

1 **Prediction accuracy of carcass and carbon emission traits in Hanwoo cattle using**
2 **genomic evaluation models.**

4 Jisuk Yu^{1#}, Gwanghyeon Lee^{2#}, Hak-Kyo Lee³, Dohyun Kim^{3*}, Jae-Don Oh^{2,4*}

6 ¹ Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju
7 54896, Korea

8 ² Department of Biotechnology, Hankyong National University, Anseong 17579, Korea

9 ³ Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Korea

10 ⁴ Gyeonggi Regional Research Center, Hankyong National University, Anseong 17579, Korea

12 [#]These authors contributed equally to this work.

18 *Corresponding author

19 Dohyun Kim : Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896,
20 Korea. E-mail: poordoy@naver.com

21 Jae-Don Oh : Department of Biotechnology, Hankyong National University, Anseong 17579,
22 Korea. E-mail: hk-dg1@hknu.ac.kr

27

28 **Abstract**

29 This study estimated genetic parameters for carcass and carbon emission-related traits in Hanwoo cattle
30 using various genomic analytic models, and explored methods for improving the accuracy of genetic
31 evaluation based on these estimations. The analysis results across all models showed high prediction
32 accuracy for carcass traits. Notably, the weighted single-step genomic best linear unbiased prediction
33 (wssGBLUP) method significantly improved the accuracy by enhancing the utilization of genomic
34 information through the application of weights. In contrast, carbon emission intensity, which is highly
35 influenced by environmental factors, generally exhibited a lower prediction accuracy than other carcass
36 traits. However, the wssGBLUP model demonstrated a significant improvement in accuracy, even in
37 predictions of carbon emission intensity, demonstrating that the weighted application of genomic
38 information contributes to improved predictive power, even for traits with substantial environmental
39 influence. The findings of this study present a new strategy for effectively utilizing genomic information in
40 Hanwoo cattle improvement programs to simultaneously achieve the dual goals of enhancing productivity
41 and reducing environmental load, thereby providing a scientific foundation for the sustainable development
42 of the livestock industry.

43

44 **Keywords** : Hanwoo cattle, Carcass traits, Carbon emission intensity, Genomic evaluation, wssGBLUP

45

Introduction

47 South Korea's livestock industry must transition from a productivity-centric approach to new
48 sustainability strategies. As environmental impacts, particularly greenhouse gas emissions, have
49 emerged as an international issue, reducing the carbon emission intensity from livestock has
50 become a significant challenge. Globally, there are 1.47 billion beef cattle and 290 million dairy
51 cows, and ruminants, through enteric fermentation, emit substantial amounts of methane. Methane
52 is a potent greenhouse gas with a global warming potential over 28 times greater than carbon
53 dioxide, significantly impacting global warming [1]. Against this backdrop, it is crucial to establish
54 breeding programs that consider not only productivity, but also environmental impacts, especially
55 greenhouse gas emissions, for the sustainable development of the livestock industry. Numerous
56 studies have suggested the potential for genetic improvement to reduce greenhouse gas emissions
57 during livestock farming, which will be a key factor in securing future competitiveness of the
58 livestock industry.

59 Breeding ruminants, including Hanwoo cattle, requires a genetic approach that goes beyond
60 improving economic traits, focusing on carcass yield and quality, to consider greenhouse gas
61 emissions. This approach contributes to achieving carbon neutrality in the livestock sector and is
62 essential for reducing the environmental burden of farming. Specifically, breeding of Hanwoo
63 cattle must shift towards reducing its carbon footprint and improving productivity, necessitating a
64 multi-trait breeding strategy that comprehensively considers methane-related, carcass, and feed-
65 efficiency traits [2]. The Hanwoo breeding program successfully reduced the carbon footprint of
66 beef production by increasing carcass weight, supporting the positive effect of genetic approaches
67 on greenhouse gas reduction. This genetic improvement has the potential to contribute to global
68 greenhouse gas reduction by replacing a significant amount of beef imports, while maintaining

69 livestock populations and improving productivity. This study aimed to establish a scientific basis
70 for sustainable Hanwoo breeding by analyzing genetic correlations between major Hanwoo carcass
71 traits and carbon emission-related traits and proposing an integrated model of genetic evaluation
72 [3].

73 Genetics based evaluation methodologies for economic traits have continuously evolved from the
74 traditional pedigree-based best linear unbiased prediction (BLUP) method to the genomic BLUP
75 (GBLUP) model utilizing genomic information, the single-step GBLUP (ssGBLUP) model
76 integrating genomic and pedigree information, and the weighted single-step GBLUP (wssGBLUP)
77 method predicting the weight of each single nucleotide polymorphism (SNP). These advancements
78 have enabled a more accurate evaluation of individual genetic merits, significantly enhancing the
79 effectiveness of livestock breeding. GBLUP is a methodology developed to overcome the
80 limitations of the traditional BLUP method and more accurately reflect the genetic relationships
81 between individuals by estimating breeding values using genomic information, such as SNPs.
82 ssGBLUP inherits the advantages of GBLUP while integrating pedigree information, contributing
83 to the accuracy of estimations of breeding value for individuals lacking genomic information.
84 Furthermore, wssGBLUP provides superior predictive performance compared with traditional
85 BLUP or GBLUP by differentially reflecting the impact of specific genotypes on phenotypes [4].
86 These methodological advancements are expected to make significant contributions to sustainable
87 livestock development, considering not only the improvement of livestock productivity and
88 economic efficiency, but also environmental aspects [5, 6]. This study explored the potential for
89 developing an integrated genetic evaluation model by precisely estimating the genetic parameters
90 of Hanwoo carcass traits and carbon-emission-related traits using advanced genomic evaluation
91 techniques. Such an integrated evaluation provides essential scientific evidence for establishing

