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 27 

Abstract  28 

This study estimated genetic parameters for carcass and carbon emission-related traits in Hanwoo cattle 29 

using various genomic analytic models, and explored methods for improving the accuracy of genetic 30 

evaluation based on these estimations. The analysis results across all models showed high prediction 31 

accuracy for carcass traits. Notably, the weighted single-step genomic best linear unbiased prediction 32 

(wssGBLUP) method significantly improved the accuracy by enhancing the utilization of genomic 33 

information through the application of weights. In contrast, carbon emission intensity, which is highly 34 

influenced by environmental factors, generally exhibited a lower prediction accuracy than other carcass 35 

traits. However, the wssGBLUP model demonstrated a significant improvement in accuracy, even in 36 

predictions of carbon emission intensity, demonstrating that the weighted application of genomic 37 

information contributes to improved predictive power, even for traits with substantial environmental 38 

influence. The findings of this study present a new strategy for effectively utilizing genomic information in 39 

Hanwoo cattle improvement programs to simultaneously achieve the dual goals of enhancing productivity 40 

and reducing environmental load, thereby providing a scientific foundation for the sustainable development 41 

of the livestock industry. 42 

 43 
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Introduction 46 

South Korea’s livestock industry must transition from a productivity-centric approach to new 47 

sustainability strategies. As environmental impacts, particularly greenhouse gas emissions, have 48 

emerged as an international issue, reducing the carbon emission intensity from livestock has 49 

become a significant challenge. Globally, there are 1.47 billion beef cattle and 290 million dairy 50 

cows, and ruminants, through enteric fermentation, emit substantial amounts of methane. Methane 51 

is a potent greenhouse gas with a global warming potential over 28 times greater than carbon 52 

dioxide, significantly impacting global warming [1]. Against this backdrop, it is crucial to establish 53 

breeding programs that consider not only productivity, but also environmental impacts, especially 54 

greenhouse gas emissions, for the sustainable development of the livestock industry. Numerous 55 

studies have suggested the potential for genetic improvement to reduce greenhouse gas emissions 56 

during livestock farming, which will be a key factor in securing future competitiveness of the 57 

livestock industry. 58 

Breeding ruminants, including Hanwoo cattle, requires a genetic approach that goes beyond 59 

improving economic traits, focusing on carcass yield and quality, to consider greenhouse gas 60 

emissions. This approach contributes to achieving carbon neutrality in the livestock sector and is 61 

essential for reducing the environmental burden of farming. Specifically, breeding of Hanwoo 62 

cattle must shift towards reducing its carbon footprint and improving productivity, necessitating a 63 

multi-trait breeding strategy that comprehensively considers methane-related, carcass, and feed-64 

efficiency traits [2]. The Hanwoo breeding program successfully reduced the carbon footprint of 65 

beef production by increasing carcass weight, supporting the positive effect of genetic approaches 66 

on greenhouse gas reduction. This genetic improvement has the potential to contribute to global 67 

greenhouse gas reduction by replacing a significant amount of beef imports, while maintaining 68 
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livestock populations and improving productivity. This study aimed to establish a scientific basis 69 

for sustainable Hanwoo breeding by analyzing genetic correlations between major Hanwoo carcass 70 

traits and carbon emission-related traits and proposing an integrated model of genetic evaluation 71 

[3]. 72 

Genetics based evaluation methodologies for economic traits have continuously evolved from the 73 

traditional pedigree-based best linear unbiased prediction (BLUP) method to the genomic BLUP 74 

(GBLUP) model utilizing genomic information, the single-step GBLUP (ssGBLUP) model 75 

integrating genomic and pedigree information, and the weighted single-step GBLUP (wssGBLUP) 76 

method predicting the weight of each single nucleotide polymorphism (SNP). These advancements 77 

have enabled a more accurate evaluation of individual genetic merits, significantly enhancing the 78 

effectiveness of livestock breeding. GBLUP is a methodology developed to overcome the 79 

limitations of the traditional BLUP method and more accurately reflect the genetic relationships 80 

between individuals by estimating breeding values using genomic information, such as SNPs. 81 

ssGBLUP inherits the advantages of GBLUP while integrating pedigree information, contributing 82 

to the accuracy of estimations of breeding value for individuals lacking genomic information. 83 

