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Abstract

Heat stress (HS) is a major environmental threat to swine production that impairs growth performance and health.
Because of their limited thermoregulatory capacity, pigs are highly vulnerable to HS, which results in compromised
intestinal integrity, systemic inflammation, and metabolic inefficiency. To elucidate the mechanisms underlying HS
acclimation in pigs, we conducted a longitudinal multi-omics analysis integrating fecal microbiome, whole-blood
transcriptome, and immune cell deconvolution in finishing pigs under thermoneutral (TN) or HS conditions. HS
markedly reduced the average daily gain and feed intake. Microbiome profiling revealed condition-specific shifts: TN
pigs showed enrichment of short-chain fatty acid (SCFA)-producing genera, such as Prevotella and Streptococcus,
whereas HS pigs exhibited increased Clostridium sensu stricto 1. Functional predictions indicated preservation of the
antioxidant and immunomodulatory pathways (glutathione, retinol, and aminoacyl-tRNA biosynthesis) in TN pigs,
whereas HS pigs displayed branched-chain amino acid catabolism, reflecting metabolic acclimation under stress.
Transcriptomic analysis revealed acute changes at week 1, with 516 differentially expressed genes enriched in
hematopoiesis, focal adhesion, cytoskeletal remodeling, and thyroid hormone signaling. By Week 2, these gene
responses had declined, suggesting partial acclimation. Network analysis identified cytoskeletal genes (ACTB, MYL9,
ACTN4, and COL4A4) as the central regulators. Immune deconvolution further showed the HS-driven elevation of
cytotoxic T and myeloid subsets, in contrast to B cell populations which were maintained under TN, highlighting
divergent immune trajectories. Integration of the microbiome, transcriptome, and immune data revealed two axes: (1)
cytotoxic T cells positively associated with Clostridium sensu stricto 1, but negatively associated with cytoskeletal
genes, and (2) B cells positively linked to Prevotella, Lactobacillus, and structural genes. Only the B-cell structural
axis formed a coherent cross-layer module, indicatin a recovery-oriented response. These findings demonstrate that
resilience to HS requires the coordination of humoral immunity, cytoskeletal reinforcement, and SCFA-producing
microbiota. The identified biomarker axis (Prevotella, B cells, and cytoskeletal genes) provides a mechanistic basis

for developing precise strategies to enhance thermal tolerance in swine.

Keywords: Heat stress, Finishing pigs, Multi-omics integration, Cell deconvolution
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Introduction

As the global expansion of the swine industry continues, heat stress (HS) driven by climate change has emerged as
a critical challenge [1]. Compared to other livestock species, pigs are particularly vulnerable to elevated ambient
temperatures due to their insufficiently developed sweat glands and substantial subcutaneous adipose tissue, both of
which significantly limit effective thermoregulation [2]. Physiologically, HS induces peripheral vasodilation, reduces
blood flow to the visceral organs, and compromises intestinal health [3]. The resulting intestinal hypoxia subsequently
weakens the gut barrier integrity and facilitates pathogen translocation and systemic inflammation [4]. Additionally,
HS negatively affects swine productivity and profitability, thereby causing reduced feed intake, impaired growth
performance, and decreased reproductive efficiency, particularly during the finishing pig stage of the high growth
phase [5, 6].

Despite extensive studies investigating the HS responses in swine, comprehensive research utilizing multiomics
integration (MOI) approaches to elucidate the underlying biological mechanisms remains limited [7]. HS
simultaneously influences diverse physiological pathways, including immune, metabolic, and intestinal homeostasis
pathways, through intricate host-microbiome interactions, leading to systemic pathological outcomes [8, 9]. Previous
single-omics studies have further provided limited insights into these relationships. Typically, transcriptomic analyses
offer only an incomplete understanding of gene regulatory mechanisms without adequately addressing microbiome
interactions [10]. Conversely, microbiome-centric studies have independently elucidated shifts in microbial
composition associated with gut barrier function, immunity, and metabolism, but have failed to clarify the direct
molecular implications on systemic physiological responses [11]. Therefore, an MOI approach is essential to bridge
these fragmented insights by correlating microbial community shifts with host gene expression, thereby enabling the
simultaneous investigation of systemic and intestinal responses to HS [12, 13]. To ensure analytical robustness, it is
essential to collect biospecimen-derived data that accurately represents distinct biological layers of the host [14].
Accordingly, fecal and whole blood samples were used to noninvasively and longitudinally evaluate host
physiological responses to HS, highlighting their utility for the real-time assessment of intestinal and systemic
alterations. Accordingly, fecal and whole blood samples were used to noninvasively and longitudinally evaluate host
physiological responses to HS, highlighting their utility for the real-time assessment of intestinal and systemic