92 the direction of continuous Hanwoo cattle improvement and contributes to achieving breeding
93 goals that simultaneously pursue economic benefits and environmental sustainability [7].
94 Specifically, the genetic improvement of various traits, such as feed efficiency, growth rate, and
95 reproductive ability, is essential for sustainable beef production. Hanwoo is well known for its
96 excellent meat quality, and genetic improvement has been accelerated through genomic selection
97 [8–11].

98 In this context, this study aimed to estimate the genetic parameters of Hanwoo carcass traits and
99 carbon emission-related traits by applying various models of genomic analysis, and to explore
100 ways to enhance the accuracy of genetic evaluation based on these estimates. Through this study,
101 we aimed to lay the foundation for new breeding strategies that can simultaneously achieve the
102 dual goals of enhancing Hanwoo productivity and minimizing environmental impacts.

103
104

105

Materials and Methods

106 **Materials**

107 The genomic information used in this study was obtained from 18,352 Hanwoo cattle (all steers)
108 born between 2012 and 2022 across the country (Table 1). Pedigree information was collected for
109 the three generations by querying individual identification numbers from the Korea Animal
110 Improvement Association. After verifying individual errors, a pedigree dataset comprising
111 292,111 individuals was constructed. Phenotypic information included carcass traits measured
112 after 24 h of refrigeration post-slaughter according to the "Detailed Standards for Livestock
113 Products Grading" (Ministry of Agriculture, Food, and Rural Affairs Notification No. 2025-23):
114 carcass weight (CWT), eye muscle area (EMA), backfat thickness (BFT), and marbling score
115 (MSC). Carbon emission intensity (CEI), calculated using the "Calculation Formula for Emission
116 Intensity for Low-Carbon Livestock Products Certification" from the Livestock Products Quality
117 Evaluation Institute, was used as an environmental trait.

118
$$\text{Greenhouse gas emissions (CO}_2\text{ eq) per kilogram of carcass weight} = \frac{\text{Slaughter month} \times 198.2(\text{CO}_2\text{eq})}{\text{carcass weight(kg)}}$$

119 CEI is a trait that represents the efficiency of greenhouse gas emissions relative to production,
120 allowing simultaneous consideration of environmental sustainability and production efficiency.
121 Phenotypic information was collected using the OPEN API service provided by the Public Data
122 Portal (data.go.kr). Phenotypic data for 115,256 individuals across three generations of pedigree
123 information were collected. The materials used in this study are considered to be nationwide data
124 that are not biased toward any specific region, and thus can be regarded as representative of the
125 Hanwoo cattle population.

126

127 **Quality control of genomic information**

128 Genomic data quality control was performed using PLINK v1.9. SNPs were filtered based on call
129 rates below 90%, minor allele frequencies below 1%, and Hardy-Weinberg equilibrium below
130 10^{-7} [12, 13]. After QC, 44,915 SNPs from 18,352 individuals were selected.

131

132 **The GBLUP model**

133 The GBLUP model is similar to the traditional pedigree-based BLUP method for estimating
134 breeding values. However, it uses genomic information instead of pedigree information to
135 construct a genetic relationship matrix among individuals. The mixed model equations used in the
136 GBLUP were as follows:

137
$$Y = X\beta + Zu + E$$

138 where Y is the vector of observed trait values, β is the vector of fixed effects and covariates, u is
139 the vector of additive genetic effects, E is the vector of residual effects, and X and Z are the
140 incidence matrices for fixed effects (slaughterhouse - birth year - birth season and slaughter day)
141 and random effect, respectively. The above equation is identical to the traditional BLUP model;
142 however, it becomes a GBLUP model when genomic information is used instead of pedigree
143 information. The matrix was expressed as follows:

144
$$\begin{bmatrix} X'R^{-1}X & X'R^{-1}Z \\ Z'R^{-1}X & Z'R^{-1}Z + G^{-1}/\sigma_u^2 \end{bmatrix} \begin{bmatrix} \hat{\beta} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} X'R^{-1}y \\ Z'R^{-1}y \end{bmatrix}, \quad G = \frac{zz'}{2\sum p_j(1-p_j)} = \frac{(M-P)(M-P)'}{2\sum p_j(1-p_j)}$$

145 where G is the genomic relationship matrix, R is the residual variance-covariance matrix, σ_u^2 is
146 the additive genetic variance, M is the matrix of individual SNP genotypes, P is the matrix of
147 expected genotype values, p_j is the frequency of the allele for the j -th locus. The centered

148 genotype matrix Z was constructed by subtracting the expected genotype matrix P from the
149 genotype matrix M [14]. Using the G matrix in this manner allows the estimation of additive
150 effects by replacing the identical kinship coefficients between full-sib and half-sib relationships
151 with genetic variation among individuals, leading to a more accurate estimation of breeding value
152 compared to analyses using pedigree information.

