at the end of each experiment were significantly lower (p < 0.05) in the OMD group than in the IMD group, whereas the number of basophils (BASO) was significantly higher (p < 0.05) in the OMD group than in the IMD group. Nevertheless, all hematological parameters, including LYM, MONO, and BASO, were within the normal reference range during the experimental period.

Discussion

Body parameters and feeding

This study indicated that feeding a diet containing four organic minerals (Fe-Gly, Mn-Gly, Zn-Gly, and Cu-Gly) did not affect food and energy intake, BW, and BCS in beagle dogs. Studies evaluating the effects of organic minerals chelated with glycine on companion dogs are minimal. However, those evaluating the effects of some organic minerals chelated with organic substances (e.g., protein, organic acid, and organic compound) have reported that their supply does not affect changes in food intake, BW, or BCS [19, 27–30]. Supplementation of organic minerals chelated with glycine exerts a positive effect on feed intake or BW increase in livestock such as broiler, pig, and mink [31–34]. These differential effects may result from differences in the physiological status of animals, such as age or growth. Variations in nutritional study methods could also contribute to these effects. For example, livestock studies provide unlimited diets, whereas studies on companion dogs typically limit diets to maintain an ideal BCS [35, 36]. Nevertheless, the common result that feed intake and BW did not decrease by OMD suggests that feeding of organic minerals does not negatively affect palatability and nutrient metabolism of animal diet.

ATTD of nutrients

In the present study, supplementation of Fe-Gly, Mn-Gly, Zn-Gly, and Cu-Gly showed positive effects on improving both macro and micro mineral digestibility compared to that by inorganic minerals. These effects may be owing to the contribution of organic minerals that are chemically stable during digestion. Organic minerals, when complexed with organic compounds, such as amino acids, proteins, and carbohydrates, may minimize interactions with dietary components during digestion and are highly effectively absorbed via amino acid or peptide transport pathways [16–18]. In particular, minerals chelated with glycine may minimize gastrointestinal interference, exhibiting higher ATTD than does the sulfate form [12]. Consistent with our findings, replacing inorganic minerals with organic minerals in weaned pigs or broiler breeders results in decreased excretion of Zn, Fe, and Mn [37, 38]. This is probably because organic minerals can improve the bioavailability compared to that by inorganic minerals, thereby increasing the amount of absorbed minerals and their concentration in the circulatory system or tissues, thereby decreasing excretion [39, 40]. Interestingly, in this study, although only Fe-Gly, Mn-Gly, Zn-Gly, and Cu-Gly were supplied, the digestibility of K, Na, and Ca increased, while that of Mg decreased. Organic minerals have high absorption rates, which can reduce the concentration of residual mineral ions in the intestines, thereby alleviating competition for absorption of other minerals such as K, Na, and Ca [41, 42]. In particular, organic minerals can improve Ca digestibility by regulating intestinal pH and increasing the activity of the calcium-binding protein transient receptor potential cation channel subfamily V member 6 [43, 44]. Additionally, Fe-Gly shows higher ameliorating effect than FeSO₄ on intestinal mucosal damage, thereby preserving the absorption surface area of the small intestine and contributing to improving the digestibility of K, Na, and Ca [45]. However, Mg is mainly absorbed in the large intestine, and its absorption is inhibited when that of Ca or Zn increases [46, 47]. The high absorption rate of organic minerals may change the intestinal environment (pH or short-chain fatty acids), which reduces the absorption rate of Mg. Although a slight difference in CF content existed between the two treatments (0.51% vs. 1.16%), both levels were below 1.5%, which is far lower than the physiological threshold (above 5–10%) known to affect mineral absorption [48]. In addition, the fiber in this study mainly originated from insoluble plant-based ingredients, which are known to have a much lower

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

mineral-binding capacity compared with soluble or fermentable fibers [15, 49]. Both experimental diets were formulated with identical ingredients and nutrient levels, and the minor variation in CF is considered to be within the normal analytical variation of proximate analysis [50, 51]. Therefore, the improvement in mineral digestibility observed in this study is interpreted as resulting from the chemical form of the mineral sources rather than from differences in fiber content.

In this study, organic minerals increased mineral digestibility, as well as OM, DM, and NFE digestibility. Organic minerals likely improve digestibility by protecting the intestinal mucosa, increasing nutrient absorption surface area, and balancing intestinal microbiota, thereby optimizing the digestive environment [52, 53]. Organic minerals reduce the concentrations of residual ions in the intestines compared to inorganic minerals [19]. This reduction minimizes competition for absorption among minerals and reduces binding between nutrients [54]. Consequently, enzyme activity and energy metabolism efficiency increase, thereby enhancing the decomposition and absorption of various nutrients [19]. This combined action suggests that the structure of organic minerals facilitates their absorption in the body, contributing to improved nutrient utilization in dogs.

Safety and blood parameters

In this study, all biochemical parameters were within the normal range after OMD and IMD supplementation, and no negative effects on changes in feces form were observed. This suggests that both forms of the mineral can maintain physiological stability in dogs. Minerals are found in bones, most tissues, and body fluids, and are essential for maintaining the function and structure of living tissues [4]. However, excessive supply of minerals causes cell damage through mechanisms similar to those of heavy metal toxicity, and minerals exceeding the recommended dietary amount may cause chronic toxicity owing to long-term accumulation [55, 56]. Among blood biochemical parameters, normal maintenance of glutamic pyruvic transaminase, gamma-glutamyl transferase, albumin, and total protein, which are related to liver function, suggests that organic minerals do not cause liver toxicity compared to inorganic minerals. Although certain minerals, such as Cu, can cause liver damage when accumulated in excess [10,