Furthermore, wssGBLUP provides superior predictive performance compared with traditional 84 

BLUP or GBLUP by differentially reflecting the impact of specific genotypes on phenotypes [4]. 85 

These methodological advancements are expected to make significant contributions to sustainable 86 

livestock development, considering not only the improvement of livestock productivity and 87 

economic efficiency, but also environmental aspects [5, 6]. This study explored the potential for 88 

developing an integrated genetic evaluation model by precisely estimating the genetic parameters 89 

of Hanwoo carcass traits and carbon-emission-related traits using advanced genomic evaluation 90 

techniques. Such an integrated evaluation provides essential scientific evidence for establishing 91 
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the direction of continuous Hanwoo cattle improvement and contributes to achieving breeding 92 

goals that simultaneously pursue economic benefits and environmental sustainability [7]. 93 

Specifically, the genetic improvement of various traits, such as feed efficiency, growth rate, and 94 

reproductive ability, is essential for sustainable beef production. Hanwoo is well known for its 95 

excellent meat quality, and genetic improvement has been accelerated through genomic selection 96 

[8–11]. 97 

In this context, this study aimed to estimate the genetic parameters of Hanwoo carcass traits and 98 

carbon emission-related traits by applying various models of genomic analysis, and to explore 99 

ways to enhance the accuracy of genetic evaluation based on these estimates. Through this study, 100 

we aimed to lay the foundation for new breeding strategies that can simultaneously achieve the 101 

dual goals of enhancing Hanwoo productivity and minimizing environmental impacts. 102 

 103 

104 
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Materials and Methods 105 

Materials 106 

The genomic information used in this study was obtained from 18,352 Hanwoo cattle (all steers) 107 

born between 2012 and 2022 across the country (Table 1). Pedigree information was collected for 108 

the three generations by querying individual identification numbers from the Korea Animal 109 

Improvement Association. After verifying individual errors, a pedigree dataset comprising 110 

292,111 individuals was constructed. Phenotypic information included carcass traits measured 111 

after 24 h of refrigeration post-slaughter according to the "Detailed Standards for Livestock 112 

Products Grading" (Ministry of Agriculture, Food, and Rural Affairs Notification No. 2025-23): 113 

carcass weight (CWT), eye muscle area (EMA), backfat thickness (BFT), and marbling score 114 

(MSC). Carbon emission intensity (CEI), calculated using the "Calculation Formula for Emission 115 

Intensity for Low-Carbon Livestock Products Certification" from the Livestock Products Quality 116 

Evaluation Institute, was used as an environmental trait.  117 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑔𝑔𝑎𝑎𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝐶𝐶𝐶𝐶₂ 𝑒𝑒𝑒𝑒) 𝑝𝑝𝑝𝑝𝑝𝑝 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 =  
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ × 198.2(𝐶𝐶𝐶𝐶2𝑒𝑒𝑒𝑒)

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡(𝑘𝑘𝑘𝑘)
 118 

CEI is a trait that represents the efficiency of greenhouse gas emissions relative to production, 119 

allowing simultaneous consideration of environmental sustainability and production efficiency. 120 

Phenotypic information was collected using the OPEN API service provided by the Public Data 121 

Portal (data.go.kr). Phenotypic data for 115,256 individuals across three generations of pedigree 122 

information were collected. The materials used in this study are considered to be nationwide data 123 

that are not biased toward any specific region, and thus can be regarded as representative of the 124 

Hanwoo cattle population. 125 

 126 
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Quality control of genomic information  127 

Genomic data quality control was performed using PLINK v1.9. SNPs were filtered based on call 128 

rates below 90%, minor allele frequencies below 1%, and Hardy-Weinberg equilibrium below 129 

10⁻⁷ [12, 13]. After QC, 44,915 SNPs from 18,352 individuals were selected. 130 

 131 

The GBLUP model 132 

The GBLUP model is similar to the traditional pedigree-based BLUP method for estimating 133 

breeding values. However, it uses genomic information instead of pedigree information to 134 

construct a genetic relationship matrix among individuals. The mixed model equations used in the 135 