153

154 **The ssGBLUP model**

155 The conventional BLUP and GBLUP methods analyze pedigree information and genomic
156 information separately, whereas the ssGBLUP method integrates these data sources. By combining
157 them, genetic relationships among individuals can be estimated more accurately, allowing for more
158 precise genetic evaluation. The mixed linear model applied for the estimation of breeding values
159 was identical to that used in the GBLUP method. The ssGBLUP method utilizes both pedigree and
160 genomic information to construct an H matrix that represents genetic relationships among
161 individuals. The H matrix represents an integrated relationship structure that includes individuals
162 with genomic information and those connected through a pedigree but lacking genomic
163 information, and was defined as follows:

$$164 H = \begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix} = \begin{bmatrix} A_{11} + A_{12}A_{22}^{-1}(G - A_{22})A_{22}^{-1}A_{21} & A_{12}A_{22}^{-1}G \\ GA_{22}^{-1}A_{21} & G \end{bmatrix}$$

165 where H is the combined relationship matrix (pedigree + genome), A is the pedigree relationship
166 matrix, and G is the genomic relationship matrix. For computational convenience, the inverse of
167 the H matrix was used in the mixed model equations, as follows:

$$168 \begin{bmatrix} X'R^{-1}X & X'R^{-1}Z \\ Z'R^{-1}X & Z'R^{-1}Z + H^{-1}/\sigma_u^2 \end{bmatrix} \begin{bmatrix} \hat{\beta} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} X'R^{-1}y \\ Z'R^{-1}y \end{bmatrix}, \quad H^{-1} = A^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & G^{-1} - A_{22}^{-1} \end{bmatrix}$$

169 ssGBLUP has the advantage of being able to utilize the existing genetic evaluation process [15].
170 However, in the process of computing the inverse of the H matrix, efficient calculation of the
171 inverse of the matrix (G^{-1}) is essential. Unlike the inverse of the pedigree relationship matrix (A^{-1}),
172 there is no direct calculation method for the inverse of the G matrix (G^{-1}), and computation time
173 can increase proportionally with the number of individuals with genomic information [14].

174

175 **The wssGBLUP model**

176 GBLUP and ssGBLUP methods assume that all SNPs contribute equally, whereas in reality,
177 individual SNPs vary in their effects. The wssGBLUP method assigns iterative weights to SNPs,
178 enabling a more accurate estimation of breeding value. The mixed linear model used for the
179 estimation of breeding values was identical to that applied in the GBLUP method. The wssGBLUP
180 method is based on the ssGBLUP method, which integrates genomic and pedigree information and
181 assigns differential weights to SNP markers. This is achieved by introducing a diagonal matrix D
182 which reflects the importance of each SNP marker during the construction of the genomic
183 relationship matrix [5]. In the ssGBLUP method, D is set as the identity matrix. The equation used
184 is as follows:

$$185 \quad G_w = \frac{ZDZ'}{2\sum p_j(1 - p_j)}$$

186 The process for predicting SNP weights (D matrix) was as follows. Initially, the weight matrix was
187 set as the identity matrix, and breeding values were estimated using the ssGBLUP method. Based
188 on this, the effect of each SNP was calculated and the SNP weights were computed using the
189 square of the SNP effects and allele frequencies. The weight matrix was normalized to maintain
190 the total genetic variance, and a new G matrix was generated using the updated weight matrix,

191 followed by an iterative estimation of breeding values. This process can achieve sufficient
192 analytical accuracy after 2-3 iterations [5].

193

194 **Estimation of heritability and accuracy**

195 Heritability was calculated using the estimated genetic and residual variances for each trait in each
196 model (GBLUP, ssGBLUP, wssGBLUP). The formula used is as follows:

197

$$\text{Heritability}(h^2) = \frac{\sigma_a^2}{\sigma_a^2 + \sigma_e^2}$$

198 where h^2 is heritability, σ_a^2 is the genetic variance, and σ_e^2 is the residual variance, with $\sigma_a^2 + \sigma_e^2$
199 representing the phenotypic variance. Thus, heritability indicates the proportion of genetic
200 components in the total phenotypic variation.

201 The accuracy of the breeding values for each model was estimated using the prediction error
202 variance calculated for each individual during breeding value estimation. Additionally, the
203 accuracy of the breeding values was estimated by analyzing the correlation between breeding
204 values and actual phenotypic information.

205

$$\text{Accuracy} = \sqrt{1 - \frac{PEV}{\sigma_a^2}}, \quad P_{X,Y} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y}$$

206 where PEV is the prediction error for each individual, σ_a^2 is the additive genetic variance for each
207 trait. Correlation analysis was performed using the Pearson correlation coefficient between
208 breeding values and phenotypic information. Realized accuracy theory posits that a correlation
209 coefficient closer to 1 indicates a higher accuracy of the estimated breeding values.