alterations.
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Conventional bulk blood transcriptomics have a critical limitation: HS remodels immune cell populations, and bulk
profiles may conflate compositional shifts with intrinsic gene regulatory changes. To address this issue, we applied
cell-type deconvolution, which disentangles population dynamics from transcriptional regulation, and refines the
resolution of immune acclimation under HS [15]. Collectively, this study employed an MOI framework combining
microbiome, transcriptome, and immune cell data to comprehensively characterize the systemic and intestinal
responses of finishing pigs to HS. We hypothesized that integrating these multilayered data would reveal condition-
specific host—-microbiome—immune system interaction axes, thereby uncovering the mechanistic pathways underlying
acclimations or malacclimations to HS. This integrative approach aims to not only advance the understanding of swine
thermal stress biology but also to provide a conceptual basis for precise strategies to enhance resilience in the swine

industry.
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Materials and Methods

Ethics statement
All experimental protocols were approved by the Institutional Animal Care and Use Committee (Approval No.
202012A-CNU-204) of Chungnam National University, Daejeon, South Korea. All animal handling and sampling

procedures were conducted in accordance with animal use guidelines and regulations.

Temperature and humidity index
The Temperature and humidity index (THI) was calculated using the formula suggested by the NRC [16]:
THI= (1.8xTdb+32) — [(0.55-0.0055%RH) x (1.8x Tdb —26.8)]

Where Tdb is the dry-bulb temperature and RH is the relative humidity

Experimental design, animals, and diets

This experiment followed a two-factor factorial design consisting of two envrionment treatments (thermoneutral,
TN; and HS) and three time points (Weeks 0, 1, and 2). Twenty-four crossbred finishing pigs ([Landrace x Yorkshire]
x Duroc; initial body weight, BW =51.14 + 5.79kg; 12 TN and 12 HS) were assigned to two environmental treatments
in a randomized complete block design (block = BW) during 14 days. Both fecal microbiome and whole-blood
transcriptome data were generated from all individuals at each time point. Environmental treatments were as follows:
(1) THI 68 (comfort); 23-24°C, 35% and (2) THI 87 (severe); 32-33°C, 80%, and were designed based on previous
reports [17]. Pigs were fed a basal diet (corn-soy diet; 3350 kcal/kg ME; 18.55% CP; 1.23% lysine; 0.38% methionine)
formulated to meet or exceed the nutrient requirements of growing pigs (NRC, 2012; Table 2.1) [18]. Pigs were
provided ad libitum access to feed and water throughout the experimental period. Each pen size was 2.32m x 1.75m

x 0.7m. The pen floor was slatted with 100% plastic.

Growth performance measurement and statistical analysis
Body weights were recorded at the start and end of the 14-day experimental period. Average daily gain (ADG),
average daily feed intake (ADFI), and gain-to-feed ratio (G:F) were subsequently calculated. Statistical analyses were

conducted using independent sample t-tests with the SAS 9.4 statistical software package (SAS Institute Inc., Cary,
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North Carolina, USA). Data are presented as the mean £ SEM, with significance thresholds set at p < 0.05 and p <

0.01.

16S rRNA sequencing library preparation

Genomic DNA was extracted from fecal samples to amplify the VV3-V4 hypervariable regions of the bacterial 16S
rRNA gene following the Illumina 16S Metagenomic Sequencing Library Preparation protocol. Each reaction
contained 2ng of template DNA, 5xreaction buffer, 1mM dNTPs, 500nM of each universal primer, and Herculase Il
Fusion DNA Polymerase (Agilent Technologies). The PCR cycling conditions consisted of an initial denaturation at
95°C for 3 min, followed by 25 cycles of denaturation at 95°C for 30s, annealing at 55°C for 30s, and extension at
72°C for 30s, with a final extension step at 72°C for 5 min. The forward primer sequence was: 5'-
GTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGC AG-3', ~and the reverse primer
sequence was 5-GTCTCGTGGGCTCGGAGATGTGTATAAGA GACAGGACTACHVGGGTATCTAATCC-3".
PCR products were purified using AMPure XP beads (Beckman Coulter, USA). A secondary PCR of 10 cycles was
subsequently conducted to attach the Nextera XT index sequences and Illumina sequencing adapters, followed by a
second purification step using AMPure XP beads. The concentrations of the indexed libraries were quantified using
the KAPA Library Quantification Kit (KAPA Biosystems, USA), while the fragment size distribution was verified
using the Agilent TapeStation D1000 system. Paired-end sequencing (2 x 300 bp) was performed using the [llumina

MiSeq platform (lllumina, San Diego, CA, USA) at Macrogen.

