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Abstract  

Heat stress (HS) is a major environmental threat to swine production that impairs growth performance and health. 

Because of their limited thermoregulatory capacity, pigs are highly vulnerable to HS, which results in compromised 

intestinal integrity, systemic inflammation, and metabolic inefficiency. To elucidate the mechanisms underlying HS 

acclimation in pigs, we conducted a longitudinal multi-omics analysis integrating fecal microbiome, whole-blood 

transcriptome, and immune cell deconvolution in finishing pigs under thermoneutral (TN) or HS conditions. HS 

markedly reduced the average daily gain and feed intake. Microbiome profiling revealed condition-specific shifts: TN 

pigs showed enrichment of short-chain fatty acid (SCFA)-producing genera, such as Prevotella and Streptococcus, 

whereas HS pigs exhibited increased Clostridium sensu stricto 1. Functional predictions indicated preservation of the 

antioxidant and immunomodulatory pathways (glutathione, retinol, and aminoacyl-tRNA biosynthesis) in TN pigs, 

whereas HS pigs displayed branched-chain amino acid catabolism, reflecting metabolic acclimation under stress. 

Transcriptomic analysis revealed acute changes at week 1, with 516 differentially expressed genes enriched in 

hematopoiesis, focal adhesion, cytoskeletal remodeling, and thyroid hormone signaling. By Week 2, these gene 

responses had declined, suggesting partial acclimation. Network analysis identified cytoskeletal genes (ACTB, MYL9, 

ACTN4, and COL4A4) as the central regulators. Immune deconvolution further showed the HS-driven elevation of 

cytotoxic T and myeloid subsets, in contrast to B cell populations which were maintained under TN, highlighting 

divergent immune trajectories. Integration of the microbiome, transcriptome, and immune data revealed two axes: (1) 

cytotoxic T cells positively associated with Clostridium sensu stricto 1, but negatively associated with cytoskeletal 

genes, and (2) B cells positively linked to Prevotella, Lactobacillus, and structural genes. Only the B-cell structural 

axis formed a coherent cross-layer module, indicatin a recovery-oriented response. These findings demonstrate that 

resilience to HS requires the coordination of humoral immunity, cytoskeletal reinforcement, and SCFA-producing 

microbiota. The identified biomarker axis (Prevotella, B cells, and cytoskeletal genes) provides a mechanistic basis 

for developing precise strategies to enhance thermal tolerance in swine. 

 

Keywords: Heat stress, Finishing pigs, Multi-omics integration, Cell deconvolution 
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Introduction 1 

 2 

As the global expansion of the swine industry continues, heat stress (HS) driven by climate change has emerged as 3 

a critical challenge [1]. Compared to other livestock species, pigs are particularly vulnerable to elevated ambient 4 

temperatures due to their insufficiently developed sweat glands and substantial subcutaneous adipose tissue, both of 5 

which significantly limit effective thermoregulation [2]. Physiologically, HS induces peripheral vasodilation, reduces 6 

blood flow to the visceral organs, and compromises intestinal health [3]. The resulting intestinal hypoxia subsequently 7 

weakens the gut barrier integrity and facilitates pathogen translocation and systemic inflammation [4]. Additionally, 8 

HS negatively affects swine productivity and profitability, thereby causing reduced feed intake, impaired growth 9 

performance, and decreased reproductive efficiency, particularly during the finishing pig stage of the high growth 10 

phase [5, 6]. 11 

Despite extensive studies investigating the HS responses in swine, comprehensive research utilizing multiomics 12 

integration (MOI) approaches to elucidate the underlying biological mechanisms remains limited [7]. HS 13 

simultaneously influences diverse physiological pathways, including immune, metabolic, and intestinal homeostasis 14 

pathways, through intricate host-microbiome interactions, leading to systemic pathological outcomes [8, 9]. Previous 15 

single-omics studies have further provided limited insights into these relationships. Typically, transcriptomic analyses 16 

offer only an incomplete understanding of gene regulatory mechanisms without adequately addressing microbiome 17 

interactions [10]. Conversely, microbiome-centric studies have independently elucidated shifts in microbial 18 

composition associated with gut barrier function, immunity, and metabolism, but have failed to clarify the direct 19 

molecular implications on systemic physiological responses [11]. Therefore, an MOI approach is essential to bridge 20 

these fragmented insights by correlating microbial community shifts with host gene expression, thereby enabling the 21 

simultaneous investigation of systemic and intestinal responses to HS [12, 13]. To ensure analytical robustness, it is 22 

essential to collect biospecimen-derived data that accurately represents distinct biological layers of the host [14]. 23 

