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Abstract

This study estimated genetic parameters for carcass and carbon emission-related traits in Hanwoo cattle
using various genomic analytic models, and explored methods for improving the accuracy of genetic
evaluation based on these estimations. The analysis results across all models showed high prediction
accuracy for carcass traits. Notably, the weighted single-step genomic best linear unbiased prediction
(wssGBLUP) method significantly improved the accuracy by enhancing the utilization of genomic
information through the application of weights. In contrast, carbon emission.intensity, which is highly
influenced by environmental factors, generally exhibited a lower prediction accuracy than other carcass
traits. However, the wssGBLUP model demonstrated a significant improvement in accuracy, even in
predictions of carbon emission intensity, demonstrating that the weighted application of genomic
information contributes to improved predictive power, even for traits with substantial environmental
influence. The findings of this study present a new strategy for effectively utilizing genomic information in
Hanwoo cattle improvement programs to simultaneously achieve the dual goals of enhancing productivity
and reducing environmental load, thereby providing a scientific foundation for the sustainable development

of the livestock industry.
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Introduction

South Korea’s livestock industry must transition from a productivity-centric approach to new
sustainability strategies. As environmental impacts, particularly greenhouse gas emissions, have
emerged as an international issue, reducing the carbon emission intensity from livestock has
become a significant challenge. Globally, there are 1.47 billion beef cattle and 290 million dairy
cows, and ruminants, through enteric fermentation, emit substantial amounts of methane. Methane
is a potent greenhouse gas with a global warming potential over 28 times greater than carbon
dioxide, significantly impacting global warming [1]. Against this backdrop, it is crucial to establish
breeding programs that consider not only productivity, but also environmental impacts, especially
greenhouse gas emissions, for the sustainable development of the livestock industry. Numerous
studies have suggested the potential for genetic improvement to reduce greenhouse gas emissions
during livestock farming, which will be a key factor in securing future competitiveness of the

livestock industry.

Breeding ruminants, including Hanwoo cattle, requires a genetic approach that goes beyond
improving economic traits, focusing on carcass yield and quality, to consider greenhouse gas
emissions. This approach contributes to achieving carbon neutrality in the livestock sector and is
essential for reducing the environmental burden of farming. Specifically, breeding of Hanwoo
cattle must shift towards reducing its carbon footprint and improving productivity, necessitating a
multi-trait breeding strategy that comprehensively considers methane-related, carcass, and feed-
efficiency traits [2]. The Hanwoo breeding program successfully reduced the carbon footprint of
beef production by increasing carcass weight, supporting the positive effect of genetic approaches
on greenhouse gas reduction. This genetic improvement has the potential to contribute to global

greenhouse gas reduction by replacing a significant amount of beef imports, while maintaining
3
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livestock populations and improving productivity. This study aimed to establish a scientific basis
for sustainable Hanwoo breeding by analyzing genetic correlations between major Hanwoo carcass

traits and carbon emission-related traits and proposing an integrated model of genetic evaluation
[3].

Genetics based evaluation methodologies for economic traits have continuously evolved from the
traditional pedigree-based best linear unbiased prediction (BLUP) method to the genomic BLUP
(GBLUP) model utilizing genomic information, the single-step GBLUP (ssGBLUP) model
integrating genomic and pedigree information, and the weighted single-step GBLUP (wssGBLUP)
method predicting the weight of each single nucleotide polymorphism (SNP). These advancements
have enabled a more accurate evaluation of individual genetic merits, significantly enhancing the
effectiveness of livestock breeding. GBLUP is a methodology developed to overcome the
limitations of the traditional BLUP method and more accurately reflect the genetic relationships
between individuals by estimating breeding values using genomic information, such as SNPs.
ssGBLUP inherits the advantages of GBLUP while integrating pedigree information, contributing
to the accuracy of estimations of breeding value for individuals lacking genomic information.
Furthermore, wssGBLUP provides superior predictive performance compared with traditional
BLUP or GBLUP by differentially reflecting the impact of specific genotypes on phenotypes [4].
These methodological advancements are expected to make significant contributions to sustainable
livestock development, considering not only the improvement of livestock productivity and
economic efficiency, but also environmental aspects [5, 6]. This study explored the potential for
developing an integrated genetic evaluation model by precisely estimating the genetic parameters
of Hanwoo carcass traits and carbon-emission-related traits using advanced genomic evaluation

techniques. Such an integrated evaluation provides essential scientific evidence for establishing
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the direction of continuous Hanwoo cattle improvement and contributes to achieving breeding
goals that simultaneously pursue economic benefits and environmental sustainability [7].
Specifically, the genetic improvement of various traits, such as feed efficiency, growth rate, and
reproductive ability, is essential for sustainable beef production. Hanwoo is well known for its
excellent meat quality, and genetic improvement has been accelerated through genomic selection

[8-11].