210

211

Results

212 **Descriptive statistical analyses**

213 Descriptive statistics for phenotypic data are presented in Table 2. A total of 115,256 Hanwoo
214 cattle raised nationwide were included in the analysis. The mean and standard deviation values for
215 carcass traits, including CWT, EMA, BFT, and MSC, as well as estimated values for
216 environmental traits, such as CEI, are presented. These values were 443.86 ± 60.48 kg, 94.96 ± 12.51
217 cm^2 , 13.44 ± 5.20 mm, 5.87 ± 2.01 score, and 14.01 ± 2.90 kg/CO₂eq, respectively.

218

219 **Genetic parameter model estimations**

220 Genetic parameters estimated for each trait derived from the GBLUP, ssGBLUP, and wssGBLUP
221 models include additive genetic variance (σ_a^2), residual variance (σ_e^2), and phenotypic variance
222 (σ_p^2). Heritability values (h^2) were calculated using the variance components (Table 3). The
223 wssGBLUP model is based on the same H matrix as the ssGBLUP model and differs only in the
224 iterative application of marker weights to the G matrix. Furthermore, since breeding values were
225 estimated based on the same genetic parameters as the ssGBLUP model, the results were identical
226 to those of the ssGBLUP model. The estimated heritability for CWT was 0.41 in the GBLUP
227 model and 0.39 in the ssGBLUP/wssGBLUP models. For EMA, estimated heritability was 0.36 in
228 the GBLUP model and 0.35 in the ssGBLUP/wssGBLUP models. Estimated heritability of BFT
229 was 0.39 in the GBLUP model and 0.37 in ssGBLUP/wssGBLUP, and for MSC, it was 0.48 and
230 0.49 in the GBLUP and ssGBLUP models, respectively. Finally, the estimated heritability of CEI
231 was 0.35 and 0.34 in the GBLUP and ssGBLUP/wssGBLUP models, respectively. Examining the

232 results by analysis model, heritability estimated by the GBLUP model was higher than that of the
233 ssGBLUP and wssGBLUP models for all traits except MSC. The ssGBLUP and wssGBLUP
234 models tended to estimate heritability more conservatively because they are based on both pedigree
235 and genomic data. In addition, the GBLUP model used only a genomic-based G matrix, whereas
236 the ssGBLUP/wssGBLUP models used an H matrix, which incorporated both pedigree and
237 genomic information. Pedigree-based data may contain noise or low-accuracy information,
238 potentially leading to a reduced accuracy. The MSC exhibited the highest heritability across all
239 three models.

240

241 **Analysis of accuracy of genetic evaluation**

242 The accuracy of the genomic estimated breeding value (GEBV) based on the analysis models is
243 listed in Table 4. Examining traits by trait, CWT recorded an accuracy of 0.67 for both GBLUP
244 and ssGBLUP, while wssGBLUP showed the highest predictive capacity, at 0.75. This trend was
245 similarly observed for EMA and BFT traits, with wssGBLUP consistently achieving higher
246 accuracy than GBLUP and ssGBLUP, at 0.74 and 0.75, respectively. MSC had the highest
247 accuracy across all models, with accuracies of 0.71, 0.70, and 0.77 for GBLUP, ssGBLUP, and
248 wssGBLUP, respectively. CEI generally exhibited lower accuracy compared to other traits, with
249 GBLUP and ssGBLUP models at 0.60 and 0.61, respectively, but wssGBLUP maintained a higher
250 level of 0.71. Correlation analysis was performed between the breeding values of the test
251 populations estimated by the analysis methods and the actual phenotypic information using the
252 Pearson correlation coefficient. A correlation coefficient closer to 1 indicates that the estimation
253 was more accurate and closer to the phenotype. The calculated correlation coefficients are shown
254 as a heat map (Fig. 1). Overall, the ssGBLUP and wssGBLUP models showed a tendency towards

255 higher correlation coefficients with phenotypes than the GBLUP models. For CWT, a gradual
256 improvement was observed: 0.76 for GBLUP, 0.77 for ssGBLUP, and 0.78 for wssGBLUP. EMA
257 also showed higher correlation coefficients with ssGBLUP and wssGBLUP than GBLUP.
258 Although BFT showed a low correlation across all three models, the ssGBLUP and wssGBLUP
259 models recorded slightly higher values (0.73) than GBLUP. MSC showed relatively high
260 correlation coefficients across all three analysis models, with values of 0.80, 0.81, and 0.81 for
261 GBLUP, ssGBLUP, and wssGBLUP, respectively. CEI had the lowest correlation coefficients
262 overall, with values of 0.48, 0.52, and 0.47 for the GBLUP, ssGBLUP, and wssGBLUP models,
263 respectively, with the ssGBLUP model showing the highest correlation coefficient. A comparative
264 analysis of carcass traits and carbon emission intensity in Hanwoo cattle using the GBLUP,
265 ssGBLUP, and wssGBLUP models revealed significant improvements in prediction accuracy with
266 the latter two models.