Accordingly, fecal and whole blood samples were used to noninvasively and longitudinally evaluate host 24 

physiological responses to HS, highlighting their utility for the real-time assessment of intestinal and systemic 25 

alterations. Accordingly, fecal and whole blood samples were used to noninvasively and longitudinally evaluate host 26 

physiological responses to HS, highlighting their utility for the real-time assessment of intestinal and systemic 27 

alterations. 28 
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Conventional bulk blood transcriptomics have a critical limitation: HS remodels immune cell populations, and bulk 29 

profiles may conflate compositional shifts with intrinsic gene regulatory changes. To address this issue, we applied 30 

cell-type deconvolution, which disentangles population dynamics from transcriptional regulation, and refines the 31 

resolution of immune acclimation under HS [15]. Collectively, this study employed an MOI framework combining 32 

microbiome, transcriptome, and immune cell data to comprehensively characterize the systemic and intestinal 33 

responses of finishing pigs to HS. We hypothesized that integrating these multilayered data would reveal condition-34 

specific host–microbiome–immune system interaction axes, thereby uncovering the mechanistic pathways underlying 35 

acclimations or malacclimations to HS. This integrative approach aims to not only advance the understanding of swine 36 

thermal stress biology but also to provide a conceptual basis for precise strategies to enhance resilience in the swine 37 

industry. 38 

  39 
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Materials and Methods 40 

 41 

Ethics statement 42 

All experimental protocols were approved by the Institutional Animal Care and Use Committee (Approval No.  43 

202012A-CNU-204) of Chungnam National University, Daejeon, South Korea. All animal handling and sampling 44 

procedures were conducted in accordance with animal use guidelines and regulations. 45 

 46 

Temperature and humidity index 47 

The Temperature and humidity index (THI) was calculated using the formula suggested by the NRC [16]:  48 

THI= (1.8×Tdb+32) − [(0.55−0.0055×RH) × (1.8× Tdb −26.8)] 49 

Where Tdb is the dry-bulb temperature and RH is the  relative humidity 50 

 51 

Experimental design, animals, and diets 52 

This experiment followed a two-factor factorial design consisting of two envrionment treatments (thermoneutral, 53 

TN; and HS) and three time points (Weeks 0, 1, and 2). Twenty-four crossbred finishing pigs ([Landrace x Yorkshire] 54 

x Duroc; initial body weight, BW = 51.14 ± 5.79 kg; 12 TN and 12 HS) were assigned to two environmental treatments 55 

in a randomized complete block design (block = BW) during 14 days. Both fecal microbiome and whole-blood 56 

transcriptome data were generated from all individuals at each time point. Environmental treatments were as follows: 57 

① THI 68 (comfort); 23-24℃, 35% and ② THI 87 (severe); 32-33℃, 80%, and were designed based on previous 58 

reports [17]. Pigs were fed a basal diet (corn-soy diet; 3350 kcal/kg ME; 18.55% CP; 1.23% lysine; 0.38% methionine) 59 

formulated to meet or exceed the nutrient requirements of growing pigs (NRC, 2012; Table 2.1) [18]. Pigs were 60 

provided ad libitum access to feed and water throughout the experimental period. Each pen size was 2.32m × 1.75m 61 

× 0.7m. The pen floor was slatted with 100% plastic. 62 

 63 

Growth performance measurement and statistical analysis 64 

Body weights were recorded at the start and end of the 14-day experimental period. Average daily gain (ADG), 65 

average daily feed intake (ADFI), and gain-to-feed ratio (G:F) were subsequently calculated. Statistical analyses were 66 

conducted using independent sample t-tests with the SAS 9.4 statistical software package (SAS Institute Inc., Cary, 67 
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North Carolina, USA). Data are presented as the mean ± SEM, with significance thresholds set at p < 0.05 and p < 68 

0.01. 69 

 70 

16S rRNA sequencing library preparation 71 

Genomic DNA was extracted from fecal samples to amplify the V3-V4 hypervariable regions of the bacterial 16S 72 

rRNA gene following the Illumina 16S Metagenomic Sequencing Library Preparation protocol. Each reaction 73 

contained 2ng of template DNA, 5×reaction buffer, 1mM dNTPs, 500nM of each universal primer, and Herculase II 74 

Fusion DNA Polymerase (Agilent Technologies). The PCR cycling conditions consisted of an initial denaturation at 75 

95°C for 3 min, followed by 25 cycles of denaturation at 95°C for 30s, annealing at 55°C for 30s, and extension at 76 

72°C for 30s, with a final extension step at 72°C for 5 min. The forward primer sequence was: 5′-77 

GTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGC AG-3′,  and the reverse primer 78 

sequence was 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGA GACAGGACTACHVGGGTATCTAATCC-3′. 79 