In this context, this study aimed to estimate the genetic parameters of Hanwoo carcass traits and
carbon emission-related traits by applying various models of genomic analysis, and to explore
ways to enhance the accuracy of genetic evaluation based on these estimates. Through this study,
we aimed to lay the foundation for new breeding strategies that can simultaneously achieve the

dual goals of enhancing Hanwoo productivity and minimizing environmental impacts.
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Materials and Methods

Materials

The genomic information used in this study was obtained from 18,352 Hanwoo cattle (all steers)
born between 2012 and 2022 across the country (Table 1). Pedigree information was collected for
the three generations by querying individual identification numbers from the Korea Animal
Improvement Association. After verifying individual errors, a pedigree dataset comprising
292,111 individuals was constructed. Phenotypic information included carcass traits measured
after 24 h of refrigeration post-slaughter according to the "Detailed Standards for Livestock
Products Grading” (Ministry of Agriculture, Food, and Rural Affairs Notification No. 2025-23):
carcass weight (CWT), eye muscle area (EMA), backfat thickness (BFT), and marbling score
(MSC). Carbon emission intensity (CEI), calculated using the "Calculation Formula for Emission
Intensity for Low-Carbon Livestock Products Certification” from the Livestock Products Quality

Evaluation Institute, was used as an environmental trait.

Slaughter month X 198.2(C0,eq)
carcass weight(kg)

Greenhouse gas emissions (CO; eq) per kilogram of carcass weight =

CEl is a trait that represents the efficiency of greenhouse gas emissions relative to production,
allowing simultaneous consideration of environmental sustainability and production efficiency.
Phenotypic information was collected using the OPEN API service provided by the Public Data
Portal (data.go.kr). Phenotypic data for 115,256 individuals across three generations of pedigree
information were collected. The materials used in this study are considered to be nationwide data
that are not biased toward any specific region, and thus can be regarded as representative of the

Hanwoo cattle population.
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Quiality control of genomic information

Genomic data quality control was performed using PLINK v1.9. SNPs were filtered based on call
rates below 90%, minor allele frequencies below 1%, and Hardy-Weinberg equilibrium below

1077 [12, 13]. After QC, 44,915 SNPs from 18,352 individuals were selected.

The GBLUP model

The GBLUP model is similar to the traditional pedigree-based BLUP method for estimating
breeding values. However, it uses genomic information instead of pedigree information to
construct a genetic relationship matrix among individuals. The mixed model equations used in the

GBLUP were as follows:
Y=XB+Zu+E

where v is the vector of observed trait values, g is the vector of fixed effects and covariates, u is
the vector of additive genetic effects, £ is the vector of residual effects, and x and z are the
incidence matrices for fixed effects (slaughterhouse - birth year - birth season and slaughter day)
and random effect, respectively. The above equation is identical to the traditional BLUP model;
however, it becomes a GBLUP model when genomic information is used instead of pedigree

information. The matrix was expressed as follows:

X'R7'X X'R7'Z gl _ [X'R™'y G 22 (M-P)M-P)
al — 1Z’R 1yl

ZRIX Z'RZ+ G /g2 T 2mp-pp | 2%p;(-pp

where ¢ is the genomic relationship matrix, R is the residual variance-covariance matrix, o2 is
the additive genetic variance, M is the matrix of individual SNP genotypes, p is the matrix of

expected genotype values, p; is the frequency of the allele for the j-th locus. The centered
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genotype matrix Z was constructed by subtracting the expected genotype matrix P from the
genotype matrix M [14]. Using the G matrix in this manner allows the estimation of additive
effects by replacing the identical kinship coefficients between full-sib and half-sib relationships
with genetic variation among individuals, leading to a more accurate estimation of breeding value

compared to analyses using pedigree information.