GBLUP were as follows: 136 

𝑌𝑌 = 𝑋𝑋𝑋𝑋 + 𝑍𝑍𝑍𝑍 + 𝐸𝐸 137 

where 𝑌𝑌 is the vector of observed trait values, 𝛽𝛽 is the vector of fixed effects and covariates, 𝑢𝑢 is 138 

the vector of additive genetic effects, 𝐸𝐸 is the vector of residual effects, and 𝑋𝑋 and 𝑍𝑍 are the 139 

incidence matrices for fixed effects (slaughterhouse - birth year - birth season and slaughter day) 140 

and random effect, respectively. The above equation is identical to the traditional BLUP model; 141 

however, it becomes a GBLUP model when genomic information is used instead of pedigree 142 

information. The matrix was expressed as follows: 143 

�𝑋𝑋′𝑅𝑅
−1𝑋𝑋 𝑋𝑋′𝑅𝑅−1𝑍𝑍

𝑍𝑍′𝑅𝑅−1𝑋𝑋 𝑍𝑍′𝑅𝑅−1𝑍𝑍 +  𝐺𝐺−1/𝜎𝜎𝑢𝑢2
� �𝛽̂𝛽
𝑢𝑢�
� =  �𝑋𝑋′𝑅𝑅

−1𝑦𝑦
𝑍𝑍′𝑅𝑅−1𝑦𝑦

�,      𝐺𝐺 = 𝑍𝑍𝑍𝑍′

2Σ𝑝𝑝𝑗𝑗(1−𝑝𝑝𝑖𝑖)
=  (𝑀𝑀−𝑃𝑃)(𝑀𝑀−𝑃𝑃)′

2Σ𝑝𝑝𝑗𝑗(1−𝑝𝑝𝑖𝑖)
 144 

where 𝐺𝐺 is the genomic relationship matrix, 𝑅𝑅 is the residual variance-covariance matrix, 𝜎𝜎𝑢𝑢2 is 145 

the additive genetic variance, 𝑀𝑀 is the matrix of individual SNP genotypes, 𝑃𝑃 is the matrix of 146 

expected genotype values, 𝑝𝑝𝑗𝑗  is the frequency of the allele for the j-th locus. The centered 147 
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genotype matrix Z was constructed by subtracting the expected genotype matrix 𝑃𝑃  from the 148 

genotype matrix 𝑀𝑀 [14]. Using the G matrix in this manner allows the estimation of additive 149 

effects by replacing the identical kinship coefficients between full-sib and half-sib relationships 150 

with genetic variation among individuals, leading to a more accurate estimation of breeding value 151 

compared to analyses using pedigree information. 152 

 153 

The ssGBLUP model 154 

The conventional BLUP and GBLUP methods analyze pedigree information and genomic 155 

information separately, whereas the ssGBLUP method integrates these data sources. By combining 156 

them, genetic relationships among individuals can be estimated more accurately, allowing for more 157 

precise genetic evaluation. The mixed linear model applied for the estimation of breeding values 158 

was identical to that used in the GBLUP method. The ssGBLUP method utilizes both pedigree and 159 

genomic information to construct an H matrix that represents genetic relationships among 160 

individuals. The H matrix represents an integrated relationship structure that includes individuals 161 

with genomic information and those connected through a pedigree but lacking genomic 162 

information, and was defined as follows: 163 

𝐻𝐻 =  �𝐻𝐻11 𝐻𝐻12
𝐻𝐻21 𝐻𝐻22

� =  �𝐴𝐴11 + 𝐴𝐴12𝐴𝐴22−1(𝐺𝐺 − 𝐴𝐴22)𝐴𝐴22−1𝐴𝐴21 𝐴𝐴12𝐴𝐴22−1𝐺𝐺
𝐺𝐺𝐴𝐴22−1𝐴𝐴21 𝐺𝐺

� 164 

where 𝐻𝐻 is the combined relationship matrix (pedigree + genome), 𝐴𝐴 is the pedigree relationship 165 

matrix, and 𝐺𝐺 is the genomic relationship matrix. For computational convenience, the inverse of 166 