Microbiome data analysis and taxonomy classification

Raw paired-end reads were processed using the QIIME2 platform v2024.2 to characterize the fecal microbial
community [19]. After demultiplexing and initial quality filtering, sequences were denoised using the DADA?2
algorithm to correct amplicon errors and generate high-resolution amplicon sequence variants (ASVs) [20].
Taxonomic classification of these ASVs was conducted using a Naive Bayes classifier trained on the SILVA v138 99
database specific to the V3-V4 region of the 16S rRNA gene [21]. The alpha diversity within each sample was
assessed using the observed ASV counts and Shannon diversity indices, whereas beta diversity between samples was
evaluated based on the Bray—Curtis dissimilarity and visualized using nonmetric multidimensional scaling (NMDS).

Statistical comparisons of beta diversity among groups were performed using permutational multivariate analysis of
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variance (PERMANOVA). This taxonomic framework allowed for the profiling of microbial communities from the

phylum to the genus level across treatment groups and sampling times.

Functional prediction of microbial communities

The functional potential of the fecal microbiota was inferred using phylogenetic investigation of communities
through reconstruction of unobserved state 2 (PICRUSt2) [22]. The ASV tables were normalized to the 16S rRNA
gene copy numbers prior to functional inference. The predicted enzyme commission (EC) numbers and Kyoto
Encyclopedia of Genes and Genomes (KEGG) orthologs were assigned based on the PICRUSt2 reference database.
These functional annotations were subsequently mapped to the KEGG pathways to facilitate the interpretation of
metabolic capabilities. Statistical comparisons between the experimental groups were conducted using Welch’s t-test
within the statistical analysis of taxonomic and functional Profiles (STAMP) software [23], with a significance level
of p < 0.05. Extended error bar plots generated by STAMP were applied to visualize the significantly different
pathways, providing a comparative overview of the predicted metabolic functions under distinct environmental

conditions.

RNA extraction, library preparation, and sequencing

Total RNA was isolated from whole blood samples using TRIzol reagent (Invitrogen, Life Technologies, Carlsbad,
CA, USA), following the manufacturer’s protocol, to ensure RNA integrity and minimize degradation. The
concentration and purity of each RNA sample were assessed using a NanoDrop ND-1000 spectrophotometer
(NanoDrop Technologies, Wilmington, DE, USA). For RNA-seq library construction, 1 ug of total RNA was
processed using the Illumina TruSeq RNA Sample Preparation Kit. In brief, mRNA was fragmented and reverse-
transcribed into first-strand complementary DNA (cDNA) using reverse transcriptase and random primers. Second-
strand synthesis was performed using DNA polymerase | and ribonuclease H to obtain double-stranded cDNA. End-
repair and adapter ligation were conducted to complete the library construction. The resulting libraries were sequenced
on an [llumina HiSeq 2000 platform (Illumina, San Diego, CA, USA) to generate 2 x 100 bp paired-end reads, thereby

enabling comprehensive transcriptome profiling for downstream analysis.

Data processing and differentially expressed gene identification
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Raw RNA-seq reads were initially assessed for quality using FastQC v0.11.9, to identify potential sequencing
artifacts and base-calling errors [24]. Low-quality bases and residual adapter sequences were removed with
Trimmomatic v0.38 using a sliding window approach (SLIDING WINDOW:4:15) with a minimum read length
threshold of 80 bp [25]. The trimmed reads were subsequently re-evaluated using FastQC v0.11.9 to confirm the
quality improvement. High-quality reads were aligned to the Sus scrofa reference genome (Sscrofall.l, Ensembl
release 111) using HISAT2 v2.1.0, with default alignment parameters [26]. Gene annotation was performed based on
the corresponding Ensembl GPF file. The resulting SAM files were converted to the BAM format, sorted, and indexed
using Samtools v1.9 [27]. Gene-level read counts were generated using the FeatureCounts tool in the Subread package
v1.6.3, by employing the corresponding Ensembl GTF annotation file [28]. Raw counts were normalized using the
trimmed mean of M-values (TMM) method implemented in the edgeR package in Bioconductor v3.16 to account for
differences in library size [29]. Multidimensional scaling (MDS) plots were generated using the Limma package to
visualize sample relationships, while graphical outputs were produced using ggplot2 [30]. Differentially expressed
genes (DEGs) were identified by comparing the TN and HS groups at each time point (Weeks 0, 1, and 2), with
significance defined as a false discovery rate (FDR) <0.05 and an absolute log. fold change >1, applying the

Benjamini-Hochberg correction for multiple testing.