The ssGBLUP model

The conventional BLUP and GBLUP methods analyze pedigree information and genomic
information separately, whereas the ssGBLUP method integrates these data sources. By combining
them, genetic relationships among individuals can be estimated more accurately, allowing for more
precise genetic evaluation. The mixed linear model applied for the estimation of breeding values
was identical to that used in the GBLUP method. The ssGBLUP method utilizes both pedigree and
genomic information to construct an H matrix that represents genetic relationships among
individuals. The H matrix represents an integrated relationship structure that includes individuals
with genomic information and those connected through a pedigree but lacking genomic

information, and was defined as follows:

H= Hyy le] _ [An + A12A73(G — Ap)Az7 45 AR A5G

Hyy Hp GAZ2A,, G

where H is the combined relationship matrix (pedigree + genome), 4 is the pedigree relationship
matrix, and ¢ is the genomic relationship matrix. For computational convenience, the inverse of

the # matrix was used in the mixed model equations, as follows:

0 0

X'RX X'RZ Hg]_ X'R™ty
al 0 G™'—Ay

-1 _ -1
Z’R7X Z'RZ+ H /o Z’R—ly]’ H™ =47+
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ssGBLUP has the advantage of being able to utilize the existing genetic evaluation process [15].
However, in the process of computing the inverse of the H matrix, efficient calculation of the
inverse of the matrix (6—1) is essential. Unlike the inverse of the pedigree relationship matrix (471),
there is no direct calculation method for the inverse of the ¢ matrix (6-*), and computation time

can increase proportionally with the number of individuals with genomic information [14].

The wssGBLUP model

GBLUP and ssGBLUP methods assume that all SNPs contribute equally, whereas in reality,
individual SNPs vary in their effects. The wssGBLUP method assigns iterative weights to SNPs,
enabling a more accurate estimation of breeding value. The mixed linear model used for the
estimation of breeding values was identical to that applied in the GBLUP method. The wssGBLUP
method is based on the ssGBLUP method, which integrates genomic and pedigree information and
assigns differential weights to SNP markers. This is achieved by introducing a diagonal matrix b
which reflects the importance of each SNP marker during the construction of the genomic
relationship matrix [5]. Inthe ssGBLUP method, D is set as the identity matrix. The equation used

is as follows:

G - ZDZ'
Yo 2Ep;(1—-pp)

The process for predicting SNP weights (D matrix) was as follows. Initially, the weight matrix was
set as the identity matrix, and breeding values were estimated using the ssGBLUP method. Based
on this, the effect of each SNP was calculated and the SNP weights were computed using the
square of the SNP effects and allele frequencies. The weight matrix was normalized to maintain
the total genetic variance, and a new ¢ matrix was generated using the updated weight matrix,

9



191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

followed by an iterative estimation of breeding values. This process can achieve sufficient

analytical accuracy after 2-3 iterations [5].

Estimation of heritability and accuracy

Heritability was calculated using the estimated genetic and residual variances for each trait in each

model (GBLUP, ssGBLUP, wssGBLUP). The formula used is as follows:

0%

Heritability(h?) =
eritability(h*) o7+ o2

where is heritability, o2 is the genetic variance, and 2 is the residual variance, with ¢2 + o2
representing the phenotypic variance. Thus, heritability indicates the proportion of genetic

components in the total phenotypic variation.

The accuracy of the breeding values for each model was estimated using the prediction error
variance calculated for each individual during breeding value estimation. Additionally, the
accuracy of the breeding values was estimated by analyzing the correlation between breeding

values and actual phenotypic information.

PEV cov(X,Y
Accuracy = [1——~, Pyy= covX.Y)
Oa ’ 0x0y

where PEV is the prediction error for each individual, o2 is the additive genetic variance for each
trait. Correlation analysis was performed using the Pearson correlation coefficient between
breeding values and phenotypic information. Realized accuracy theory posits that a correlation

coefficient closer to 1 indicates a higher accuracy of the estimated breeding values.

10
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Results

Descriptive statistical analyses

Descriptive statistics for phenotypic data are presented in Table 2. A total of 115,256 Hanwoo
cattle raised nationwide were included in the analysis. The mean and standard deviation values for
carcass traits, including CWT, EMA, BFT, and MSC, as well as estimated values for
environmental traits, such as CEl, are presented. These values were 443.86+60.48 kg, 94.96+£12.51

cm?, 13.44+5.20 mm, 5.87+2.01 score, and 14.01+£2.90 kg/COzeq, respectively.