the 𝐻𝐻 matrix was used in the mixed model equations, as follows: 167 

�𝑋𝑋′𝑅𝑅
−1𝑋𝑋 𝑋𝑋′𝑅𝑅−1𝑍𝑍

𝑍𝑍′𝑅𝑅−1𝑋𝑋 𝑍𝑍′𝑅𝑅−1𝑍𝑍 +  𝐻𝐻−1/𝜎𝜎𝑢𝑢2
� �𝛽̂𝛽
𝑢𝑢�
� =  �𝑋𝑋′𝑅𝑅

−1𝑦𝑦
𝑍𝑍′𝑅𝑅−1𝑦𝑦

�,    𝐻𝐻−1 =  𝐴𝐴−1 +  �0 0
0 𝐺𝐺−1 − 𝐴𝐴22−1

� 168 
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ssGBLUP has the advantage of being able to utilize the existing genetic evaluation process [15]. 169 

However, in the process of computing the inverse of the 𝐻𝐻 matrix, efficient calculation of the 170 

inverse of the matrix (𝐺𝐺−1) is essential. Unlike the inverse of the pedigree relationship matrix (𝐴𝐴−1), 171 

there is no direct calculation method for the inverse of the 𝐺𝐺 matrix (𝐺𝐺−1), and computation time 172 

can increase proportionally with the number of individuals with genomic information [14]. 173 

 174 

The wssGBLUP model 175 

GBLUP and ssGBLUP methods assume that all SNPs contribute equally, whereas in reality, 176 

individual SNPs vary in their effects. The wssGBLUP method assigns iterative weights to SNPs, 177 

enabling a more accurate estimation of breeding value. The mixed linear model used for the 178 

estimation of breeding values was identical to that applied in the GBLUP method. The wssGBLUP 179 

method is based on the ssGBLUP method, which integrates genomic and pedigree information and 180 

assigns differential weights to SNP markers. This is achieved by introducing a diagonal matrix 𝐷𝐷 181 

which reflects the importance of each SNP marker during the construction of the genomic 182 

relationship matrix [5]. In the ssGBLUP method, 𝐷𝐷 is set as the identity matrix. The equation used 183 

is as follows: 184 

𝐺𝐺𝑤𝑤 =  
𝑍𝑍𝑍𝑍𝑍𝑍′

2Σ𝑝𝑝𝑗𝑗(1 − 𝑝𝑝𝑗𝑗)
 185 

The process for predicting SNP weights (𝐷𝐷 matrix) was as follows. Initially, the weight matrix was 186 

set as the identity matrix, and breeding values were estimated using the ssGBLUP method. Based 187 

on this, the effect of each SNP was calculated and the SNP weights were computed using the 188 

square of the SNP effects and allele frequencies. The weight matrix was normalized to maintain 189 

the total genetic variance, and a new 𝐺𝐺 matrix was generated using the updated weight matrix, 190 
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followed by an iterative estimation of breeding values. This process can achieve sufficient 191 

analytical accuracy after 2-3 iterations [5]. 192 

 193 

Estimation of heritability and accuracy 194 

Heritability was calculated using the estimated genetic and residual variances for each trait in each 195 

model (GBLUP, ssGBLUP, wssGBLUP). The formula used is as follows: 196 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(ℎ2) =  
𝜎𝜎𝛼𝛼2

𝜎𝜎𝛼𝛼2 + 𝜎𝜎𝑒𝑒2
 197 

where is heritability, 𝜎𝜎𝛼𝛼2 is the genetic variance, and 𝜎𝜎𝑒𝑒2 is the residual variance, with 𝜎𝜎𝛼𝛼2 + 𝜎𝜎𝑒𝑒2 198 

representing the phenotypic variance. Thus, heritability indicates the proportion of genetic 199 

components in the total phenotypic variation. 200 

The accuracy of the breeding values for each model was estimated using the prediction error 201 

variance calculated for each individual during breeding value estimation. Additionally, the 202 

accuracy of the breeding values was estimated by analyzing the correlation between breeding 203 

values and actual phenotypic information. 204 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  �1 − 𝑃𝑃𝑃𝑃𝑃𝑃
𝜎𝜎𝛼𝛼2