267

268

269

Discussion

270 Comparing carcass performance with previous studies, Oh et al. [16] reported descriptive statistics
271 for 1,905 Hanwoo cattle (steers), including CWT, EMA, BFT, and MSC, as 446.43 ± 44.38 kg,
272 93.39 ± 10.20 cm², 12.95 ± 5.11 mm, and 6.10 ± 1.94 , respectively. Lee et al. [17], in their study of
273 186,332 Hanwoo cattle (steers), reported values of 432.70 ± 54.85 kg, 93.04 ± 12.27 cm², 13.51 ± 5.46
274 mm, and 5.75 ± 2.04 , showing similar results to the present study. Kim et al. [18] analyzed
275 3,247,508 Hanwoo cattle slaughtered between 21 and 39 months of age, reporting an average CEI
276 of 13.75 ± 1.4 kg/CO₂eq. The average CEI in this study was similar, at 14.01 ± 2.9 kg/CO₂eq.

277 In studies estimating genetic parameters through GBLUP modelling, Byun et al. [19] analyzed the
278 heritability of 564 Hanwoo cattle (cows) and 13,000 Hanwoo steers raised nationwide, and
279 reported 0.41, 0.38, 0.38, and 0.44 for CWT, EMA, BFT, and MSC, respectively. Mehrban et al.
280 [20] reported heritabilities of 0.31, 0.44, 0.50, and 0.61 in an ssGBLUP analysis using 8,966
281 Hanwoo bulls and 6,313 Hanwoo cattle (steers). Mehrban et al. [21] reported heritability estimates
282 of 0.28, 0.46, 0.57, and 0.59 using wssGBLUP for Hanwoo carcass traits in 5,134 animals, and
283 Lopez et al. [6] reported 0.37, 0.35, 0.36, and 0.45 using the wssGBLUP model for 10,215 animals
284 raised nationwide from 2006 to 2016. These findings indicate that heritability estimates vary
285 significantly not only by the analysis model, but also by the characteristics of the herds used in the
286 study. The heritability estimates most similar to those of the present study were found by Lopez et
287 al. [6], sharing the commonality of analyzing commercial herds. Lassen & Løvendahl [22] defined
288 methane emissions per liter of milk using 3,121 Holstein cattle, reporting a heritability of 0.21.
289 Although a direct comparison with previous studies is challenging, because the CEI analyzed in
290 this study reflects the carbon footprint across the entire rearing process rather than direct methane
291 emissions, it provides insights into the impact of genetic factors across species on environmental
292 efficiency [3]. These results underscore the importance of developing breeding strategies to
293 enhance environmental sustainability in livestock breeding, and emphasize the need for research
294 to identify and utilize genetic traits that contribute to reducing carbon emissions.

295 The accuracy of genetic evaluation was calculated based on the prediction error of estimated
296 breeding values for each individual and the genetic variance of each trait; high values indicated
297 greater consistency between actual genetic ability and estimated GEBV. The results showed that
298 carcass traits exhibited high accuracy across all three models, with a significant improvement in

299 the accuracy of the wssGBLUP method, which resulted from the increased utilization of genomic
300 information through the application of weights. This accuracy improvement suggests that the
301 weight-based wssGBLUP method can enhance the predictive power of traits with complex genetic
302 backgrounds [4, 21]. CEI generally showed a lower predictive accuracy than other carcass traits,
303 likely due to the influence of numerous environmental factors. This is presumed to be because CEI
304 is heavily influenced by environmental factors. However, the wssGBLUP model demonstrated a
305 significant improvement in accuracy, even for CEI prediction, demonstrating that the application
306 of weights to genomic information can contribute to improved prediction even for traits heavily
307 influenced by environmental factors.

308 High correlation coefficients between GEBV and phenotypic values were observed for carcass
309 traits across all three models used in this study. However, CEI was poorly correlated across all
310 three models, suggesting that CEI, which is significantly influenced by a complex set of
311 environmental factors, has limitations in explaining the total phenotypic variation solely through
312 genetic factors. Therefore, advanced modeling that considers the interaction between
313 environmental factors and genomic data is needed to enhance the predictive accuracy of complex
314 traits such as CEI.

315 CEI tended to decrease with higher carcass weight and younger slaughter month. Animals with
316 greater growth efficiency and faster finishing times exhibited lower CEI values, indicating that a
317 lower breeding value for CEI corresponds to a lower phenotypic CEI. This suggests a direction for
318 genetic improvement of Hanwoo cattle that simultaneously achieves enhanced productivity and
319 environmental load reduction, thereby contributing to the development of sustainable livestock
320 farming. This integrated approach provides a pathway for more resource-efficient and ecologically
321 responsible livestock production by integrating genetic selection with environmental sustainability

322 [2, 23, 24]. These findings highlight the importance of genomic-based breeding for achieving
323 carbon footprint reduction goals in the livestock sector and provide essential scientific evidence
324 for the future establishment of environmentally friendly livestock systems.