Genetic parameter model estimations

Genetic parameters estimated for each trait derived from the GBLUP, ssGBLUP, and wssGBLUP
models include additive genetic variance (c2), residual variance (¢2), and phenotypic variance
(07). Heritability values (h*) were calculated using the variance components (Table 3). The
wssGBLUP model is based on the same H matrix as the ssGBLUP model and differs only in the
iterative application of marker weights to the G matrix. Furthermore, since breeding values were
estimated based on the same genetic parameters as the ssGBLUP model, the results were identical
to those of the ssGBLUP model. The estimated heritability for CWT was 0.41 in the GBLUP
model and 0.39 in the ssGBLUP/wssGBLUP models. For EMA, estimated heritability was 0.36 in
the GBLUP model and 0.35 in the ssGBLUP/wssGBLUP models. Estimated heritability of BFT
was 0.39 in the GBLUP model and 0.37 in, ssGBLUP/wssGBLUP, and for MSC, it was 0.48 and
0.49 in the GBLUP and ssGBLUP models, respectively. Finally, the estimated heritability of CEI

was 0.35 and 0.34 in the GBLUP and ssGBLUP/wssGBLUP models, respectively. Examining the

11
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results by analysis model, heritability estimated by the GBLUP model was higher than that of the
ssGBLUP and wssGBLUP models for all traits except MSC. The ssGBLUP and wssGBLUP
models tended to estimate heritability more conservatively because they are based on both pedigree
and genomic data. In addition, the GBLUP model used only a genomic-based G matrix, whereas
the ssGBLUP/wssGBLUP models used an H matrix, which incorporated both pedigree and
genomic information. Pedigree-based data may contain noise or low-accuracy information,
potentially leading to a reduced accuracy. The MSC exhibited the highest heritability across all

three models.

Analysis of accuracy of genetic evaluation

The accuracy of the genomic estimated breeding value (GEBV) based on the analysis models is
listed in Table 4. Examining traits by trait, CWT recorded an accuracy of 0.67 for both GBLUP
and ssGBLUP, while wssGBLUP showed the highest predictive capacity, at 0.75. This trend was
similarly observed for EMA and BFT traits, with wssGBLUP consistently achieving higher
accuracy than GBLUP and ssGBLUP, at 0.74 and 0.75, respectively. MSC had the highest
accuracy across all models, with accuracies of 0.71, 0.70, and 0.77 for GBLUP, ssGBLUP, and
wssGBLUP, respectively. CEI generally exhibited lower accuracy compared to other traits, with
GBLUP and ssGBLUP models at 0.60 and 0.61, respectively, but wssGBLUP maintained a higher
level of 0.71. Correlation analysis was performed between the breeding values of the test
populations estimated by the analysis methods and the actual phenotypic information using the
Pearson correlation coefficient. A correlation coefficient closer to 1 indicates that the estimation
was more accurate and closer to the phenotype. The calculated correlation coefficients are shown

as a heat map (Fig. 1). Overall, the ssGBLUP and wssGBLUP models showed a tendency towards
12
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higher correlation coefficients with phenotypes than the GBLUP models. For CWT, a gradual
improvement was observed: 0.76 for GBLUP, 0.77 for ssGBLUP, and 0.78 for wssGBLUP. EMA
also showed higher correlation coefficients with ssGBLUP and wssGBLUP than GBLUP.
Although BFT showed a low correlation across all three models, the ssGBLUP and wssGBLUP
models recorded slightly higher values (0.73) than GBLUP. MSC showed relatively high
correlation coefficients across all three analysis models, with values of 0.80, 0.81, and 0.81 for
GBLUP, ssGBLUP, and wssGBLUP, respectively. CEI had the lowest correlation coefficients
overall, with values of 0.48, 0.52, and 0.47 for the GBLUP, ssGBLUP, and wssGBLUP models,
respectively, with the ssGBLUP model showing the highest correlation coefficient. A comparative
analysis of carcass traits and carbon emission intensity in Hanwoo cattle using the GBLUP,
ssGBLUP, and wssGBLUP models revealed significant improvements in prediction accuracy with

the latter two models.

Discussion

Comparing carcass performance with previous studies, Oh et al. [16] reported descriptive statistics

for 1,905 Hanwoo cattle (steers), including CWT, EMA, BFT, and MSC, as 446.43+44.38 kg,

93.39+10.20 cm?, 12.95+5.11 mm, and 6.10+1.94, respectively. Lee et al. [17], in their study of

186,332 Hanwoo cattle (steers), reported values of 432.70+54.85 kg, 93.04+12.27 cm?, 13.51+5.46

mm, and 5.75+2.04, showing similar results to the present study. Kim et al. [18] analyzed
3,247,508 Hanwoo cattle slaughtered between 21 and 39 months of age, reporting an average CEI

of 13.75 + 1.4 kg/CO2eq. The average CEIl in this study was similar, at 14.01 + 2.9 kg/CO-eq.
13



277

2178

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

In studies estimating genetic parameters through GBLUP modelling, Byun et al. [19] analyzed the

heritability of 564 Hanwoo cattle (cows) and 13,000 Hanwoo steers raised nationwide, and

reported 0.41, 0.38, 0.38, and 0.44 for CWT, EMA, BFT, and MSC, respectively. Mehrban et al.