,  𝑃𝑃𝑋𝑋,𝑌𝑌 =  𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋,𝑌𝑌)
𝜎𝜎𝑋𝑋𝜎𝜎𝑌𝑌

 205 

where 𝑃𝑃𝑃𝑃𝑃𝑃 is the prediction error for each individual, 𝜎𝜎𝛼𝛼2 is the additive genetic variance for each 206 

trait. Correlation analysis was performed using the Pearson correlation coefficient between 207 

breeding values and phenotypic information. Realized accuracy theory posits that a correlation 208 

coefficient closer to 1 indicates a higher accuracy of the estimated breeding values. 209 

 210 

ACCEPTED



11 

 

Results 211 

Descriptive statistical analyses 212 

Descriptive statistics for phenotypic data are presented in Table 2. A total of 115,256 Hanwoo 213 

cattle raised nationwide were included in the analysis. The mean and standard deviation values for 214 

carcass traits, including CWT, EMA, BFT, and MSC, as well as estimated values for 215 

environmental traits, such as CEI, are presented. These values were 443.86±60.48 kg, 94.96±12.51 216 

cm², 13.44±5.20 mm, 5.87±2.01 score, and 14.01±2.90 kg/CO2eq, respectively. 217 

 218 

Genetic parameter model estimations 219 

Genetic parameters estimated for each trait derived from the GBLUP, ssGBLUP, and wssGBLUP 220 

models include additive genetic variance (𝜎𝜎𝛼𝛼2), residual variance (𝜎𝜎𝑒𝑒2), and phenotypic variance 221 

(𝜎𝜎𝑝𝑝2). Heritability values (ℎ2) were calculated using the variance components (Table 3). The 222 

wssGBLUP model is based on the same H matrix as the ssGBLUP model and differs only in the 223 

iterative application of marker weights to the G matrix. Furthermore, since breeding values were 224 

estimated based on the same genetic parameters as the ssGBLUP model, the results were identical 225 

to those of the ssGBLUP model. The estimated heritability for CWT was 0.41 in the GBLUP 226 

model and 0.39 in the ssGBLUP/wssGBLUP models. For EMA, estimated heritability was 0.36 in 227 

the GBLUP model and 0.35 in the ssGBLUP/wssGBLUP models. Estimated heritability of BFT 228 

was 0.39 in the GBLUP model and 0.37 in, ssGBLUP/wssGBLUP, and for MSC, it was 0.48 and 229 

0.49 in the GBLUP and ssGBLUP models, respectively. Finally, the estimated heritability of CEI 230 

was 0.35 and 0.34 in the GBLUP and ssGBLUP/wssGBLUP models, respectively. Examining the 231 
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results by analysis model, heritability estimated by the GBLUP model was higher than that of the 232 

ssGBLUP and wssGBLUP models for all traits except MSC. The ssGBLUP and wssGBLUP 233 

models tended to estimate heritability more conservatively because they are based on both pedigree 234 

and genomic data. In addition, the GBLUP model used only a genomic-based G matrix, whereas 235 

the ssGBLUP/wssGBLUP models used an H matrix, which incorporated both pedigree and 236 

genomic information. Pedigree-based data may contain noise or low-accuracy information, 237 

potentially leading to a reduced accuracy. The MSC exhibited the highest heritability across all 238 

three models. 239 

 240 

Analysis of accuracy of genetic evaluation 241 

The accuracy of the genomic estimated breeding value (GEBV) based on the analysis models is 242 

listed in Table 4. Examining traits by trait, CWT recorded an accuracy of 0.67 for both GBLUP 243 

and ssGBLUP, while wssGBLUP showed the highest predictive capacity, at 0.75. This trend was 244 

similarly observed for EMA and BFT traits, with wssGBLUP consistently achieving higher 245 

accuracy than GBLUP and ssGBLUP, at 0.74 and 0.75, respectively. MSC had the highest 246 

accuracy across all models, with accuracies of 0.71, 0.70, and 0.77 for GBLUP, ssGBLUP, and 247 

wssGBLUP, respectively. CEI generally exhibited lower accuracy compared to other traits, with 248 