Functional enrichment analysis

Functional enrichment analysis was conducted to investigate the biological roles of the identified DEGs. Gene
Ontology (GO) enrichment, focusing on the biological process category, was conducted using DAVID v2021, with a
minimum gene count of two and an EASE score threshold of p < 0.05 [31]. Redundant GO terms were summarized
and visualized as tree maps using the reduced visualization gene ontology (REVIGO) [32]. KEGG pathway analysis
was conducted to identify overrepresented molecular pathways, and the results were presented as —logio p-values and
fold enrichment values. To further interpret the relationships among functional categories, selected DEGs were
integrated into network analyses using the Cytoscape v3.10.0, ClueGO v2.5.10, and CluePedia v1.5.10 plugins [33-
35]. Network construction employed a p-value cut-off of < 0.05, and the ClueGO parameters were set as follows: GO
term minimum level = 3, maximum level = 8, minimum number of genes = 3, and minimum gene percentage = 4%.
This approach enabled the identification of key regulatory modules and functional clusters associated with the HS

response.
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Cell-type deconvolution

Immune cell composition was estimated from whole blood transcriptomic data using the xCell2 algorithm, which
applies cell type-specific gene expression signatures to calculate enrichment scores [36]. The TMM-normalized gene
expression matrix generated from the RNA-seq analysis served as the input for cell-type deconvolution. The default
immune reference compendium provided by xCell2 was applied to profile 40 predefined immune cell types, including
subsets of T cells, B cells, and monocytes. The resulting enrichment scores were subsequently compared between TN
and HS groups to identify shifts in the immune landscape. These immune cell profiles were then integrated with the
microbiome and transcriptome data for multi-omics analysis to elucidate host-microbiome-immune system

interactions under HS conditions.

Multi-omics integration

To investigate the coordinated interactions between the fecal microbiome and host immune responses under HS,
MOI was conducted using regularized canonical correlation analysis (rCCA) and Mantel tests. For rCCA, microbial
abundance data were log-ratio transformed, and TMM-normalized gene expression matrices representing immune-
related features were prepared. Both datasets were standardized to have a zero mean and unit variance prior to the
analysis. rCCA was conducted using the CCA function from the PMA package v1.2.1 in R, identifying canonical
variates that maximized correlations between microbial and host immune features [37]. Canonical loadings were
extracted and ranked to identify the most influential microbial taxa and immune cell types.
Mantel tests were applied to evaluate the correlations between the distance matrices derived from different omics
layers. Bray—Curtis dissimilarity was used for microbial profiles, whereas Euclidean distances were calculated for
both transcriptomic and cell-type deconvolution data. Significance was determined through permutation testing with
9,999 iterations using the Mantel _test function from the linkET package v0.0.1 in R [38]. This integrated framework
enabled the identification of microbiome—immune associations and functional modules characteristic of the HS

response.
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Results

Growth performance under HS

At the start of the experiment, the initial body weight did not differ significantly between the TN groups (53.37 £
1.49 kg) and HS groups (50.61 + 4.01 kg, p > 0.05). However, after exposure, the HS pigs showed markedly lower
ADG (0.48 £0.03 vs. 0.81 + 0.04 kg/d) and ADFI (1.17 + 0.02 vs. 1.89 + 0.05 kg/d) than TN pigs (p < 0.01). However,
no significant differences were found in the G:F (0.41 + 0.02 vs. 0.43 + 0.03, p > 0.05) between groups. These results
suggest that HS reduced growth performance, primarily through reductions in feed consumption and weight gain,

rather than in feed efficiency (Table 1).

HS—driven shifts in fecal microbiota composition and function

Fecal microbiome analyses revealed marked compositional and functional alterations under HS conditions. Alpha
diversity metrics, including the observed ASV counts and Shannon index, remained statistically unchanged across
treatment groups and time points (weeks 1 and 2), indicating that within-sample diversity was unaffected by HS
(Figure 1A). In contrast, the beta diversity analysis based on Bray—Curtis dissimilarities displayed distinct clustering
of microbial communities according to the treatment, with clear group separation in both weeks (Figure 1B). This
pattern indicated that HS primarily influenced the overall microbial structure, rather than species richness.

At the genus level, the microbiota composition differed according to treatment. Prevotella and Streptococcus were
more abundant in TN pigs, whereas Clostridium sensu stricto 1 was elevated in the HS group (Figure 1C). The
Firmicutes:Bacteroidota (F:B) ratio was significantly higher in the 1_HS group than inthe 1_TN (p < 0.05), indicating
a transient phylum-level imbalance in response to acute HS. This difference dissipated by week 2, when the F:B ratios
returned to comparable levels between groups (Figure 1D), indicating a potential microbial acclimation [8].