57], the copper content used in this study (10.75–18 mg/kg DM) is within both AAFCO and FEDIAF guidelines (minimum 7.3–8.3 mg/kg, maximum 28 mg/kg DM) and is considered safe for use in dogs [2, 3]. Creatinine and blood urea nitrogen are key indicators for evaluating kidney function, and both indicators remained within the normal range, suggesting that the mineral form did not negatively affect kidney filtration [58]. Total cholesterol (T-CHO), triglycerides (TG), and non-esterified fatty acids (NEFA) in blood are parameters, which comprehensively reflect the lipid metabolic status, inflammation level, and endocrine function of dogs [59-61]. In this study, the maintenance of normal ranges of T-CHO. TG, and NEFA indicated that organic or inorganic minerals did not interfere with the lipid metabolic pathways. Zn is involved in regulating lipid metabolism [62]; however, in this study, no significant difference in lipid metabolism was observed between the OMD and IMD groups. All hematological parameters were within the normal reference range during the experimental period; however, compared to those of the IMD group, LYM and MONO counts decreased in the OMD group, whereas BASO count increased. The exact mechanism by which organic minerals alter hematological parameters in dogs has not been elucidated. However, since minerals can influence key immune cell functions, including differentiation, activation, and cytokine production [63], these changes may be due to differences in immune cell differentiation and functional regulation mechanisms depending on the mineral form. Zn-proteinate in dietary form promotes T cell differentiation in beagle dogs, and the proportion of CD4+ T cells, the core component of adaptive immunity, increases compared to that by feeding ZnSO₄ [30]. Considering that all hematological values remained within the normal reference range, the slight decreases observed in LYM and MONO counts may be a possible related phenomenon associated with T cell proliferation rather than representing physiologically significant changes [64-66]. Given the crossover design employed in this study, further studies are warranted to elucidate the longterm effects and underlying mechanisms of organic mineral supplementation on immune response in dogs. The crossover design allowed for within-subject comparison, thereby reducing individual variability, but potential carryover effects and the limited treatment duration should be considered when interpreting the results [67]. However, the finding that organic mineral supplementation did not exert any adverse effects

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

263 on hematological or metabolic parameters, and that all values remained within normal ranges, highlights 264 the significance of this study in demonstrating the safety of applying organic minerals in pet foods. 265 **CONCLUSION** 266 267 Results of this study showed that OMD did not have a negative effect on energy intake, BW, BCS, and 268 fecal score in adult dogs. The OMD showed higher mineral (K, P, Na, Ca, Fe, Zn, Cu, and Mn) and 269 nutrient (OM, DM, NFE, CP, and CA) digestibility than IMD. Serum biochemical parameters and 270 hematological parameters were all within normal ranges and showed no negative effects of OMD feeding. 271 In conclusion, OMD feeding can positively affect nutritional metabolism in adult dogs by improving 272 mineral and nutrient digestibility without causing adverse effects from physiological, biochemical, or 273 food nutritional perspectives. However, the additional physiological safety of OMD needs to be evaluated 274 through long-term feeding tests. 275 **Competing Interests** 276 277 No potential conflict of interest relevant to this article was reported. 278 **Funding** 279 280 This work was carried out with the support of "Cooperative Research Program for Agriculture Science 281 & Technology Development (Project No. PJ01560103)" Rural Development Administration, Republic of 282 Korea. 283 Acknowledgements 284 285 This study was supported by the 2025 RDA Fellowship Program of National Institute of Animal

Science, Rural Development Administration, Republic of Korea.

288		References
289	1.	NRC [National Research Council]. Nutrient requirements of dogs and cats. Washington, DC:
290		National Academics Press; 2006.
291	2.	FEDIAF [The European pet food industry]. Nutritional guidelines for complete and
292		complementary pet food for cats and dogs. Bruxelles: FEDIAF; 2021.
293	3.	AAFCO [Association of American Feed Control Officials]. Official publication. Champaign, IL:
294		AAFCO; 2021.
295	4.	McDowell LR. Chapter 1. General introduction. In minerals in animal and human nutrition. 2nd
296		ed. Amsterdam, Netherlands: Elsevier; 2003. p. 1-32.
297	5.	Davies M. Veterinary clinical nutrition: Success stories: An overview. Proc Nutr Soc.
298		2016;75:392-7. https://doi.org/10.1017/S002966511600029X
299	6	. McDowell LR. Minerals in animal and human nutrition. San. Academic Press Incorporated;1992.
300	7.	. Tal M, Parr JM, MacKenzie S, Verbrugghe A. Dietary imbalances in a large breed puppy, leading
301		to compression fractures, vitamin D deficiency, and suspected nutritional secondary
302		hyperparathyroidism. Can Vet J. 2018;59:36-42.
303	8.	Davies M, Alborough R, Jones L, Davis C, Williams C, Gardner DS. Mineral analysis of
304		complete dog and cat foods in the UK and compliance with European guidelines. Sci
305		Rep. 2017;7:17107. https://doi.org/10.1038/s41598-017-17159-7
306	9.	. Cargo-Froom C. Mineral Nutrition of Adult Canines: Whole Ingredients as a Primary Source of
307		Minerals Instead of Supplemental Minerals [Ph.D. dissertation]. Guelph, Ontario: University of
308		Guelph; 2018.
309	10	0. Pereira AM, Pinto E, Matos E, Castanheira F, Almeida AA, Baptista CS, et al. Mineral
310		composition of dry dog foods: Impact on nutrition and potential toxicity. J Agric Food Chem.
311		2018;66:7822-30. https://doi.org/10.1021/acs.jafc.8b02552