GBLUP and ssGBLUP models at 0.60 and 0.61, respectively, but wssGBLUP maintained a higher 249 

level of 0.71. Correlation analysis was performed between the breeding values of the test 250 

populations estimated by the analysis methods and the actual phenotypic information using the 251 

Pearson correlation coefficient. A correlation coefficient closer to 1 indicates that the estimation 252 

was more accurate and closer to the phenotype. The calculated correlation coefficients are shown 253 

as a heat map (Fig. 1). Overall, the ssGBLUP and wssGBLUP models showed a tendency towards 254 
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higher correlation coefficients with phenotypes than the GBLUP models. For CWT, a gradual 255 

improvement was observed: 0.76 for GBLUP, 0.77 for ssGBLUP, and 0.78 for wssGBLUP. EMA 256 

also showed higher correlation coefficients with ssGBLUP and wssGBLUP than GBLUP. 257 

Although BFT showed a low correlation across all three models, the ssGBLUP and wssGBLUP 258 

models recorded slightly higher values (0.73) than GBLUP. MSC showed relatively high 259 

correlation coefficients across all three analysis models, with values of 0.80, 0.81, and 0.81 for 260 

GBLUP, ssGBLUP, and wssGBLUP, respectively. CEI had the lowest correlation coefficients 261 

overall, with values of 0.48, 0.52, and 0.47 for the GBLUP, ssGBLUP, and wssGBLUP models, 262 

respectively, with the ssGBLUP model showing the highest correlation coefficient. A comparative 263 

analysis of carcass traits and carbon emission intensity in Hanwoo cattle using the GBLUP, 264 

ssGBLUP, and wssGBLUP models revealed significant improvements in prediction accuracy with 265 

the latter two models. 266 

 267 

 268 

Discussion 269 

Comparing carcass performance with previous studies, Oh et al. [16] reported descriptive statistics 270 

for 1,905 Hanwoo cattle (steers), including CWT, EMA, BFT, and MSC, as 446.43±44.38 kg, 271 

93.39±10.20 cm², 12.95±5.11 mm, and 6.10±1.94, respectively. Lee et al. [17], in their study of 272 

186,332 Hanwoo cattle (steers), reported values of 432.70±54.85 kg, 93.04±12.27 cm², 13.51±5.46 273 

mm, and 5.75±2.04, showing similar results to the present study. Kim et al. [18] analyzed 274 

3,247,508 Hanwoo cattle slaughtered between 21 and 39 months of age, reporting an average CEI 275 

of 13.75 ± 1.4 kg/CO2eq. The average CEI in this study was similar, at 14.01 ± 2.9 kg/CO2eq. 276 
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In studies estimating genetic parameters through GBLUP modelling, Byun et al. [19] analyzed the 277 

heritability of 564 Hanwoo cattle (cows) and 13,000 Hanwoo steers raised nationwide, and 278 

reported 0.41, 0.38, 0.38, and 0.44 for CWT, EMA, BFT, and MSC, respectively. Mehrban et al. 279 

[20] reported heritabilities of 0.31, 0.44, 0.50, and 0.61 in an ssGBLUP analysis using 8,966 280 

Hanwoo bulls and 6,313 Hanwoo cattle (steers). Mehrban et al. [21] reported heritability estimates 281 

of 0.28, 0.46, 0.57, and 0.59 using wssGBLUP for Hanwoo carcass traits in 5,134 animals, and 282 

Lopez et al. [6] reported 0.37, 0.35, 0.36, and 0.45 using the wssGBLUP model for 10,215 animals 283 

raised nationwide from 2006 to 2016. These findings indicate that heritability estimates vary 284 

significantly not only by the analysis model, but also by the characteristics of the herds used in the 285 

study. The heritability estimates most similar to those of the present study were found by Lopez et 286 

al. [6], sharing the commonality of analyzing commercial herds. Lassen & Løvendahl [22] defined 287 

methane emissions per liter of milk using 3,121 Holstein cattle, reporting a heritability of 0.21. 288 