PCR products were purified using AMPure XP beads (Beckman Coulter, USA). A secondary PCR of 10 cycles was 80 

subsequently conducted to attach the Nextera XT index sequences and Illumina sequencing adapters, followed by a 81 

second purification step using AMPure XP beads. The concentrations of the indexed libraries were quantified using 82 

the KAPA Library Quantification Kit (KAPA Biosystems, USA), while the fragment size distribution was verified 83 

using the Agilent TapeStation D1000 system. Paired-end sequencing (2 × 300 bp) was performed using the Illumina 84 

MiSeq platform (Illumina, San Diego, CA, USA) at Macrogen. 85 

 86 

Microbiome data analysis and taxonomy classification 87 

Raw paired-end reads were processed using the QIIME2 platform v2024.2 to characterize the fecal microbial 88 

community [19]. After demultiplexing and initial quality filtering, sequences were denoised using the DADA2 89 

algorithm to correct amplicon errors and generate high-resolution amplicon sequence variants (ASVs) [20]. 90 

Taxonomic classification of these ASVs was conducted using a Naïve Bayes classifier trained on the SILVA v138_99 91 

database specific to the V3–V4 region of the 16S rRNA gene [21]. The alpha diversity within each sample was 92 

assessed using the observed ASV counts and Shannon diversity indices, whereas beta diversity between samples was 93 

evaluated based on the Bray–Curtis dissimilarity and visualized using nonmetric multidimensional scaling (NMDS). 94 

Statistical comparisons of beta diversity among groups were performed using permutational multivariate analysis of 95 
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variance (PERMANOVA). This taxonomic framework allowed for the profiling of microbial communities from the 96 

phylum to the genus level across treatment groups and sampling times. 97 

 98 

Functional prediction of microbial communities 99 

The functional potential of the fecal microbiota was inferred using phylogenetic investigation of communities 100 

through reconstruction of unobserved state 2 (PICRUSt2) [22]. The ASV tables were normalized to the 16S rRNA 101 

gene copy numbers prior to functional inference. The predicted enzyme commission (EC) numbers and Kyoto 102 

Encyclopedia of Genes and Genomes (KEGG) orthologs were assigned based on the PICRUSt2 reference database. 103 

These functional annotations were subsequently mapped to the KEGG pathways to facilitate the interpretation of 104 

metabolic capabilities. Statistical comparisons between the experimental groups were conducted using Welch’s t-test 105 

within the statistical analysis of taxonomic and functional Profiles (STAMP) software [23], with a significance level 106 

of p < 0.05. Extended error bar plots generated by STAMP were applied to visualize the significantly different 107 

pathways, providing a comparative overview of the predicted metabolic functions under distinct environmental 108 

conditions. 109 

 110 

RNA extraction, library preparation, and sequencing 111 

Total RNA was isolated from whole blood samples using TRIzol reagent (Invitrogen, Life Technologies, Carlsbad, 112 

CA, USA), following the manufacturer’s protocol, to ensure RNA integrity and minimize degradation. The 113 

concentration and purity of each RNA sample were assessed using a NanoDrop ND-1000 spectrophotometer 114 

(NanoDrop Technologies, Wilmington, DE, USA). For RNA-seq library construction, 1 µg of total RNA was 115 

processed using the Illumina TruSeq RNA Sample Preparation Kit. In brief, mRNA was fragmented and reverse-116 

transcribed into first-strand complementary DNA (cDNA) using reverse transcriptase and random primers. Second-117 

strand synthesis was performed using DNA polymerase I and ribonuclease H to obtain double-stranded cDNA. End-118 

repair and adapter ligation were conducted to complete the library construction. The resulting libraries were sequenced 119 

on an Illumina HiSeq 2000 platform (Illumina, San Diego, CA, USA) to generate 2 × 100 bp paired-end reads, thereby 120 

enabling comprehensive transcriptome profiling for downstream analysis. 121 

 122 

Data processing and differentially expressed gene identification 123 

ACCEPTED



Raw RNA-seq reads were initially assessed for quality using FastQC v0.11.9, to identify potential sequencing 124 

artifacts and base-calling errors [24]. Low-quality bases and residual adapter sequences were removed with 125 