[20] reported heritabilities of 0.31, 0.44, 0.50, and 0.61 in an ssGBLUP analysis using 8,966

Hanwoo bulls and 6,313 Hanwoo cattle (steers). Mehrban et al. [21] reported heritability estimates

of 0.28, 0.46, 0.57, and 0.59 using wssGBLUP for Hanwoo carcass traits in 5,134 animals, and
Lopez et al. [6] reported 0.37, 0.35, 0.36, and 0.45 using the wssGBLUP model for 10,215 animals
raised nationwide from 2006 to 2016. These findings indicate that heritability estimates vary
significantly not only by the analysis model, but also by the characteristics of the herds used in the
study. The heritability estimates most similar to those of the present study were found by Lopez et
al. [6], sharing the commonality of analyzing commercial herds. Lassen & Lgvendahl [22] defined
methane emissions per liter of milk using 3,121 Holstein cattle, reporting a heritability of 0.21.
Although a direct comparison with previous studies is challenging, because the CEI analyzed in
this study reflects the carbon footprint across the entire rearing process rather than direct methane
emissions, it provides insights into the impact of genetic factors across species on environmental
efficiency [3]. These results underscore the importance of developing breeding strategies to
enhance environmental sustainability in livestock breeding, and emphasize the need for research

to identify and utilize genetic traits that contribute to reducing carbon emissions.

The accuracy of genetic evaluation was calculated based on the prediction error of estimated
breeding values for each individual and the genetic variance of each trait; high values indicated
greater consistency between actual genetic ability and estimated GEBV. The results showed that

carcass traits exhibited high accuracy across all three models, with a significant improvement in

14
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the accuracy of the wssGBLUP method, which resulted from the increased utilization of genomic
information through the application of weights. This accuracy improvement suggests that the
weight-based wssGBLUP method can enhance the predictive power of traits with complex genetic
backgrounds [4, 21]. CEI generally showed a lower predictive accuracy than other carcass traits,
likely due to the influence of numerous environmental factors. This is presumed to be because CEI
is heavily influenced by environmental factors. However, the wssGBLUP model demonstrated a
significant improvement in accuracy, even for CEI prediction, demonstrating that the application
of weights to genomic information can contribute to improved prediction even for traits heavily

influenced by environmental factors.

High correlation coefficients between GEBV and phenotypic values were observed for carcass
traits across all three models used in this study. However, CEIl was poorly correlated across all
three models, suggesting that CEI, which is significantly influenced by a complex set of
environmental factors, has limitations in explaining the total phenotypic variation solely through
genetic factors. Therefore, advanced modeling that considers the interaction between
environmental factors and genomic data is needed to enhance the predictive accuracy of complex

traits such as CEl.

CEIl tended to decrease with higher carcass weight and younger slaughter month. Animals with
greater growth efficiency and faster finishing times exhibited lower CEI values, indicating that a
lower breeding value for CEI corresponds to a lower phenotypic CEI. This suggests a direction for
genetic improvement of Hanwoo cattle that simultaneously achieves enhanced productivity and
environmental load reduction, thereby contributing to the development of sustainable livestock
farming. This integrated approach provides a pathway for more resource-efficient and ecologically

responsible livestock production by integrating genetic selection with environmental sustainability
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[2, 23, 24]. These findings highlight the importance of genomic-based breeding for achieving
carbon footprint reduction goals in the livestock sector and provide essential scientific evidence

for the future establishment of environmentally friendly livestock systems.