312	11. Kazimierska K, Biel W, Witkowicz R. Mineral composition of cereal and cereal-free dry dog
313	foods versus nutritional guidelines. Molecules. 2020;25:5173.
314	https://doi.org/10.3390/molecules25215173
315	12. Liu Y, Ma YL, Zhao JM, Vazquez-Añón M, Stein HH. Digestibility and retention of zinc, copper,
316	manganese, iron, calcium, and phosphorus in pigs fed diets containing inorganic or organic
317	minerals. J Anim Sci. 2014;92:3407-15. https://doi.org/10.2527/jas.2013-7080
318	13. Goi A, Simoni M, Righi F, Visentin G, De Marchi M. Application of a handheld near-infrared
319	spectrometer to predict gelatinized starch, fiber fractions, and mineral content of ground and
320	intact extruded dry dog food. Animals (Basel). 2020;10:1660.
321	https://doi.org/10.3390/ani10091660
322	14. Powell JJ, Whitehead MW, Ainley CC, Kendall MD, Nicholson JK, Thompson RPH. Dietary
323	minerals in the gastrointestinal tract: Hydroxypolymerisation of aluminium is regulated by
324	luminal mucins. J Inorg Biochem. 1999;75:167-80. https://doi.org/10.1016/S0162-
325	0134(99)00094-X
326	15. Byrne L, Murphy RA. Relative bioavailability of trace minerals in production animal nutrition: A
327	review. Animals. 2022;12:1981. https://doi.org/10.3390/ani12151981
328	16. Du Z, Hemken RW, Harmon RJ. Copper metabolism of holstein and jersey cows and heifers fed
329	diets high in cupric sulfate or copper proteinate. J Dairy Sci. 1996;79:1873-80.
330	https://doi.org/10.3168/jds.S0022-0302(96)76555-4
331	17. Aldridge BE, Saddoris KL, Radcliffe JS. Copper can be absorbed as a Cu-peptide chelate through
332	the PepT1 transporter in the jejunum of weanling pigs. J Anim Sci. 2007;85:154-5.
333	18. Liu S, Lu L, Li S, Xie J, Zhang L, Wang R, et al. Copper in organic proteinate or inorganic
334	sulfate form is equally bioavailable for broiler chicks fed a conventional corn-soybean meal diet.
335	Biol Trace Elem Res. 2012;147:142-8. https://doi.org/10.1007/s12011-012-9329-5
336	19. Trevizan L, Fischer MM, Rodenbusch CR, Labres RV, Kessler ADM. Effects of diets containing
337	organic and inorganic zinc sources on hair characteristics, zinc concentration in blood and hair,

338 and the immune response of dogs. Acta Sci Vet. 2013;41:1154. 339 20. Dobenecker B, Reese S, Herbst S. Effects of dietary phosphates from organic and inorganic 340 sources on parameters of phosphorus homeostasis in healthy adult dogs. PLOS 341 One. 2021;16:e0246950. https://doi.org/10.1371/journal.pone.0246950 342 21. Seo K, Cho HW, Chun J, Jeon J, Kim C, Kim M, et al. Evaluation of fermented oat and black 343 soldier fly larva as food ingredients in senior dog diets. Animals (Basel). 2021;11:3509. 344 https://doi.org/10.3390/ani11123509 345 22. Seo K, Cho HW, Lee MY, Kim CH, Kim KH, Chun JL. Prediction of apparent total tract 346 digestion of crude protein in adult dogs. J Anim Sci Technol. 2024;66:374-86. 347 https://doi.org/10.5187/jast.2024.e20 348 23. Laflamme DRPC. Development and validation of a body condition score system for dogs. Canine 349 Pract. 1997;22:10-5. 350 24. Moxham G. Waltham feces scoring system-A tool for veterinarians and pet owners: How does 351 your pet rate. Walth Focus. 2001;11:24-5. 352 25. AOAC [Association of Official Analytical Chemists]. Official methods of analysis of AOAC International. 18th ed. Gaithersburg, MD: AOAC International; 2006. 353 354 26. Kim KH, Ishizaki N, Iguchi E, Funaba M, Matsui T. Effect of magnesium deficiency on various 355 mineral concentrations in rat liver. Biol Trace Elem Res. 2011;144:865-71. 356 https://doi.org/10.1007/s12011-011-9042-9 357 27. Wedekind KJ, Lowry SR. Are organic zinc sources efficacious in puppies? J Nutr. 1998;128 358 Suppl:2593S-5S. https://doi.org/10.1093/jn/128.12.2593S 359 28. Guo R, Henry PR, Holwerda RA, Cao J, Littell RC, Miles RD, et al. Chemical characteristics and 360 relative bioavailability of supplemental organic copper sources for poultry. J Anim 361 Sci. 2001;79:1132-41. https://doi.org/10.2527/2001.7951132x 362 29. Van Heugten E, Spears JW, Kegley EB, Ward JD, Qureshi MA. Effects of organic forms of zinc on growth performance, tissue zinc distribution, and immune response of weanling pigs. J Anim 363

364	Sci. 2003;81:2063-71. https://doi.org/10.2527/2003.8182063x
365	30. Pereira AM, Guedes M, Matos E, Pinto E, Almeida AA, Segundo MA, et al. Effect of zinc source
366	and exogenous enzymes supplementation on zinc status in dogs fed high phytate diets. Animals
367	(Basel). 2020;10:400. https://doi.org/10.3390/ani10030400
368	31. Wang Y, Tang JW, Ma WQ, Feng J, Feng J. Dietary zinc glycine chelate on growth performance,
369	tissue mineral concentrations, and serum enzyme activity in weanling piglets. Biol Trace Elem
370	Res. 2010;133:325-34. https://doi.org/10.1007/s12011-009-8437-3
371	32. Cui H, Zhang TT, Nie H, Wang ZC, Zhang XL, Shi B, et al. Effects of sources and
372	concentrations of zinc on growth performance, nutrient digestibility, and fur quality of growing-
373	furring female mink (Mustela vison). J Anim Sci. 2017;95:5420-9.
374	https://doi.org/10.2527/jas2017.1810
375	33. Jarosz Ł, Marek A, Grądzki Z, Kwiecień M. Effects of dietary supplementation of iron as
376	sulphates or glycine chelates on the productive performance and concentrations of acute-phase
377	proteins and iron in the serum and liver tissues of broiler chickens. Ann Anim Sci. 2021;21:267-
378	90. https://doi.org/10.2478/aoas-2020-0069
379	34. Lei H, Du Q, Lu N, Jiang X, Li M, Xia D, et al. Comparison of the microbiome-metabolome
380	response to copper sulfate and copper glycinate in growing pigs. Animals (Basel). 2023;13:345.
381	https://doi.org/10.3390/ani13030345
382	35. Bray EE, Zheng Z, Tolbert MK, McCoy BM, Kaeberlein M, Kerr KF. Once-daily feeding is
383	associated with better health in companion dogs: results from the Dog Aging
384	Project. GeroScience. 2022;44:1779-90. https://doi.org/10.1007/s11357-022-00575-7
385	36. Nam J, Kim JN, Kim HB, Cho JH, Kim Y, Ahn J, et al. Effects of dietary aluminosilicate on
386	growth performance, frequency of diarrhea, and blood profiles of weaned pigs. J Anim Sci
387	Technol. 2025;67:375-82. https://doi.org/10.5187/jast.2024.e21
388	37. Wang G, Liu L, Wang Z, Pei X, Tao W, Xiao Z, et al. Comparison of inorganic and organically
389	bound trace minerals on tissue mineral deposition and fecal excretion in broiler breeders. Biol