Trimmomatic v0.38 using a sliding window approach (SLIDING WINDOW:4:15) with a minimum read length 126 

threshold of 80 bp [25]. The trimmed reads were subsequently re-evaluated using FastQC v0.11.9 to confirm the 127 

quality improvement. High-quality reads were aligned to the Sus scrofa reference genome (Sscrofa11.1, Ensembl 128 

release 111) using HISAT2 v2.1.0, with default alignment parameters [26]. Gene annotation was performed based on 129 

the corresponding Ensembl GPF file. The resulting SAM files were converted to the BAM format, sorted, and indexed 130 

using Samtools v1.9 [27]. Gene-level read counts were generated using the FeatureCounts tool in the Subread package 131 

v1.6.3, by employing the corresponding Ensembl GTF annotation file [28]. Raw counts were normalized using the 132 

trimmed mean of M-values (TMM) method implemented in the edgeR package in Bioconductor v3.16 to account for 133 

differences in library size [29]. Multidimensional scaling (MDS) plots were generated using the Limma package to 134 

visualize sample relationships, while graphical outputs were produced using ggplot2 [30]. Differentially expressed 135 

genes (DEGs) were identified by comparing the TN and HS groups at each time point (Weeks 0, 1, and 2), with 136 

significance defined as a false discovery rate (FDR) < 0.05 and an absolute log₂ fold change ≥ 1, applying the 137 

Benjamini-Hochberg correction for multiple testing. 138 

 139 

Functional enrichment analysis 140 

Functional enrichment analysis was conducted to investigate the biological roles of the identified DEGs. Gene 141 

Ontology (GO) enrichment, focusing on the biological process category, was conducted using DAVID v2021, with a 142 

minimum gene count of two and an EASE score threshold of p < 0.05 [31]. Redundant GO terms were summarized 143 

and visualized as tree maps using the reduced visualization gene ontology (REVIGO) [32]. KEGG pathway analysis 144 

was conducted to identify overrepresented molecular pathways, and the results were presented as –log₁₀ p-values and 145 

fold enrichment values. To further interpret the relationships among functional categories, selected DEGs were 146 

integrated into network analyses using the Cytoscape v3.10.0, ClueGO v2.5.10, and CluePedia v1.5.10 plugins [33-147 

35]. Network construction employed a p-value cut-off of < 0.05, and the ClueGO parameters were set as follows: GO 148 

term minimum level = 3, maximum level = 8, minimum number of genes = 3, and minimum gene percentage = 4%. 149 

This approach enabled the identification of key regulatory modules and functional clusters associated with the HS 150 

response. 151 

 152 
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Cell-type deconvolution 153 

Immune cell composition was estimated from whole blood transcriptomic data using the xCell2 algorithm, which 154 

applies cell type-specific gene expression signatures to calculate enrichment scores [36]. The TMM-normalized gene 155 

expression matrix generated from the RNA-seq analysis served as the input for cell-type deconvolution. The default 156 

immune reference compendium provided by xCell2 was applied to profile 40 predefined immune cell types, including 157 

subsets of T cells, B cells, and monocytes. The resulting enrichment scores were subsequently compared between TN 158 

and HS groups to identify shifts in the immune landscape. These immune cell profiles were then integrated with the 159 

microbiome and transcriptome data for multi-omics analysis to elucidate host-microbiome-immune system 160 

interactions under HS conditions. 161 

 162 

Multi-omics integration 163 

To investigate the coordinated interactions between the fecal microbiome and host immune responses under HS, 164 

MOI was conducted using regularized canonical correlation analysis (rCCA) and Mantel tests. For rCCA, microbial 165 

abundance data were log-ratio transformed, and TMM-normalized gene expression matrices representing immune-166 

related features were prepared. Both datasets were standardized to have a zero mean and unit variance prior to the 167 

analysis. rCCA was conducted using the CCA function from the PMA package v1.2.1 in R, identifying canonical 168 

variates that maximized correlations between microbial and host immune features [37]. Canonical loadings were 169 

extracted and ranked to identify the most influential microbial taxa and immune cell types. 170 

Mantel tests were applied to evaluate the correlations between the distance matrices derived from different omics 171 

layers. Bray–Curtis dissimilarity was used for microbial profiles, whereas Euclidean distances were calculated for 172 

both transcriptomic and cell-type deconvolution data. Significance was determined through permutation testing with 173 

9,999 iterations using the Mantel _test function from the linkET package v0.0.1 in R [38]. This integrated framework 174 

enabled the identification of microbiome–immune associations and functional modules characteristic of the HS 175 

response. 176 

  177 
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Results 178 

 179 

Growth performance under HS 180 

At the start of the experiment, the initial body weight did not differ significantly between the TN groups (53.37 ± 181 

1.49 kg) and HS groups (50.61 ± 4.01 kg, p > 0.05). However, after exposure, the HS pigs showed markedly lower 182 