Functionally, PICRUSt2-based metagenomic inference showed divergent metabolic profiles between treatments.
At Week 1, TN pigs exhibited enrichment of glutathione metabolism, retinol metabolism, and aminoacyl-tRNA
biosynthesis pathways, reflecting a preserved redox balance and protein synthesis capacity under non-stressed
conditions [39-41]. Conversely, at week 2, the HS group showed an increased representation of the valine, leucine,
and isoleucine degradation pathways, implicating the adaptive catabolism of branched-chain amino acids under

prolonged stress (Figure 1E) [42].
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RNA-seq quality metrics

RNA-Seq generated an average of 39.3 million raw reads per sample. After trimming, approximately 38.5 million
high-quality reads per sample were retained, with minimal sequence loss (mean trimming rate: 1.9%) and consistent
GC content (~44.3%). The read alignment yielded a mean uniquely mapped rate of 85.3% and an overall mapping

rate of 96.7%, thus confirming the reliability of the sequencing data for transcriptome analysis (Table 2).

Temporal dynamics of gene expression changes

The MDS plots demonstrated clear treatment-driven clustering between TN and HS samples, whereas temporal
separation among weeks was relatively subtle (Figure 2A). At each time point, the TN and HS samples formed distinct
clusters, reflecting consistent transcriptional responses to thermal stress (Figure 2B).

At Week 0, however, no significant differences in gene expression were detected between TN and HS pigs,
confirming comparable baseline transcriptional profiles prior to heat exposure (Supplementary Figure 1). Differential
gene expression analysis revealed a robust early phase response. At Week 1, 384 genes were upregulated and 132
were downregulated in HS pigs. By Week 2, the DEG count declined markedly, with only 15 upregulated and 53
downregulated genes (Figure 2C). This reduction indicates an acute transcriptional response during the initial stress

exposure, followed by partial acclimation or resolution.

Biological pathways enriched in DEGs

GO enrichment analysis of Week 1 DEGs identified processes, including hematopoiesis, transcriptional activation,
mechanical stimulus detection, and cell migration (Figure 3A), suggesting rapid mobilization of immune and
regenerative programs. In Week 2, the enriched GO terms shifted toward metabolic and homeostatic functions, such
as oxygen transport and phosphatase regulation (Figure 3B). KEGG pathway analysis at week 1 further supported
these findings, with significant enrichment in thyroid hormone signaling, focal adhesion, gastric acid secretion, and
chromatin remodeling pathways (Figure 3C). No KEGG pathways were significantly enriched at week 2, likely due

to the reduced number of DEGs.

Co-expression network analysis
Co-expression network analysis of the Week 1 DEGs using Cytoscape revealed functionally grouped modules,

including focal adhesions, cytoskeletal organization, thyroid signaling, and chromatin remodeling (Figure 4).
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Additional clusters were associated with disease-related pathways, such as acute myeloid leukemia and basal cell
carcinoma, potentially reflecting conserved stress-responsive gene programs. These network structures further
highlighted the coordinated regulation of mechanical integrity, signal transduction, and transcriptional dynamics in

response to acute HS.

Immune cell remodeling under thermal challenge

Cell-type deconvolution analysis revealed distinct immune profiles in the TN and HS groups over time (Figure 5).
At Week 1, HS pigs showed an elevated enrichment of multiple T cell subsets, including regulatory and memory CD8
+and CD4 + populations, along with myeloid cells. In contrast, TN pigs exhibited greater enrichment of B cell subsets,
such as naive, memory, and plasma B cells, indicating the maintenance of humoral immunity under thermoneutral
conditions [43]. At Week 2, the HS samples retained elevated levels of cytotoxic T cells and plasmablasts, indicating
sustained cellular immune engagement. TN samples display an increased abundance of natural killer (NK) cell subsets,

including regulatory and cytotoxic NK cells, indicating stable innate immune surveillance [44].

Canonical correlation between microbiota and immune cell types

The rCCA identified distinct patterns of association between microbial genera and immune cell populations under
each environmental condition. In the' HS group, B cell subsets were positively correlated with Prevotella,
Megasphaera, Lactobacillus, and Butyricicoccus, suggesting microbial support for humoral immunity. Conversely, T
cell subsets exhibited positive correlations with Clostridium sensu stricto 1, indicating the potential microbial
modulation of cellular immunity under stress (Figure 6A).

In TN pigs, positive correlations were observed between T cells and genera, such as Subdoligranulum and
Holdemania, whereas Oscillibacter and Parasutterella were negatively associated with both T cells and eosinophils
(Figure 6B). These contrasting association networks indicate the existence of condition-specific microbiota—immune

interactions.