390	Trace Elem Res. 2019;189:224-32. https://doi.org/10.1007/s12011-018-1460-5
391	38. Zhang WF, Tian M, Song JS, Chen F, Lin G, Zhang SH, et al. Effect of replacing inorganic trace
392	minerals at lower organic levels on growth performance, blood parameters, antioxidant status,
393	immune indexes, and fecal mineral excretion in weaned piglets. Trop Anim Health
394	Prod. 2021;53:121. https://doi.org/10.1007/s11250-021-02561-1
395	39. Burkett JL, Stalder KJ, Powers WJ, Bregendahl K, Pierce JL, Baas TJ, et al. Effect of inorganic
396	and organic trace mineral supplementation on the performance, carcass characteristics, and fecal
397	mineral excretion of phase-fed, grow-finish swine. Asian-Australas J Anim Sci. 2009;22:1279-
398	87. https://doi.org/10.5713/ajas.2009.70091
399	40. Yenice E, Mızrak C, Gültekin M, Atik Z, Tunca M. Effects of organic and inorganic forms of
400	manganese, zinc, copper, and chromium on bioavailability of these minerals and calcium in late-
401	phase laying hens. Biol Trace Elem Res. 2015;167:300-7. https://doi.org/10.1007/s12011-015-
402	0313-8
403	41. Ghasemi HA, Hajkhodadadi I, Hafizi M, Taherpour K, Nazaran MH. Effect of advanced chelate
404	technology based trace minerals on growth performance, mineral digestibility, tibia
405	characteristics, and antioxidant status in broiler chickens. Nutr Metab (Lond). 2020;17:94.
406	https://doi.org/10.1186/s12986-020-00520-5
407	42. Zhang R, Wei M, Zhou J, Yang Z, Xiao M, Du L, et al. Effects of organic trace minerals chelated
408	with oligosaccharides on growth performance, blood parameters, slaughter performance and
409	meat quality in sheep. Front Vet Sci. 2024;11:1366314.
410	https://doi.org/10.3389/fvets.2024.1366314
411	43. Meena AS, Shukla PK, Bell B, Giorgianni F, Caires R, Fernández-Peña C, et al. TRPV6 channel
412	mediates alcohol-induced gut barrier dysfunction and systemic response. Cell
413	Rep. 2022;39:110937. https://doi.org/10.1016/j.celrep.2022.110937
414	44. Khattar V, Wang L, Peng JB. Calcium selective channel TRPV6: Structure, function, and
415	implications in health and disease. Gene. 2022;817:146192.

416	https://doi.org/10.1016/j.gene.2022.146192
417	45. Gao Q, Zhang Y, Wu Y, Gu D, Chen J, Yin C, et al. Dietary Fe-Gly supplementation attenuates
418	enterotoxigenic Escherichia coli (ETEC)-induced inflammation response and intestinal barrier
419	dysfunction in piglets. Front Vet Sci. 2025;12:1537604.
420	https://doi.org/10.3389/fvets.2025.1537604
421	46. Cargo-Froom CL, Fan MZ, Pfeuti G, Pendlebury C, Shoveller AK. Apparent and true
422	digestibility of macro and micro nutrients in adult maintenance dog foods containing either a
423	majority of animal or vegetable proteins1. J Anim Sci. 2019;97:1010-9.
424	https://doi.org/10.1093/jas/skz001
425	47. Stojiljković S. The importance of minerals in the health of dogs. EC Nutr. 2023;18:1-10.
426	48. Montserrat-Malagarriga M, Castillejos L, Salas-Mani A, Torre C, Martín-Orúe SM. The impact
427	of fiber source on digestive function, fecal microbiota, and immune response in adult
428	dogs. Animals. 2024;14:196. https://doi.org/10.3390/ani14020196
429	49. Pinna C, Vecchiato CG, Bolduan C, Grandi M, Stefanelli C, Windisch W, et al. Influence of
430	dietary protein and fructooligosaccharides on fecal fermentative end-products, fecal bacterial
431	populations and apparent total tract digestibility in dogs. BMC Vet Res. 2018;14:106.
432	https://doi.org/10.1186/s12917-018-1436-x
433	50. AOAC [Association of Official Analytical Chemists]. Guidelines for Standard Method
434	Performance Requirements. Gaithersburg, MD: AOAC International; 2019.
435	51. Hill RC, Choate CJ, Scott KC, Molenberghs G. Comparison of the guaranteed analysis with the
436	measured nutrient composition of commercial pet foods. J Am Vet Med Assoc. 2009;234:347-51
437	https://doi.org/10.2460/javma.234.3.347
438	52. Barroso C, Fonseca AJM, Cabrita ARJ. Vitamins, minerals and phytonutrients as modulators of
439	canine immune function: A literature review. Vet Sci. 2024;11:655.
440	https://doi.org/10.3390/vetsci11120655
441	53. Xu W, Zhou M, Yang Z, Zheng M, Chen Q. Organic trace elements enhance growth performance,