ADG (0.48 ± 0.03 vs. 0.81 ± 0.04 kg/d) and ADFI (1.17 ± 0.02 vs. 1.89 ± 0.05 kg/d) than TN pigs (p < 0.01). However, 183 

no significant differences were found in the G:F (0.41 ± 0.02 vs. 0.43 ± 0.03, p > 0.05) between groups. These results 184 

suggest that HS reduced growth performance, primarily through reductions in feed consumption and weight gain, 185 

rather than in feed efficiency (Table 1). 186 

 187 

HS–driven shifts in fecal microbiota composition and function 188 

Fecal microbiome analyses revealed marked compositional and functional alterations under HS conditions. Alpha 189 

diversity metrics, including the observed ASV counts and Shannon index, remained statistically unchanged across 190 

treatment groups and time points (weeks 1 and 2), indicating that within-sample diversity was unaffected by HS 191 

(Figure 1A). In contrast, the beta diversity analysis based on Bray–Curtis dissimilarities displayed distinct clustering 192 

of microbial communities according to the treatment, with clear group separation in both weeks (Figure 1B). This 193 

pattern indicated that HS primarily influenced the overall microbial structure, rather than species richness. 194 

At the genus level, the microbiota composition differed according to treatment. Prevotella and Streptococcus were 195 

more abundant in TN pigs, whereas Clostridium sensu stricto 1 was elevated in the HS group (Figure 1C). The 196 

Firmicutes:Bacteroidota (F:B) ratio was significantly higher in the 1_HS group than in the 1_TN (p < 0.05), indicating 197 

a transient phylum-level imbalance in response to acute HS. This difference dissipated by week 2, when the F:B ratios 198 

returned to comparable levels between groups (Figure 1D), indicating a potential microbial acclimation [8]. 199 

Functionally, PICRUSt2-based metagenomic inference showed divergent metabolic profiles between treatments. 200 

At Week 1, TN pigs exhibited enrichment of glutathione metabolism, retinol metabolism, and aminoacyl-tRNA 201 

biosynthesis pathways, reflecting a preserved redox balance and protein synthesis capacity under non-stressed 202 

conditions [39-41]. Conversely, at week 2, the HS group showed an increased representation of the valine, leucine, 203 

and isoleucine degradation pathways, implicating the adaptive catabolism of branched-chain amino acids under 204 

prolonged stress (Figure 1E) [42]. 205 

 206 
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RNA-seq quality metrics 207 

RNA-Seq generated an average of 39.3 million raw reads per sample. After trimming, approximately 38.5 million 208 

high-quality reads per sample were retained, with minimal sequence loss (mean trimming rate: 1.9%) and consistent 209 

GC content (~44.3%). The read alignment yielded a mean uniquely mapped rate of 85.3% and an overall mapping 210 

rate of 96.7%, thus confirming the reliability of the sequencing data for transcriptome analysis (Table 2). 211 

 212 

Temporal dynamics of gene expression changes 213 

The MDS plots demonstrated clear treatment-driven clustering between TN and HS samples, whereas temporal 214 

separation among weeks was relatively subtle (Figure 2A). At each time point, the TN and HS samples formed distinct 215 

clusters, reflecting consistent transcriptional responses to thermal stress (Figure 2B). 216 

At Week 0, however, no significant differences in gene expression were detected between TN and HS pigs, 217 

confirming comparable baseline transcriptional profiles prior to heat exposure (Supplementary Figure 1). Differential 218 

gene expression analysis revealed a robust early phase response. At Week 1, 384 genes were upregulated and 132 219 

were downregulated in HS pigs. By Week 2, the DEG count declined markedly, with only 15 upregulated and 53 220 

downregulated genes (Figure 2C). This reduction indicates an acute transcriptional response during the initial stress 221 

exposure, followed by partial acclimation or resolution. 222 

 223 

Biological pathways enriched in DEGs 224 

GO enrichment analysis of Week 1 DEGs identified processes, including hematopoiesis, transcriptional activation, 225 

mechanical stimulus detection, and cell migration (Figure 3A), suggesting rapid mobilization of immune and 226 

regenerative programs. In Week 2, the enriched GO terms shifted toward metabolic and homeostatic functions, such 227 

as oxygen transport and phosphatase regulation (Figure 3B). KEGG pathway analysis at week 1 further supported 228 

these findings, with significant enrichment in thyroid hormone signaling, focal adhesion, gastric acid secretion, and 229 

chromatin remodeling pathways (Figure 3C). No KEGG pathways were significantly enriched at week 2, likely due 230 

to the reduced number of DEGs. 231 

 232 

Co-expression network analysis 233 

Co-expression network analysis of the Week 1 DEGs using Cytoscape revealed functionally grouped modules, 234 

including focal adhesions, cytoskeletal organization, thyroid signaling, and chromatin remodeling (Figure 4). 235 
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Additional clusters were associated with disease-related pathways, such as acute myeloid leukemia and basal cell 236 

carcinoma, potentially reflecting conserved stress-responsive gene programs. These network structures further 237 

highlighted the coordinated regulation of mechanical integrity, signal transduction, and transcriptional dynamics in 238 

response to acute HS. 239 

 240 

Immune cell remodeling under thermal challenge 241 

Cell-type deconvolution analysis revealed distinct immune profiles in the TN and HS groups over time (Figure 5). 242 