325

326

327 **Conclusions**

328 This study estimated the genetic parameters for carcass traits and CEI in Hanwoo cattle and
329 compared the prediction accuracy of three genomic evaluation models: GBLUP, ssGBLUP, and
330 wssGBLUP. The results showed that the ssGBLUP and wssGBLUP models exhibited higher
331 accuracies than the GBLUP model, with the wssGBLUP model, which applied weights,
332 demonstrating the best predictive performance across all traits. These findings represent significant
333 progress in enhancing the prediction accuracy of complex quantitative traits using genomic
334 information, particularly in weight-based models. Furthermore, this study confirmed the potential
335 for reducing carbon footprints through Hanwoo cattle improvements, thereby suggesting a
336 direction for genetic improvement that can contribute to the development of sustainable livestock
337 farming. The findings of this study are expected to enhance the environmental sustainability of the
338 Hanwoo cattle industry through precise breeding strategies and provide the scientific foundation
339 necessary for achieving carbon neutrality goals in future livestock systems.

340

341

342

343

Acknowledgments

344 This work was supported by the National Research Foundation of Korea (NRF-
345 2019R1A2C1089807) and the AGENDA project (PJ01621803), Rural Development
346 Administration, Republic of Korea

347

348

References

349 1. IPCC (Intergovernmental Panel on Climate Change). Clim Change. Cambridge, United Kingdom and
350 New York: Cambridge University Press. 2021: The physical science basis. Contribution of working group
351 I to the sixth assessment report of the intergovernmental panel on climate change.

352

353 2. Uemoto Y, Takeda M, Ogino A, Kurogi K, Ogawa S, Satoh M, et al. Genetic and genomic analyses for
354 predicted methane-related traits in Japanese Black steers. Anim Sci J. 2020;91:e13383.

355 <https://doi.org/10.1111/asj.13383>

356

357 3. Heo JY, Baek SW, Lee HK. Impact of beef self-sufficiency improvement in Korea on global
358 greenhouse gas emission reduction. J Anim Breed Genomics. 2022;6.

359 <https://doi.org/10.12972/jabng.20220001>

360

361 4. Naserkheil M, Mehrban H, Lee D, Park MN. Evaluation of genome-enabled prediction for carcass
362 primal cut yields using single-step genomic best linear unbiased prediction in Hanwoo cattle. Genes.
363 2021;12:1886. <https://doi.org/10.3390/genes12121886>

364

365 5. Wang S, Wang Y, Li Y, Xiao F, Guo H, Gao H, et al. Genome-wide association study and selective
366 sweep analysis reveal the genetic architecture of body weights in a chicken F2 resource population. *Front*
367 *Vet Sci.* 2022;9:875454. <https://doi.org/10.3389/fvets.2022.875454>

368

369 6. Lopez BI, Lee SH, Park JE, Shin DH, Oh JD, de Las Heras-Saldana S de las, et al. Weighted genomic
370 best linear unbiased prediction for carcass traits in Hanwoo cattle. *Genes* . 2019;10:1019.
371 <https://doi.org/10.3390/genes10121019>

372

373 7. Alam M, Lee SH, Lee DH, Cho C, Park MN. Genetic analysis of major carcass traits of Korean
374 Hanwoo males raised for thirty months. *Animals (Basel)*. 2021;11:1792.
375 <https://doi.org/10.3390/ani11061792>

376

377 8. Koo YM, Alkhoder H, Choi TJ, Liu Z, Reents R. Genomic evaluation of carcass traits of Korean beef
378 cattle Hanwoo using a single-step marker effect model. *J Anim Sci.* 2023;101:skad104.
379 <https://doi.org/10.1093/jas/skad104>

380

381 9. Akhtar MF, Shafiq M, Ali I. Improving gander reproductive efficacy in the context of globally
382 sustainable goose production. *Animals (Basel)*. Multidisciplinary Digital Publishing Institute. 2021;12:44.
383 <https://doi.org/10.3390/ani12010044>

384

385 10. Chung Y, Lee SH, Lee HK, Lim D, van der Werf J, Lee SH [Internet]. THI modulation of genetic and
386 non-genetic variance components for carcass traits in Hanwoo cattle. *Front Genet.* 2020;11:576377.
387 <https://doi.org/10.3389/fgene.2020.576377>

388

389 11. Christensen OF, Lund MS. Genomic prediction when some animals are not genotyped. *Genet Sel*
390 *Evol.* 2010;42:2. <https://doi.org/10.1186/1297-9686-42-2>

391

392 12. Purcell S, Neale BM, Todd-Brown KE, Thomas LO, Ferreira MAR, Bender DB, et al. PLINK: A tool
393 set for whole-genome association and population-based linkage analyses. *Am J Hum Genet.*
394 2007;81:559–75. <https://doi.org/10.1086/519795>

395

396 13. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: Rising
397 to the challenge of larger and richer datasets. *GigaScience.* 2015;4:7. <https://doi.org/10.1186/s13742-015-0047-8>

398

399

400 14. VanRaden PM. Efficient methods to compute genomic predictions. *J Dairy Sci.* 2008;91:4414–23.
401 <https://doi.org/10.3168/jds.2007-0980>

402

403 15. Misztal I, Legarra A, Aguilar I. Computing procedures for genetic evaluation including phenotypic,
404 full pedigree, and genomic information. *J Dairy Sci.* 2009;92:4648–55. <https://doi.org/10.3168/jds.2009-2064>