Multi-layer correlation of microbiota, immune cells, and genes
The integration of gene expression, immune cell composition, and microbial taxa revealed a coordinated molecular
framework under HS conditions (Figure 7). A positively correlated module included B cell subsets and cytoskeletal

genes (e.g., ACTB, MYL9, COL4A4, and ACTN4), suggesting that structural reinforcement is linked to humoral
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immunity. In contrast, T-cell subsets showed negative correlations with the same genes, indicating an immune axis
shift.

Mantel tests confirmed that genera such as Prevotella and Lactobacillus were aligned with the B cell-gene module,
whereas Clostridium sensu stricto 1 and Megasphaera were linked to T cell-enriched networks. These results together
demonstrate a hierarchical interaction structure that integrates microbial composition with host immune dynamics and

transcriptional programs during acclimation to HS.
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Discussion

Overall, the results of this study show that HS significantly impaired growth performance in finishing pigs, as
indicated by marked reductions in both average daily gain and feed intake. HS reduced growth performance primarily
through decreased feed intake and body-weight gain, without significant changes in feed efficiency, likely due to
reduced visceral blood flow, impaired nutrient absorption, and elevated stress hormone levels. These systemic effects
are consistent with suppressed anabolic growth and altered energy-utilization pathways.

In addition to these physiological disruptions, substantial changes were observed in the gut microbiota. Principal
coordinate analysis revealed a clear divergence in the microbial community structure between the groups over time.
Taxonomic profiling revealed that short-chain fatty acid (SCFA)-producing genera such as Prevotella and
Streptococcus were depleted under HS conditions, while Clostridium sensu stricto 1 was enriched (Figure 1C). The
loss of Prevotella and Streptococcus indicates impaired mucosal barrier function and reduced SCFA availability,
thereby weakening anti-inflammatory regulation by diminishing' SCFA-mediated Treg induction and IL-10 production
[45, 46]. In contrast, the increase in Clostridium sensu stricto 1, associated with branched-chain amino acid (BCAA)
fermentation and cytotoxic byproduct production, may exacerbate epithelial damage and inflammation [47].
Consistent with these compositional changes, the predicted microbial pathways in TN pigs were enriched in
antioxidant (glutathione), immunomodulatory (retinol), and translational (aminoacyl-tRNA biosynthesis) processes.
In contrast, HS pigs showed a diminished representation of these pathways, while protein catabolism via BCAA
degradation became more prominent by week 2, indicating a stress-adaptive shift in energy utilization that may
contribute to an increased nitrogenous burden and barrier disruption [42].

At the host level, transcriptomic profiling revealed strong time-dependent changes in gene expression. A
pronounced response occurred during week one, with enrichment of biological processes related to hematopoiesis,
transcriptional regulation, and immune cell trafficking. By week two, the response was attenuated, indicating partial
resolution or acclimation. GO and KEGG analyses indicated that structural and signaling pathways, such as focal
adhesion, cytoskeletal organization, and thyroid hormone signaling, are central to the acute-phase response.
Consistently, co-expression network analysis reinforced this pattern by identifying cytoskeletal remodeling modules
(e.g., ACTB, MYL9, ACTN4, and COL4A4), indicating a coordinated transcriptional program aimed at strengthening

epithelial integrity under heat stress [48, 49].
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These transcriptomic changes are accompanied by shifts in immune cell composition. Deconvolution analysis
further showed that HS increased T cell and myeloid cell populations, particularly cytotoxic and effector memory
subsets, suggesting an acute immune activation profile [50]. In contrast, TN pigs maintained higher levels of B cell
subsets, which is consistent with a more stable humoral immune environment [51]. This immune restructuring appears
to align with the transcriptomic activation of the migration and adhesion pathways, suggesting the possibility that
cellular responses are not only quantitative but also functionally adapted to tissue infiltration and repair [52, 53].
Importantly, these parallel findings were not isolated across the omics layers. Indeed, the depletion of Prevotella and
enrichment of Clostridium sensu stricto 1 observed in the microbiome coincided with immune restructuring, wherein
TN pigs maintained B-cell subsets, whereas HS pigs shifted toward cytotoxic T-cell dominance. Transcriptomic
activation of cytoskeletal genes has been suggested to reinforce the epithelium.

The MOI results of the present study suggest a functional alignment between microbial composition, immune
architecture, and host gene expression. Specifically, these results indicated that these patterns converged into two
opposing axes: (i) a cytotoxic T cell, Clostridium sensu stricto 1 trajectory amplifying inflammatory damage, and (ii)
a B cell-Prevotella—cytoskeletal trajectory supporting barrier reinforcement. Notably, only the humoral-structural axis
formed a coherent functional module that aligned across all omics layers, suggesting that it may represent a recovery-
oriented program. These findings are consistent with prior reports showing HS-induced enrichment of Clostridium
sensu stricto 1 in pigs [54], further supporting its potential role in exacerbating intestinal inflammation under stress.