At Week 1, HS pigs showed an elevated enrichment of multiple T cell subsets, including regulatory and memory CD8 243 

+ and CD4 + populations, along with myeloid cells. In contrast, TN pigs exhibited greater enrichment of B cell subsets, 244 

such as naïve, memory, and plasma B cells, indicating the maintenance of humoral immunity under thermoneutral 245 

conditions [43]. At Week 2, the HS samples retained elevated levels of cytotoxic T cells and plasmablasts, indicating 246 

sustained cellular immune engagement. TN samples display an increased abundance of natural killer (NK) cell subsets, 247 

including regulatory and cytotoxic NK cells, indicating stable innate immune surveillance [44]. 248 

 249 

Canonical correlation between microbiota and immune cell types 250 

The rCCA identified distinct patterns of association between microbial genera and immune cell populations under 251 

each environmental condition. In the HS group, B cell subsets were positively correlated with Prevotella, 252 

Megasphaera, Lactobacillus, and Butyricicoccus, suggesting microbial support for humoral immunity. Conversely, T 253 

cell subsets exhibited positive correlations with Clostridium sensu stricto 1, indicating the potential microbial 254 

modulation of cellular immunity under stress (Figure 6A). 255 

In TN pigs, positive correlations were observed between T cells and genera, such as Subdoligranulum and 256 

Holdemania, whereas Oscillibacter and Parasutterella were negatively associated with both T cells and eosinophils 257 

(Figure 6B). These contrasting association networks indicate the existence of condition-specific microbiota–immune 258 

interactions. 259 

 260 

Multi-layer correlation of microbiota, immune cells, and genes 261 

The integration of gene expression, immune cell composition, and microbial taxa revealed a coordinated molecular 262 

framework under HS conditions (Figure 7). A positively correlated module included B cell subsets and cytoskeletal 263 

genes (e.g., ACTB, MYL9, COL4A4, and ACTN4), suggesting that structural reinforcement is linked to humoral 264 
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immunity. In contrast, T-cell subsets showed negative correlations with the same genes, indicating an immune axis 265 

shift. 266 

Mantel tests confirmed that genera such as Prevotella and Lactobacillus were aligned with the B cell–gene module, 267 

whereas Clostridium sensu stricto 1 and Megasphaera were linked to T cell-enriched networks. These results together 268 

demonstrate a hierarchical interaction structure that integrates microbial composition with host immune dynamics and 269 

transcriptional programs during acclimation to HS. 270 

  271 
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Discussion 272 

 273 

Overall, the results of this study show that HS significantly impaired growth performance in finishing pigs, as 274 

indicated by marked reductions in both average daily gain and feed intake. HS reduced growth performance primarily 275 

through decreased feed intake and body-weight gain, without significant changes in feed efficiency, likely due to 276 

reduced visceral blood flow, impaired nutrient absorption, and elevated stress hormone levels. These systemic effects 277 

are consistent with suppressed anabolic growth and altered energy-utilization pathways. 278 

In addition to these physiological disruptions, substantial changes were observed in the gut microbiota. Principal 279 

coordinate analysis revealed a clear divergence in the microbial community structure between the groups over time. 280 

Taxonomic profiling revealed that short-chain fatty acid (SCFA)-producing genera such as Prevotella and 281 

Streptococcus were depleted under HS conditions, while Clostridium sensu stricto 1 was enriched (Figure 1C). The 282 

loss of Prevotella and Streptococcus indicates impaired mucosal barrier function and reduced SCFA availability, 283 

thereby weakening anti-inflammatory regulation by diminishing SCFA-mediated Treg induction and IL-10 production 284 

[45, 46]. In contrast, the increase in Clostridium sensu stricto 1, associated with branched-chain amino acid (BCAA) 285 

fermentation and cytotoxic byproduct production, may exacerbate epithelial damage and inflammation [47]. 286 

Consistent with these compositional changes, the predicted microbial pathways in TN pigs were enriched in 287 

antioxidant (glutathione), immunomodulatory (retinol), and translational (aminoacyl-tRNA biosynthesis) processes. 288 