442	antioxidant capacity, and gut microbiota in finishing pigs. Front Vet Sci. 2024;11:1517976.
443	https://doi.org/10.3389/fvets.2024.1517976
444	54. Pereira AM, Maia MRG, Pinna C, Biagi G, Matos E, Segundo MA, et al. Effects of zinc source
445	and enzyme addition on the fecal microbiota of dogs. Front Microbiol. 2021;12:688392.
446	https://doi.org/10.3389/fmicb.2021.688392
447	55. Zafalon RVA, Perini MP, Vendramini THA, Pedrinelli V, Rentas MF, Morilha IB, et al. Vitamin-
448	mineral supplements do not guarantee the minimum recommendations and may imply risks of
449	mercury poisoning in dogs and cats. PLOS One. 2021;16:e0250738.
450	https://doi.org/10.1371/journal.pone.0250738
451	56. Kępińska-Pacelik J, Biel W, Witkowicz R, Podsiadło C. Mineral and heavy metal content in dry
452	dog foods with different main animal components. Sci Rep. 2023;13:6082.
453	https://doi.org/10.1038/s41598-023-33224-w
454	57. Amundson LA, Kirn BN, Swensson EJ, Millican AA, Fahey GC. Copper metabolism and its
455	implications for canine nutrition. Transl Anim Sci. 2024;8:txad147.
456	https://doi.org/10.1093/tas/txad147
457	58. Fielder S. Serum biochemical analysis reference ranges. MSD veterinary manual. Rahway, NJ:
458	Merck and Company Incorporated; 2024.
459	59. Chen XM, Zhang WQ, Tian Y, Wang LF, Chen CC, Qiu CM. Liraglutide suppresses non-
460	esterified free fatty acids and soluble vascular cell adhesion molecule-1 compared with
461	metformin in patients with recent-onset type 2 diabetes. Cardiovasc Diabetol. 2018;17:53.
462	https://doi.org/10.1186/s12933-018-0701-4
463	60. Sieber-Ruckstuhl NS, Tham WK, Baumgartner F, Selva JJ, Wenk MR, Burla B, et al. Serum
464	lipidome signatures of dogs with different endocrinopathies associated with
465	hyperlipidemia. Metabolites. 2022;12:306. https://doi.org/10.3390/metabo12040306
466	61. Kim TW, Kang MH, Park HM. Lipid metabolism alterations in hyperlipidemic dogs with biliary
467	tract or endocrine diseases. Animals (Basel). 2025;15:256. https://doi.org/10.3390/ani15020256

400	62. Zonai M, Jani-Ashkezari S, Namiranian N, Woosavi A, Ghadhi-Anari A. Association between
469	selected trace elements and body mass index and waist circumference: A cross sectional
470	study. Diabetes Metab Syndr. 2019;13:1293-7. https://doi.org/10.1016/j.dsx.2019.01.019
471	63. Alghamdi M, Gutierrez J, Komarnytsky S. Essential minerals and metabolic adaptation of
472	immune cells. Nutrients. 2022;15:123. https://doi.org/10.3390/nu15010123
473	64. Karamitros D, Kotantaki P, Lygerou Z, Kioussis D, Taraviras S. T cell proliferation and
474	homeostasis: An emerging role for the cell cycle inhibitor geminin. Crit Rev
475	Immunol. 2011;31:209-31. https://doi.org/10.1615/critrevimmunol.v31.i3.30
476	65. Wang YS, Chi KH, Liao KW, Liu CC, Cheng CL, Lin YC, et al. Characterization of canine
477	monocyte-derived dendritic cells with phenotypic and functional differentiation. Can J Vet
478	Res. 2007;71:165-74.
479	66. Ricklin Gutzwiller MER, Moulin HR, Zurbriggen A, Roosje P, Summerfield A. Comparative
480	analysis of canine monocyte-and bone-marrow-derived dendritic cells. Vet Res. 2010;41:40.
481	https://doi.org/10.1051/vetres/2010012
482	67. Lim CY, In J. Considerations for crossover design in clinical study. Korean J
483	Anesthesiol. 2021;74:293-9. https://doi.org/10.4097/kja.21165
484	

485 Tables

486

Table 1. Analyzed chemical composition of experimental diet

Itomo	Experiment diets						
Items	IMD	OMD					
Ingredients composition, %							
Rice flour	29.78	29.61					
Chicken breast meal	13.00	13.00					
Egg yolk powder	13.00	13.00					
Lard	1.63	1.63					
Cabbage powder	1.08	1.08					
Calcium monophosphate	1.84	1.84					
Calcium carbonate	1.63	1.63					
Green laver	1.63	1.65					
Potassium citrate	0.87	0.87					
Choline chloride	0.26	0.24					
Vitamin premix ¹⁾	0.04	0.04					
Inorganic mineral premix ²⁾	0.13	-					
Organic mineral premix ³⁾	-	0.30					
Salt	0.11	0.11					
Water	35.00	35.00					
Chemical composition ⁴⁾ , DM % (Analyzed)							
Crude protein	32.53	32.24					
Ether extract	15.08	14.42					
Crude fiber	0.51	1.16					
Crude ash	7.65	7.30					
Nitrogen free extract	44.23	44.88					
Organic matter	91.81	91.53					
ME, kcal/kg ⁵⁾ (Calculated)	3,968	3,925					