Overall, this dual-axis framework. provides a mechanistic model for HS acclimation in finishing pigs, moving
beyond descriptive observations toward an integrated understanding of host-microbiome—immune interactions.
Importantly, this framework indicates that resilience to HS may rely on the host’s capacity to coordinate humoral and
structural defenses in partnership with the beneficial microbiota, thereby maintaining barrier integrity and immune
balance under stress. Beyond advancing biological understanding, these findings also highlight translational potential.
The identified biomarker axis, Prevotella, B cells, and cytoskeletal genes, could serve as a foundation for precise
strategies to enhance swine thermal tolerance, such as microbiota-targeted interventions or the selection of resilient

phenotypes.
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Tables and Figures

Table 1. Growth performance of pigs under heat stress

Grou Body Weight, kg Average Daily Average Daily Feed Gain : Feed
P " Week 0 Week 2 Gain, kg/d** Intake, kgid** Ratio (G:F)

TN 53.37+1.49 64.65+1.33 0.81+£0.04 1.89 £ 0.05 0.43+0.03
HS 50.61+4.01 57.35+4.14 0.48 + 0.03 1.17 £0.02 0.41 +0.02

Each value represents the mean of four pigs per treatment (one pig/pen).
SEM, standard error of the mean; * p < 0.05; ** p < 0.01.
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Table 2. Overview of the transcriptome data processing

Raw After trimming After mapping

Remainin Sequence . .. Uniquely Overall
Group Sample name Total S?quenceGC(%) reads afteg Igngth Trimmed Trimming ma?)pedy mapped

ength L . GC(%) rate(%)

trimming  trimmed(bp) rate(%) rate(%)

F0.T1.104.A 40,015,742 101 44 39,205,704 36-101 44 2.02 86.74 97.09
F0.T1.110.B 36,655,351 101 45 35,968,868 36-101 45 1.87 88.31 96.87
FO.T1.34.A 34,174,726 101 44 33,475,035 36-101 44 2.05 87.32 96.81
FO0.T1.97.A 34,637,870 101 46 33,938,438 36-101 46 2.02 86.14 97.05
F1.T1.104.A 43,914,182 101 44 43,109,613 36-101 44 1.83 85.25 96.88

™ F1.T1.110.B 44,427,939 101 44 43,550,608 36-101 44 1.97 84.11 96.87
F1.T1.34.A 39,689,690 101 44 38,969,075 36-101 44 1.82 84.80 96.49
F1.T1.97.A 41,154,600 101 43 40,407,367 36-101 43 1.82 85.91 97.07
F2.T1.104.A 39,273,798 101 44 38,545,142 36-101 44 1.86 84.10 96.67
F2.T1.110.B 40,638,650 101 44 39,844,878 36-101 44 1.95 83.56 96.50
F2.T1.34.A 40,749,175 101 44 39,928,436 36-101 44 2.01 84.38 96.87
F2.T1.97.A 37,606,367 101 45 36,881,186 36-101 45 1.93 84.18 96.49
F0.T4.105.B 37,629,934 101 45 36,788,772 36-101 45 2.24 83.74 96.77
F0.T4.140.B 35,218,302 101 46 34,480,374 36-101 45 2.1 84.36 96.6
F0.T4.16.A 41,312,791 101 44 40,563,077 36-101 44 1.81 86.38 96.13
F0.T4.23.B 44,497,346 101 45 43,623,005 36-101 45 1.96 86.89 96.84
F1.T4.105.B 36,940,490 101 44 36,284,344 36-101 44 1.78 85.19 96.73

HS F1.T4.140.B 42,127,626 101 44 41,278,975 36-101 44 2.01 85.04 96.85
F1.T4.16.A 37,505,867 101 44 36,795,088 36-101 44 1.90 85.14 96.29
F1.T4.23.B 40,108,579 101 44 39,350,345 36-101 44 1.89 85.14 97.05
F2.T4.105.B 38,137,968 101 45 37,410,246 36-101 45 1.91 85.18 96.44
F2.T4.140.B 37,911,150 101 44 37,291,442 36-101 44 1.63 85.16 96.70
F2.T4.16.A 38,295,985 101 45 37,609,835 36-101 45 1.79 84.44 96.27
F2.T4.23.B 39,509,036 101 44 38,845,012 36-101 44 1.68 85.99 96.86
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Figure 1. Fecal microbiome responses in finishing pigs under heat stress (HS). (A) Alpha diversity metrics,
including observed species richness and Shannon diversity index, were compared between the thermoneutral (TN)
and HS groups in Weeks 1 and 2, with no significant differences detected via the Kruskal-Wallis test. (B) Principal
coordinate analysis (PCoA) based on Bray—Curtis dissimilarities showed clear compositional separation between
the TN and HS pigs at both time points. (C) The genus-level composition of the fecal microbiota revealed the ten

most abundant taxa across groups, visualized as the mean relative abundance per treatment. (D) The F:B ratio was