Although a direct comparison with previous studies is challenging, because the CEI analyzed in 289 

this study reflects the carbon footprint across the entire rearing process rather than direct methane 290 

emissions, it provides insights into the impact of genetic factors across species on environmental 291 

efficiency [3]. These results underscore the importance of developing breeding strategies to 292 

enhance environmental sustainability in livestock breeding, and emphasize the need for research 293 

to identify and utilize genetic traits that contribute to reducing carbon emissions. 294 

The accuracy of genetic evaluation was calculated based on the prediction error of estimated 295 

breeding values for each individual and the genetic variance of each trait; high values indicated 296 

greater consistency between actual genetic ability and estimated GEBV. The results showed that 297 

carcass traits exhibited high accuracy across all three models, with a significant improvement in 298 

ACCEPTED



15 

 

the accuracy of the wssGBLUP method, which resulted from the increased utilization of genomic 299 

information through the application of weights. This accuracy improvement suggests that the 300 

weight-based wssGBLUP method can enhance the predictive power of traits with complex genetic 301 

backgrounds [4, 21]. CEI generally showed a lower predictive accuracy than other carcass traits, 302 

likely due to the influence of numerous environmental factors. This is presumed to be because CEI 303 

is heavily influenced by environmental factors. However, the wssGBLUP model demonstrated a 304 

significant improvement in accuracy, even for CEI prediction, demonstrating that the application 305 

of weights to genomic information can contribute to improved prediction even for traits heavily 306 

influenced by environmental factors. 307 

High correlation coefficients between GEBV and phenotypic values were observed for carcass 308 

traits across all three models used in this study. However, CEI was poorly correlated across all 309 

three models, suggesting that CEI, which is significantly influenced by a complex set of 310 

environmental factors, has limitations in explaining the total phenotypic variation solely through 311 

genetic factors. Therefore, advanced modeling that considers the interaction between 312 

environmental factors and genomic data is needed to enhance the predictive accuracy of complex 313 

traits such as CEI. 314 

CEI tended to decrease with higher carcass weight and younger slaughter month. Animals with 315 

greater growth efficiency and faster finishing times exhibited lower CEI values, indicating that a 316 

lower breeding value for CEI corresponds to a lower phenotypic CEI. This suggests a direction for 317 

genetic improvement of Hanwoo cattle that simultaneously achieves enhanced productivity and 318 

environmental load reduction, thereby contributing to the development of sustainable livestock 319 

farming. This integrated approach provides a pathway for more resource-efficient and ecologically 320 

responsible livestock production by integrating genetic selection with environmental sustainability 321 
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[2, 23, 24]. These findings highlight the importance of genomic-based breeding for achieving 322 

carbon footprint reduction goals in the livestock sector and provide essential scientific evidence 323 

for the future establishment of environmentally friendly livestock systems. 324 

 325 

 326 

Conclusions 327 

This study estimated the genetic parameters for carcass traits and CEI in Hanwoo cattle and 328 

compared the prediction accuracy of three genomic evaluation models: GBLUP, ssGBLUP, and 329 

wssGBLUP. The results showed that the ssGBLUP and wssGBLUP models exhibited higher 330 

accuracies than the GBLUP model, with the wssGBLUP model, which applied weights, 331 

demonstrating the best predictive performance across all traits. These findings represent significant 332 

progress in enhancing the prediction accuracy of complex quantitative traits using genomic 333 

information, particularly in weight-based models. Furthermore, this study confirmed the potential 334 

for reducing carbon footprints through Hanwoo cattle improvements, thereby suggesting a 335 

direction for genetic improvement that can contribute to the development of sustainable livestock 336 

farming. The findings of this study are expected to enhance the environmental sustainability of the 337 