In contrast, HS pigs showed a diminished representation of these pathways, while protein catabolism via BCAA 289 

degradation became more prominent by week 2, indicating a stress-adaptive shift in energy utilization that may 290 

contribute to an increased nitrogenous burden and barrier disruption [42]. 291 

At the host level, transcriptomic profiling revealed strong time-dependent changes in gene expression. A 292 

pronounced response occurred during week one, with enrichment of biological processes related to hematopoiesis, 293 

transcriptional regulation, and immune cell trafficking. By week two, the response was attenuated, indicating partial 294 

resolution or acclimation. GO and KEGG analyses indicated that structural and signaling pathways, such as focal 295 

adhesion, cytoskeletal organization, and thyroid hormone signaling, are central to the acute-phase response. 296 

Consistently, co-expression network analysis reinforced this pattern by identifying cytoskeletal remodeling modules 297 

(e.g., ACTB, MYL9, ACTN4, and COL4A4), indicating a coordinated transcriptional program aimed at strengthening 298 

epithelial integrity under heat stress [48, 49]. 299 
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These transcriptomic changes are accompanied by shifts in immune cell composition. Deconvolution analysis 300 

further showed that HS increased T cell and myeloid cell populations, particularly cytotoxic and effector memory 301 

subsets, suggesting an acute immune activation profile [50]. In contrast, TN pigs maintained higher levels of B cell 302 

subsets, which is consistent with a more stable humoral immune environment [51]. This immune restructuring appears 303 

to align with the transcriptomic activation of the migration and adhesion pathways, suggesting the possibility that 304 

cellular responses are not only quantitative but also functionally adapted to tissue infiltration and repair [52, 53]. 305 

Importantly, these parallel findings were not isolated across the omics layers. Indeed, the depletion of Prevotella and 306 

enrichment of Clostridium sensu stricto 1 observed in the microbiome coincided with immune restructuring, wherein 307 

TN pigs maintained B-cell subsets, whereas HS pigs shifted toward cytotoxic T-cell dominance. Transcriptomic 308 

activation of cytoskeletal genes has been suggested to reinforce the epithelium. 309 

The MOI results of the present study suggest a functional alignment between microbial composition, immune 310 

architecture, and host gene expression. Specifically, these results indicated that these patterns converged into two 311 

opposing axes: (i) a cytotoxic T cell, Clostridium sensu stricto 1 trajectory amplifying inflammatory damage, and (ii) 312 

a B cell–Prevotella–cytoskeletal trajectory supporting barrier reinforcement. Notably, only the humoral-structural axis 313 

formed a coherent functional module that aligned across all omics layers, suggesting that it may represent a recovery-314 

oriented program. These findings are consistent with prior reports showing HS-induced enrichment of Clostridium 315 

sensu stricto 1 in pigs [54], further supporting its potential role in exacerbating intestinal inflammation under stress. 316 

Overall, this dual-axis framework provides a mechanistic model for HS acclimation in finishing pigs, moving 317 

beyond descriptive observations toward an integrated understanding of host–microbiome–immune interactions. 318 

Importantly, this framework indicates that resilience to HS may rely on the host’s capacity to coordinate humoral and 319 

structural defenses in partnership with the beneficial microbiota, thereby maintaining barrier integrity and immune 320 

balance under stress. Beyond advancing biological understanding, these findings also highlight translational potential. 321 

The identified biomarker axis, Prevotella, B cells, and cytoskeletal genes, could serve as a foundation for precise 322 

strategies to enhance swine thermal tolerance, such as microbiota-targeted interventions or the selection of resilient 323 

phenotypes. 324 
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Tables and Figures 449 

 450 
Table 1. Growth performance of pigs under heat stress 451 

Group Body Weight, kg Average Daily  
Gain, kg/d** 

Average Daily Feed  
Intake, kg/d** 

Gain : Feed  
Ratio (G:F) Week 0 Week 2 

TN 53.37 ± 1.49 64.65 ± 1.33 0.81 ± 0.04 1.89 ± 0.05 0.43 ± 0.03 
HS 50.61 ± 4.01 57.35 ± 4.14 0.48 ± 0.03 1.17 ± 0.02 0.41 ± 0.02 

 452 
Each value represents the mean of four pigs per treatment (one pig/pen). 453 
SEM, standard error of the mean; * p < 0.05; ** p < 0.01. 454 

455 
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Table 2. Overview of the transcriptome data processing 456 

 457 

  458 

Group Sample name 

Raw After trimming After mapping 

Total Sequence 
length GC(%) 

Remaining 
reads after 
trimming 

Sequence 
length 

trimmed(bp) 

Trimmed 
GC(%) 

Trimming 
rate(%) 