 1)Vitamin premix was supplied per kilogram of diets at 3,500 IU of vitamin A; 250 IU of vitamin D₃; 25 mg of vitamin E; 0.052 mg of vitamin K; 2.8 mg of vitamin B₁ (thiamine); 2.6 mg of vitamin B₂ (riboflavin); 2 mg of vitamin B₆ (pyridoxine); 0.014 mg of vitamin B₁₂; 6 mg of Caldpantothenate; 30 mg of niacin; 0.4 mg of folic acid; 0.036 mg of biotin; 1000 mg of taurine. 2 Inorganic mineral diet was supplied per kilogram of diets at 44 mg of FeSO₄; 3.8 mg of MnSO₄; 50 mg of ZnSO₄; 7.5 mg of CuSO₄; 0.9 mg of Ca(IO₃)₂. 3 Organic mineral diet was supplied per kilogram of diets at 60 mg of Fe-Gly; 10 mg of Mn-Gly; 80 mg of Zn-Gly; 20 mg of Cu-Gly; 1.01 mg of Ca(IO₃)₂. 4 Values are analyzed value as DM based. 5 ME (kcal/kg) = [(crude protein × 3.5) + (ether extract × 8.5) + (nitrogen free extract × 3.5)] × 10.

Abbreviations: IMD, Inorganic mineral diet; OMD, Organic mineral diet; DM, Dry matter; ME, metabolizable energy.

Table 2. Analyzed mineral composition in experimental diet

Itams	Experiment diets			
Items	IMD	OMD		
Macro minerals, g/kg		_		
Potassium (K)	6.60	6.30		
Magnesium (Mg)	1.40	1.18		
Phosphorus (P)	6.00	6.10		
Sodium (Na)	1.30	0.92		
Calcium (Ca)	10.10	9.80		
Ca:P ratio	1.68	1.61		
Micro minerals, mg/kg				
Iron (Fe)	96.01	65.30		
Zinc (Zn)	99.00	87.37		
Copper (Cu)	10.75	18.00		
Manganese (Mn)	10.89	11.82		

Values are analyzed value as DM based.

Abbreviations: IMD, Inorganic mineral diet; OMD, Organic mineral diet;

Table 3. Effects of organic minerals on food intake, body parameters, and fecal score in adult beagle dogs

Itama	Experi	11		
Items	IMD	OMD	<i>p</i> -value ¹	
ADFI, g/day	288 ± 12.6	303 ± 8.6	0.344	
MEI, kcal/day	802 ± 34.9	833 ± 23.8	0.466	
BW, kg				
Initial	12.6 ± 0.7	12.8 ± 0.5	0.856	
Final	12.9 ± 0.7	12.9 ± 0.5	0.935	
$p \text{ value}^2$	0.831	0.844		
BWG, g	22.8 ± 7.1	13.8 ± 10.5	0.489	
BCS				
Initial	5.0 ± 0.4	5.1 ± 0.4	0.812	
Final	5.0 ± 0.4	5.1 ± 0.4	0.812	
Fecal score ³	3.0 ± 0.0	2.9 ± 0.1	0.590	

Eight beagle breed dogs were given an experimental diet containing inorganic minerals for two weeks, followed by a switch to an experimental diet containing organic minerals for another two weeks. Values are expressed as mean \pm standard error of the mean (SEM).

Abbreviations: IMD, Inorganic mineral diet; OMD, Organic mineral diet; ADFI, average daily food intake; MEI, metabolic energy intake; BW, body weight; BWG, body weight gain; BCS, body condition score.

¹p-values for comparisons between inorganic and organic minerals group in a same row.

 $^{^{2}}p$ -values for comparisons between the initial and final values in a same column.

³Fecal score was expressed as the average during the intake period (14 days) of each experimental diet.

Table 4. Effects of organic minerals on apparent total tract digestibility (ATTD) of macro minerals in adult beagle dogs

Items -	Experi	- p-value ¹					
Items	IMD	OMD	- p-value				
Average daily mineral intake, g/day							
Potassium (K)	$1.33 \ \pm \ 0.06$	1.34 ± 0.04	0.937				
Magnesium (Mg)	$0.28 \hspace{0.2cm} \pm \hspace{0.2cm} 0.01$	0.25 ± 0.01	0.046				
Phosphorus (P)	$1.21 \hspace{0.2cm} \pm \hspace{0.2cm} 0.05$	$1.29 \hspace{0.2cm} \pm \hspace{0.2cm} 0.04$	0.213				
Sodium (Na)	$0.26 \hspace{0.2cm} \pm \hspace{0.2cm} 0.01$	$0.20 \hspace{0.2cm} \pm \hspace{0.2cm} 0.01$	< 0.01				
Calcium (Ca)	2.04 ± 0.09	2.08 ± 0.06	0.698				
Average daily mineral excretion	(Fecal), g/day						
Potassium (K)	$0.08 \hspace{0.2cm} \pm \hspace{0.2cm} 0.02$	0.03 ± 0.00	0.028				
Magnesium (Mg)	0.03 ± 0.00	0.03 ± 0.00	0.243				
Phosphorus (P)	0.84 ± 0.05	0.39 ± 0.02	< 0.01				
Sodium (Na)	0.02 ± 0.00	0.01 ± 0.00	< 0.01				
Calcium (Ca)	1.24 ± 0.07	0.70 ± 0.02	< 0.01				
ATTD, %							
Potassium (K)	93.69 ± 1.40	97.49 ± 0.23	0.032				
Magnesium (Mg)	90.72 ± 0.97	87.72 ± 0.39	0.018				
Phosphorus (P)	30.57 ± 3.12	69.69 ± 1.05	< 0.01				
Sodium (Na)	91.52 ± 0.86	95.76 ± 0.50	< 0.01				
Calcium (Ca)	39.02 ± 2.17	65.98 ± 1.49	< 0.01				

Values are expressed as mean \pm standard error of the mean (SEM).

Abbreviations: IMD, Inorganic mineral diet; OMD, Organic mineral diet; ATTD, apparent total tract digestibility.

p-values for comparisons between inorganic and organic minerals group in a same row.