405

406

407 16. Oh JD, Lee GH, Kong HS. Estimation of heritability and genetic parameters for carcass traits and
408 primal cut production traits in Hanwoo. *J Anim Reprod Biotechnol.* 2024;39:114–20.
409 <https://doi.org/10.12750/JARB.39.2.114>

410

411 17. Lee GH, Lee YS, Moon SJ, Kong HS. The accuracy of genomic estimated breeding value using a
412 Hanwoo SNP chip and the pedigree data of Hanwoo cows in Gyeonggi Province. *Journal of Life Science.*
413 2022; 32(4): 279-284. <https://doi.org/10.5352/JLS.2022.32.4.279>

414

415 18. Kim DH, Yu JS, Lee HK, Oh JD. A study on the status and trends of the carbon footprint of Hanwoo
416 steers by region. *J Anim Breed Genom.* 2023;7:105–12. <https://doi.org/10.12972/jabng.20230012>

417

418 19. Byun SK, Kim DH, Oh JD, Lee HK. The Analysis on Evaluation of Genomic breeding value in

419 Brindle Cattle using reference population of Hanwoo. *J Anim Breed Genom.* 2021;5.

420 <https://doi.org/10.12972/jabng.20210009>

421

422 20. Mehrban H, Lee DH, Naserkheil M, Moradi MH, Ibáñez-Escríche N. Comparison of conventional

423 BLUP and single-step genomic BLUP evaluations for yearling weight and carcass traits in Hanwoo beef

424 cattle using single trait and multi-trait models. *PLOS One.* 2019;14:e0223352.

425 <https://doi.org/10.1371/journal.pone.0223352>

426

427 21. Mehrban H, Naserkheil M, Lee DH, Cho CI, Choi TJ, Park MN, et al. Genomic prediction using

428 alternative strategies of weighted single-step genomic BLUP for yearling weight and carcass traits in

429 Hanwoo beef cattle. *Genes.* 2021;12:266. <https://doi.org/10.3390/genes12020266>

430

431 22. Lassen J, Løvendahl P. Heritability estimates for enteric methane emissions from Holstein cattle

432 measured using noninvasive methods. *J Dairy Sci.* 2016;99:1959–67. <https://doi.org/10.3168/jds.2015-10012>

434

435 23. Yoon I, Oh SH, Kim SW. Sustainable animal agriculture in the United States and the implication in

436 Republic of Korea. *J Anim Sci Technol.* 2024;66:279–94. <https://doi.org/10.5187/jast.2024.e19>, PMID:

437 38628690

438

439 24. Lakamp AD, Ahlberg CM, Allwardt K, Broocks A, Bruno K, McPhillips LJ, et al. Variance

440 component estimation and genome-wide association of predicted methane production in crossbred beef

441 steers. *J Anim Sci.* 2023;101:skad179. <https://doi.org/10.1093/jas/skad179>

442 .

443

Tables and Figures

444

Table 1. Detailed information on the genome population

Sex		Birth season		Birth region		Slaughter place		Slaughter month		Slaughter year	
Sets	Herds	Sets	Herds	Sets	Herds	Sets	Herds	Sets	Herds	Sets	Herds
Steer	18,327	Spring	5,796	Gangwon	1,720	A	14,396	24	11	2012	1
		Summer	2,918	Gyeonggi	1,199	B	1,087	25	80	2013	30
		Autumn	4,833	Gyeongnam	501	C	941	26	1,015	2014	20
		Winter	4,805	Gyeongbuk	3,133	D	649	27	2,476	2015	27
	18,327	Jeonnam	2,765	E	394	28	3,388	2016	7		
		Jeonbuk	5,377	F	329	29	3,907	2017	2,222		
		Chungnam	2,207	G	279	30	3,436	2018	8,061		
		Chungbuk	1,435	H	77	31	2,625	2019	7,466		
		Jeju	15	I	33	32	1,068	2020	507		
				J	25	33	346	2021	3		
				K	13			2022	8		
				L	13						
				M	13						
				N	12						
				O	12						
				P	10						
				Q (≤10 heads)	69						
Total								18,352			

445

446

447 **Table 2. Basic statistics for phenotype data in carcass traits and environmental impact trait (carbon emission**
448 **intensity)**

Type	Traits	No. of records	Mean	SD	Min	Max
Carcass traits	CWT (kg)	115,256	443.86	±60.48	113.00	760.00
	EMA (cm ²)		94.96	±12.51	2.00	184.00
	BFT (mm)		13.44	±5.20	1.00	59.00
	MSC (score)		5.87	±2.01	1.00	9.00
Environmental impact trait	CEI (kg/CO ₂ eq)	115,256	14.01	±2.90	5.95	69.42

449 CWT, carcass weight; EMA, eye muscle area; BFT, backfat thickness; MSC, marbling score; CEI, carbon emission
450 intensity; mean, average; SD, standard deviation

451

452

Table 3. Estimated genetic parameters and heritability estimated using three models