Hanwoo cattle industry through precise breeding strategies and provide the scientific foundation 338 

necessary for achieving carbon neutrality goals in future livestock systems. 339 

 340 

 341 

  342 
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Tables and Figures 443 

Table 1. Detailed information on the genome population 444 

Sex Birth season Birth region Slaughter place Slaughter month Slaughter year 

Sets Herds Sets Herds Sets Herds Sets Herds Sets Herds Sets Herds 

Steer 18,327  Spring 5,796 Gangwon 1,720 A 14,396 24 11 2012 1 

    Summer 2,918 Gyeonggi 1,199 B 1,087 25 80 2013 30 

    Autumn 4,833 Gyeongnam 501 C 941 26 1,015 2014 20 

    Winter 4,805 Gyeongbuk 3,133 D 649 27 2,476 2015 27 

        Jeonnam 2,765 E 394 28 3,388 2016 7 

        Jeonbuk 5,377 F 329 29 3,907 2017 2,222 

        Chungnam 2,207 G 279 30 3,436 2018 8,061 

        Chungbuk 1,435 H 77 31 2,625 2019 7,466 

        Jeju 15  I 33 32 1,068 2020 507 

            J 25 33 346 2021 3 

            K 13     2022 8 

            L 13         

            M 13         

            N 12         

            O 12         

            P 10         

            Q 
(≤10 heads) 69          

Total 18,352 

445 
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 446 

Table 2. Basic statistics for phenotype data in carcass traits and environmental impact trait (carbon emission 447 

intensity) 448 

CWT, carcass weight; EMA, eye muscle area; BFT, backfat thickness; MSC, marbling score; CEI, carbon emission 449 

intensity; mean, average; SD, standard deviation 450 

 451 

  452 

Type Traits No. of records Mean SD Min Max 

Carcass traits 

CWT (kg) 

115,256 

443.86 ±60.48 113.00 760.00 

EMA (cm2) 94.96 ±12.51 2.00 184.00 

BFT (mm) 13.44 ±5.20 1.00 59.00 

MSC (score) 5.87 ±2.01 1.00 9.00 

Environmental 
impact trait CEI (kg/CO2eq) 115,256 14.01 ±2.90 5.95 69.42 
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Table 3. Estimated genetic parameters and heritability estimated using three models 453 

CWT, carcass weight; EMA, eye muscle area; BFT, backfat thickness; MSC, marbling score; CEI, carbon emission 454 

intensity; GBLUP, genomic BLUP; ssGBLUP, single-step genomic BLUP; wssGBLUP, weighted genomic BLUP. 455 

𝜎𝜎𝛼𝛼2: genetic variance, 𝜎𝜎𝑒𝑒2: residual variance, 𝜎𝜎𝑝𝑝2: phenotypic variance, ℎ2: heritability 456 

 457 

  458 

Method Traits 𝜎𝜎𝛼𝛼2 𝜎𝜎𝑒𝑒2 𝜎𝜎𝑝𝑝2 ℎ2 

GBLUP 

CWT (kg) 909.0 1,319.1 2,228.1 0.41 

EMA (cm2) 50.20 90.44 140.6 0.36 

BFT (mm) 9.33 14.82 24.1 0.39 

MSC (score) 1.58 1.73 3.3 0.48 

CEI (kg/CO2eq) 0.86 1.62 2.5 0.35 

ssGBLUP/ 
wssGBLUP 

CWT (kg) 1,311.8 2,010.4 3,322.2 0.39 

EMA (cm2) 54.57 99.53 154.1 0.35 

BFT (mm) 11.88 19.88 31.8 0.37 

MSC (score) 1.90 1.94 3.8 0.49 

CEI (kg/CO2eq) 0.93 1.82 2.75 0.34 
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Table 4. Comparison of prediction accuracy across three genomic evaluation models 459 

CWT, carcass weight; EMA, eye muscle area; BFT, backfat thickness; MSC, marbling score; CEI, carbon emission 460 

intensity; GBLUP, genomic BLUP; ssGBLUP, single-step genomic BLUP; wssGBLUP, weighted single-step 461 

genomic BLUP; GEBV, genomic estimated breeding value  462 

 463 

 464 

  465 

Trait 
Analysis method 

GBLUP ssGBLUP wssGBLUP 

CWT (kg) 0.67 0.67 0.75 

EMA (cm2) 0.65 0.66 0.74 

BFT (mm) 0.66 0.66 0.75 

MSC (score) 0.71 0.70 0.77 

CEI (kg/CO2eq) 0.60 0.61 0.71 
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 466 

Fig. 1. Heatmaps of correlations between phenotypes and GEBVs estimated by GBLUP, ssGBLUP, and 467 

wssGBLUP models. 468 
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