Table 5. Effects of organic minerals on apparent total tract digestibility (ATTD) of micro minerals in adult beagle dogs

Itama	Experi	11					
Items	IMD	OMD	— p-value ¹				
Average daily mineral intake, mg/day							
Iron (Fe)	19.37 ± 0.84	13.86 ± 0.40	< 0.01				
Zinc (Zn)	19.98 ± 0.87	18.55 ± 0.53	0.185				
Copper (Cu)	2.17 ± 0.09	3.82 ± 0.11	< 0.01				
Manganese (Mn)	2.20 ± 0.10	2.51 ± 0.07	0.022				
Average daily mineral excre	etion (Fecal), mg/day						
Iron (Fe)	12.39 ± 1.28	2.25 ± 0.20	< 0.01				
Zinc (Zn)	7.90 ± 0.75	4.02 ± 0.15	< 0.01				
Copper (Cu)	2.07 ± 0.11	2.06 ± 0.07	0.982				
Manganese (Mn)	1.92 ± 0.11	0.80 ± 0.03	< 0.01				
ATTD, %							
Iron (Fe)	36.81 ± 4.09	83.72 ± 1.51	< 0.01				
Zinc (Zn)	60.89 ± 2.13	78.35 ± 0.55	< 0.01				
Copper (Cu)	4.85 ± 2.33	45.80 ± 1.88	< 0.01				
Manganese (Mn)	12.59 ± 3.17	68.03 ± 0.67	< 0.01				

Values are expressed as mean \pm standard error of the mean (SEM).

p-values for comparisons between inorganic and organic minerals group in a same row.

Abbreviations: IMD, Inorganic mineral diet; OMD, Organic mineral diet; ATTD, apparent total tract digestibility.

Table 6. Effects of organic minerals on apparent total tract digestibility (ATTD) of nutrients in adult beagle dogs

Trans	Experiment diets				— p-value		
Items -	IMD			(OMD		
Average daily intake, g/day							
Organic matter (OM)	185.25	±	8.06	194.30	±	5.54	0.373
Dry matter (DM)	201.78	±	8.78	212.28	±	6.05	0.344
Crude protein (CP)	65.64	\pm	2.86	68.44	±	1.95	0.434
Ether extract (EE)	30.43	\pm	1.32	30.61	±	0.87	0.910
Crude fiber (CF)	1.03	\pm	0.04	2.46	±	0.07	< 0.01
Crude ash (CA)	15.44	±	0.67	15.50	±	0.44	0.941
Nitrogen free extract (NFE)	89.18	±	3.88	95.27	±	2.72	0.221
Average daily excretion (Fecal), g/	day						
Organic matter (OM)	9.72	±	0.76	7.63	±	0.54	0.042
Dry matter (DM)	20.88	±	1.28	19.57	±	0.83	0.406
Crude protein (CP)	4.64	±	0.33	4.19	±	0.22	0.278
Ether extract (EE)	0.60	±	0.09	1.26	±	0.10	< 0.01
Crude fiber (CF)	0.96	±	0.18	2.76	±	0.41	< 0.01
Crude ash (CA)	10.20	±	0.58	9.18	±	0.35	0.161
Nitrogen free extract (NFE)	4.48	±	0.42	2.17	±	0.39	< 0.01
ATTD, %							
Organic matter (OM)	94.79	±	0.22	96.09	±	0.24	< 0.01
Dry matter (DM)	89.66	\pm	0.39	90.77	±	0.32	0.045
Crude protein (CP)	92.95	\pm	0.31	93.86	\pm	0.30	0.055
Ether extract (EE)	98.07	±	0.23	95.87	\pm	0.35	< 0.01
Crude fiber (CF)	3.67	±	18.49	-12.92	\pm	17.84	0.529
Crude ash (CA)	33.78	±	2.74	40.62	±	2.02	0.066
Nitrogen free extract (NFE)	95.02	±	0.30	97.76	±	0.38	< 0.01

Values are expressed as mean \pm standard error of the mean (SEM).

p-values for comparisons between inorganic and organic minerals group in a same row.

Abbreviations: IMD, Inorganic mineral diet; OMD, Organic mineral diet; ATTD, apparent total tract digestibility.

Table 7. Effects of organic minerals on serum biochemical parameters in adult beagle dogs

Itoma		Exp	n volue	
Items		IMD	OMD	– <i>p</i> -value
GLU, mg/dl	Initial	101.00 ± 4.57	100.63 ± 2.89	0.946
(Ref. range: 70 – 138)	Final	97.38 ± 2.18	103.50 ± 3.07	0.126
CREA, mg/dl	Initial	0.76 ± 0.03	0.78 ± 0.03	0.587
(Ref. range: $0.5 - 1.6$)	Final	$0.81 \hspace{0.2cm} \pm \hspace{0.2cm} 0.04$	0.77 ± 0.04	0.513
BUN, mg/dl	Initial	15.65 ± 1.52	14.21 ± 1.17	0.466
(Ref. range: $6.0 - 31$)	Final	12.73 ± 1.08	14.25 ± 1.05	0.328
T-PRO, g/dl	Initial	6.28 ± 0.14	6.49 ± 0.18	0.368
(Ref. range: 5 - 7.4)	Final	6.55 ± 0.25	6.64 ± 0.17	0.777
ALB, g/dl	Initial	2.98 ± 0.08	3.03 ± 0.09	0.685
(Ref. range: 2.7 – 4.4)	Final	3.01 ± 0.10	3.09 ± 0.09	0.594
GPT, IU/L	Initial	40.88 ± 5.18	46.83 ± 5.89	0.460
(Ref. range: 12 – 118)	Final	42.63 ± 3.71	57.00 ± 11.01	0.236
GGT, U/L	Initial	5.00 ± 1.18	5.13 ± 1.29	0.944
(Ref. range: 0 – 12)	Final	5.25 ± 1.29	5.13 ± 1.43	0.949
T-CHO, mg/dl	Initial	258.63 ± 9.94	269.22 ± 7.81	0.443
(Ref. range: 29 – 291)	Final	264.14 ± 8.83	286.20 ± 3.83	0.074
TG, IU/L	Initial	87.57 ± 10.94	85.00 ± 13.11	0.882
(Ref. range: 23 – 102)	Final	68.50 ± 10.78	72.75 ± 12.85	0.807
NEFA, mEq/L	Initial	0.63 ± 0.05	0.71 ± 0.05	0.303
(Ref. range: 0.13 – 1.25)	Final	0.80 ± 0.14	0.69 ± 0.05	0.475

Values are expressed as mean ± standard error of the mean (SEM).

p-values for comparisons between inorganic and organic minerals group in a same row.