466
467
468
469

470

calculated to assess the phylum-level shifts associated with heat exposure. (E) Functional profiles inferred via
PICRUSt2 indicated group-specific pathway activity, with the left panel displaying average KEGG pathway
abundances per group, and the right panel showing intergroup differences with 95% confidence intervals; pathways

enriched in TN and HS pigs are presented in blue and red, respectively.
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Figure 2. Transcriptomic landscape of whole blood in finishing pigs under thermal stress. (A) MDS plot based
on variance-stabilized expression profiles across all samples; color distinguishes the sampling week while shape
indicates treatment group. (B) MDS plots stratified by week showing clear separation between the thermoneutral
(TN; blue) and heat-stressed (HS; red) groups in both Weeks 1 and 2, indicating distinct transcriptomic responses
to heat exposure. (C) Volcano plots of DEGs between HS and TN groups, with significant genes highlighted in red

(upregulated) and blue (downregulated) based on FDR < 0.05 and [log: fold change| > 1.
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Figure 3. Functional enrichment analysis of DEGs under heat stress (HS). (A) GO biological processes
enriched in DEGs from Week 1, visualized using REVIGO. Each box denotes a GO term, with box size indicating
the relative specificity and semantic contribution of the term within the enriched set. (B) KEGG pathway
enrichment analysis for Week 1 DEGs, presenting fold enrichment (dark bars) alongside the statistical significance
represented by —logio-transformed p-values (light bars). (C) REVIGO plot summarizing the GO biological
processes enriched in DEGs from Week 2, with box dimensions reflecting term relevance and frequency. KEGG

pathway analysis for Week 2 was not conducted due to the limited number of DEGs identified.
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Figure 4. Co-expression network of functionally enriched genes responding to HS at Week 1. A gene co-
expression network was constructed using DEGs identified in heat-stressed pigs in Week 1. Functional grouping
and visualization were conducted using ClueGO, with the following parameters: GO term level range set from 3 to
8, a minimum of three genes per term, and @ minimum gene contribution of 4.0%. Nodes represent individual genes
or enriched GO terms, with the node color reflecting functionally related clusters. Edges indicate co-expression

relationships or shared functional annotations among connected genes.
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Figure 5. Inferred immune cell landscape in-peripheral blood across thermoneutral and heat-stressed pigs.
A heatmap showing the standardized enrichment scores (z-scores) of 40 immune and stromal cell types, inferred
from bulk RNA-seq data using transcriptome-based deconvolution. Columns represent the mean values for each
group at Weeks 0, 1, and 2, while rows correspond to the individual cell types. The color gradient reflects the

relative abundance, with red indicating higher enrichment and blue denoting lower levels.
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Figure 6. rCCA showing distinct host-microbiome association patterns under heat stressed and
thermoneutral conditions. Canonical correlation analysis using rCCA illustrates the differential correlation
structure between fecal microbial genera and peripheral immune cell subsets in (A) heat-stressed and (B)
thermoneutral pigs. Bar plots present the canonical coefficients of the first variate (CV1), with microbial taxa shown
on the left and immune cell types on the right. Red and blue bars indicate positive and negative associations,

respectively, with longer bars denoting greater contributions to the multivariate correlation structure.
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515 Figure 7. Integrated multi-omics correlation framework integrating microbial, transcriptomic, and immune
516 profiles. In the upper triangular matrix, associations among DEGs and predicted immune cell types are depicted
517  through Pearson correlation coefficients. Relationships are encoded by a red-to-blue color scale, corresponding to
518  positive and negative correlations. Numerals denote significant associations (p < 0.05). The lower triangle summarizes
519  Mantel test outcomes evaluating the global covariation between microbial genera and host-derived transcriptomic or
520 immune profiles. Statistical relevance is represented by line color (green for significant, gray for non-significant),

521  while line types distinguish directionality (solid for positive and dotted for negative interactions).

522
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Supplementary Figure 1. Baseline transcriptomic landscape (Week 0) of whole blood in finishing pigs prior to
heat stress exposure. MDS plot based on variance-stabilized expression profiles showing no distinct separation
between thermoneutral (TN; blue) and heat-stress (HS; red) groups, indicating comparable baseline transcriptional

states before treatment initiation.