Conclusions

This study estimated the genetic parameters for carcass traits and CEl in Hanwoo cattle and
compared the prediction accuracy of three genomic evaluation models: GBLUP, ssGBLUP, and
wssGBLUP. The results showed that the ssGBLUP and wssGBLUP._models exhibited higher
accuracies than the GBLUP model, with the wssGBLUP model, which applied weights,
demonstrating the best predictive performance across all traits. These findings represent significant
progress in enhancing the prediction accuracy of complex quantitative traits using genomic
information, particularly in weight-based models. Furthermore, this study confirmed the potential
for reducing carbon footprints through Hanwoo cattle improvements, thereby suggesting a
direction for genetic improvement that can contribute to the development of sustainable livestock
farming. The findings of this study are expected to enhance the environmental sustainability of the
Hanwoo cattle industry through precise breeding strategies and provide the scientific foundation

necessary for achieving carbon neutrality goals in future livestock systems.
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Tables and Figures

444  Table 1. Detailed information on the genome population

Sex Birth season Birth region Slaughter place Slaughter month Slaughter year
Sets Herds Sets Herds Sets Herds Sets Herds Herds Sets Herds
Steer 18,327 Spring 5,796  Gangwon 1,720 A 14,396 24 11 2012 1
Summer 2,918  Gyeonggi 1,199 B 1,087 25 80 2013 30
Autumn 4,833 Gyeongnam 501 C 941 26 1,015 2014 20
Winter 4,805 Gyeongbuk 3,133 D 649 27 2,476 2015 27
Jeonnam 2,765 E 394 28 3,388 2016 7
Jeonbuk 5,377 F 329 29 3,907 2017 2,222
Chungnam 2,207 G 279 30 3,436 2018 8,061
Chungbuk 1,435 H 7 31 2,625 2019 7,466
Jeju 15 | 33 32 1,068 2020 507
J 25 33 346 2021 3
K 13 2022 8
L 13
M 13
N 12
(6] 12
P 10
(Slogeads) 69
Total 18,352
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452

Table 2. Basic statistics for phenotype data in carcass traits and environmental impact trait (carbon emission

intensity)

Type Traits No. of records  Mean SD Min Max
CWT (kg) 443.86 +60.48 113.00 760.00
EMA (cm?) 94.96 +12.51 2.00 184.00

Carcass traits 115,256

BFT (mm) 13.44 +5.20 1.00 59.00

MSC (score) 5.87 1+2.01 1.00 9.00

Environmental CEI (kg/CO2£q) 115,256 14.01 4+2.90 5.95 69.42

impact trait

CWT, carcass weight; EMA, eye muscle area; BFT, backfat thickness; MSC, marbling score; CEIl, carbon emission

intensity; mean, average; SD, standard deviation

22



453  Table 3. Estimated genetic parameters and heritability estimated using three models

Method Traits ol ol o) h?
CWT (kg) 909.0 1,319.1 2,228.1 0.41
EMA (cm?) 50.20 90.44 140.6 0.36
GBLUP BFT (mm) 9.33 14.82 24.1 0.39
MSC (score) 1.58 1.73 3.3 0.48
CEI (kg/CO2q) 0.86 1.62 2.5 0.35
CWT (kg) 1,311.8 2,010.4 3,322.2 0.39
EMA (cm?) 54.57 99.53 154.1 0.35
Vflssfgétﬁé BFT (mm) 11.88 19.88 318 0.37
MSC (score) 1.90 1.94 3.8 0.49
CEI (kg/CO2¢q) 0.93 1.82 2.75 0.34

454  CWT, carcass weight; EMA, eye muscle area; BFT, backfat thickness; MSC, marbling score; CEI, carbon emission

455  intensity; GBLUP, genomic BLUP; ssGBLUP, single-step genomic BLUP; wssGBLUP, weighted genomic BLUP.

456  ¢Z: genetic variance, oZ: residual variance, o7 phenotypic variance, h?*: heritability

457

458
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459  Table 4. Comparison of prediction accuracy across three genomic evaluation models

Analysis method

Trait
GBLUP ssGBLUP wssGBLUP
CWT (kg) 0.67 0.67 0.75
EMA (cm?) 0.65 0.66 0.74
BFT (mm) 0.66 0.66 0.75
MSC (score) 0.71 0.70 0.77
CEI (kg/CO2eq) 0.60 0.61 0.71

460 CWT, carcass weight; EMA, eye muscle area; BFT, backfat thickness; MSC, marbling score; CEIl, carbon emission

461 intensity; GBLUP, genomic BLUP; ssGBLUP, single-step genomic BLUP; wssGBLUP, weighted single-step

462  genomic BLUP; GEBV, genomic estimated breeding value

463

464
465
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Correlation between GEBV and phenotypes using the GBLUP model
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Fig. 1. Heatmaps of correlations between phenotypes and GEBVs estimated by GBLUP, ssGBLUP, and

wssGBLUP models.
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