Method	Traits	σ_a^2	σ_e^2	σ_p^2	h^2
GBLUP	CWT (kg)	909.0	1,319.1	2,228.1	0.41
	EMA (cm ²)	50.20	90.44	140.6	0.36
	BFT (mm)	9.33	14.82	24.1	0.39
	MSC (score)	1.58	1.73	3.3	0.48
	CEI (kg/CO ₂ eq)	0.86	1.62	2.5	0.35
ssGBLUP/ wssGBLUP	CWT (kg)	1,311.8	2,010.4	3,322.2	0.39
	EMA (cm ²)	54.57	99.53	154.1	0.35
	BFT (mm)	11.88	19.88	31.8	0.37
	MSC (score)	1.90	1.94	3.8	0.49
	CEI (kg/CO ₂ eq)	0.93	1.82	2.75	0.34

454 CWT, carcass weight; EMA, eye muscle area; BFT, backfat thickness; MSC, marbling score; CEI, carbon emission

455 intensity; GBLUP, genomic BLUP; ssGBLUP, single-step genomic BLUP; wssGBLUP, weighted genomic BLUP.

456 σ_a^2 : genetic variance, σ_e^2 : residual variance, σ_p^2 : phenotypic variance, h^2 : heritability

457

458

459 **Table 4. Comparison of prediction accuracy across three genomic evaluation models**

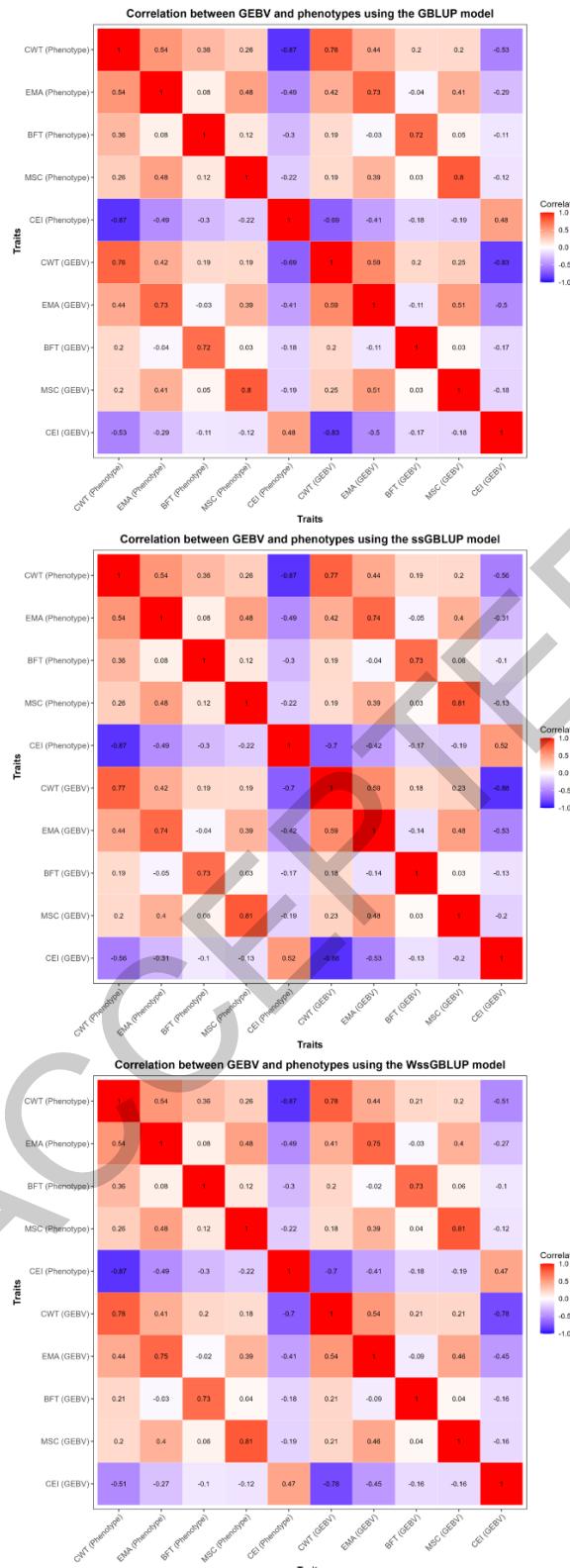
Trait	Analysis method		
	GBLUP	ssGBLUP	wssGBLUP
CWT (kg)	0.67	0.67	0.75
EMA (cm ²)	0.65	0.66	0.74
BFT (mm)	0.66	0.66	0.75
MSC (score)	0.71	0.70	0.77
CEI (kg/CO ₂ eq)	0.60	0.61	0.71

460 CWT, carcass weight; EMA, eye muscle area; BFT, backfat thickness; MSC, marbling score; CEI, carbon emission
 461 intensity; GBLUP, genomic BLUP; ssGBLUP, single-step genomic BLUP; wssGBLUP, weighted single-step
 462 genomic BLUP; GEBV, genomic estimated breeding value

463

464

465



466

467 **Fig. 1. Heatmaps of correlations between phenotypes and GEBVs estimated by GBLUP, ssGBLUP, and**
 468 **wssGBLUP models.**