Abbreviations: IMD, Inorganic mineral diet; OMD, Organic mineral diet; GLU, glucose; CREA, creatinine; BUN, blood urea nitrogen; T-PRO, total protein; ALB, albumin; GPT, glutamic pyruvic transaminase; GGT, gamma-glutamyl transferase; T-CHO, total cholesterol; TG, triglycerides; NEFA, non-esterified fatty acids.

Table 8. Effects of organic minerals on complete blood cell counts in adult beagle dogs

T(Experiment diets				1
Items		IMI	D	(— <i>p</i> -value	
WBC, ×10 ⁶ /mL	Initial	6.89 ±	0.55	7.48	± 0.55	0.456
(Ref. range: 6.00–17.00)	Final	8.73 ±	0.81	6.83	± 0.63	0.085
NEU, $\times 10^3/\text{uL}$	Initial	4.19 ±	0.57	4.94	± 0.54	0.355
(Ref. range: 3.62–12.30)	Final	6.00 ±	0.80	4.62	± 0.58	0.185
LYM, $\times 10^3/\text{uL}$	Initial	2.16 ±	0.16	2.08	± 0.12	0.716
(Ref. range: 0.83–4.91)	Final	$2.27 \pm$	0.13	1.82	± 0.11	0.020
MONO, $\times 10^3/\text{uL}$	Initial	$0.31 \pm$	0.03	0.23	± 0.02	0.054
(Ref. range: 0.14–1.97)	Final	$0.24 \pm$	0.02	0.16	± 0.02	0.021
EOS, $\times 10^3/\text{uL}$	Initial	0.22 \pm	0.01	0.22	± 0.02	0.986
(Ref. range: 0.04–1.62)	Final	$0.23 \pm$	0.03	0.21	± 0.03	0.617
BASO, $\times 10^3/\text{uL}$	Initial	0.01 \pm	0.00	0.01	± 0.00	0.152
(Ref. range: 0–0.12)	Final	$0.00 \pm$	0.00	0.01	\pm 0.00	< 0.01
RBC, $\times 10^6/\text{uL}$	Initial	$7.85 \pm$	0.19	7.73	± 0.20	0.650
(Ref. range: 5.10–8.50)	Final	7.80 ±	0.27	7.53	± 0.17	0.415
HGB, g/dL	Initial	17.74 ±	0.41	17.60	\pm 0.42	0.813
(Ref. range: 11–19)	Final	17.89 ±	0.49	17.16	± 0.39	0.265
HCT, %	Initial	49.45 ±	1.10	48.41	± 1.29	0.549
(Ref. range: 33–56)	Final	48.38 ±	1.67	47.40	± 1.17	0.640
MCV, fL	Initial	63.04 ±	0.90	62.72	± 1.04	0.821
(Ref. range: 60–76)	Final	62.06 ±	0.95	63.06	± 1.34	0.552
MCH, pg	Initial	$22.64 \pm$	0.38	22.80	± 0.31	0.739
(Ref. range: 20–27)	Final	22.99 ±	0.27	22.79	\pm 0.40	0.687
MCHC, g/dL	Initial	$35.89 \pm$	0.21	36.38	± 0.20	0.114
(Ref. range: 30–38)	Final	$37.08 \pm$	0.46	36.19	± 0.23	0.104
RDW-CV, %	Initial	$13.50 \pm$	0.28	13.56	± 0.33	0.894
(Ref. range: 12.5–17.2)	Final	$13.51 \pm$	0.32	13.66	± 0.39	0.771
RDW-SD, fL	Initial	$33.64 \pm$	0.70	33.74	± 0.68	0.920
(Ref. range: 33.2–46.3)	Final	$33.54 \pm$	0.70	34.04	± 0.67	0.614
PLT, 10 ³ /uL	Initial	$313.75 \pm$	29.23	324.17	± 31.34	0.812
(Ref. range: 117–490)	Final	$340.25 \pm$	24.74	318.50	± 47.98	0.693
MPV, fL	Initial	$10.36 \pm$	0.30	9.93	± 0.31	0.330
(Ref. range: 8–14.1)	Final	9.69 ±	0.30	9.74	± 0.41	0.924
PCT, mL/L	Initial	$3.21 \pm$	0.24	3.15	± 0.25	0.863
(Ref. range: 0.9–5.8)	Final	$3.27 \pm$	0.18	2.97	± 0.40	0.518

Values are expressed as mean ± standard error of the mean (SEM). *p*-values for comparisons between inorganic and organic minerals group in a same row. Abbreviations: IMD, Inorganic mineral diet; OMD, Organic mineral diet; WBC, white blood cell; NEU, neutrophils; LYM, lymphocytes; MONO, monocytes; EOS, eosinophils; BASO, basophils; RBC, red blood cells; HGB, hemoglobin; HCT, hematocrit; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; RDW-CV, Red blood cell distribution width-coefficient of variation; RDW-SD, Red blood cell distribution width-standard deviation; PLT, platelet; MPV, Mean platelet volume; PCT, plateletcrit.