Uniquely 
mapped 
rate(%) 

Overall 
mapped 
rate(%) 

TN 

F0.T1.104.A 40,015,742 101 44 39,205,704 36-101 44 2.02 86.74 97.09 
F0.T1.110.B 36,655,351 101 45 35,968,868 36-101 45 1.87 88.31 96.87 
F0.T1.34.A 34,174,726 101 44 33,475,035 36-101 44 2.05 87.32 96.81 
F0.T1.97.A 34,637,870 101 46 33,938,438 36-101 46 2.02 86.14 97.05 
F1.T1.104.A 43,914,182 101 44 43,109,613 36-101 44 1.83 85.25 96.88 
F1.T1.110.B 44,427,939 101 44 43,550,608 36-101 44 1.97 84.11 96.87 
F1.T1.34.A 39,689,690 101 44 38,969,075 36-101 44 1.82 84.80 96.49 
F1.T1.97.A 41,154,600 101 43 40,407,367 36-101 43 1.82 85.91 97.07 
F2.T1.104.A 39,273,798 101 44 38,545,142 36-101 44 1.86 84.10 96.67 
F2.T1.110.B 40,638,650 101 44 39,844,878 36-101 44 1.95 83.56 96.50 
F2.T1.34.A 40,749,175 101 44 39,928,436 36-101 44 2.01 84.38 96.87 
F2.T1.97.A 37,606,367 101 45 36,881,186 36-101 45 1.93 84.18 96.49 

HS 

F0.T4.105.B 37,629,934 101 45 36,788,772 36-101 45 2.24 83.74 96.77 
F0.T4.140.B 35,218,302 101 46 34,480,374 36-101 45 2.1 84.36 96.6 
F0.T4.16.A 41,312,791 101 44 40,563,077 36-101 44 1.81 86.38 96.13 
F0.T4.23.B 44,497,346 101 45 43,623,005 36-101 45 1.96 86.89 96.84 
F1.T4.105.B 36,940,490 101 44 36,284,344 36-101 44 1.78 85.19 96.73 
F1.T4.140.B 42,127,626 101 44 41,278,975 36-101 44 2.01 85.04 96.85 
F1.T4.16.A 37,505,867 101 44 36,795,088 36-101 44 1.90 85.14 96.29 
F1.T4.23.B 40,108,579 101 44 39,350,345 36-101 44 1.89 85.14 97.05 
F2.T4.105.B 38,137,968 101 45 37,410,246 36-101 45 1.91 85.18 96.44 
F2.T4.140.B 37,911,150 101 44 37,291,442 36-101 44 1.63 85.16 96.70 
F2.T4.16.A 38,295,985 101 45 37,609,835 36-101 45 1.79 84.44 96.27 
F2.T4.23.B 39,509,036 101 44 38,845,012 36-101 44 1.68 85.99 96.86 
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 459 

Figure 1. Fecal microbiome responses in finishing pigs under heat stress (HS). (A) Alpha diversity metrics, 460 

including observed species richness and Shannon diversity index, were compared between the thermoneutral (TN) 461 

and HS groups in Weeks 1 and 2, with no significant differences detected via the Kruskal–Wallis test. (B) Principal 462 

coordinate analysis (PCoA) based on Bray–Curtis dissimilarities showed clear compositional separation between 463 

the TN and HS pigs at both time points. (C) The genus-level composition of the fecal microbiota revealed the ten 464 

most abundant taxa across groups, visualized as the mean relative abundance per treatment. (D) The F:B ratio was 465 
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calculated to assess the phylum-level shifts associated with heat exposure. (E) Functional profiles inferred via 466 

PICRUSt2 indicated group-specific pathway activity, with the left panel displaying average KEGG pathway 467 

abundances per group, and the right panel showing intergroup differences with 95% confidence intervals; pathways 468 

enriched in TN and HS pigs are presented in blue and red, respectively. 469 
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 471 

Figure 2. Transcriptomic landscape of whole blood in finishing pigs under thermal stress. (A) MDS plot based 472 

on variance-stabilized expression profiles across all samples; color distinguishes the sampling week while shape 473 

indicates treatment group. (B) MDS plots stratified by week showing clear separation between the thermoneutral 474 

(TN; blue) and heat-stressed (HS; red) groups in both Weeks 1 and 2, indicating distinct transcriptomic responses 475 

to heat exposure. (C) Volcano plots of DEGs between HS and TN groups, with significant genes highlighted in red 476 

(upregulated) and blue (downregulated) based on FDR < 0.05 and |log₂ fold change| > 1. 477 
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 479 

Figure 3. Functional enrichment analysis of DEGs under heat stress (HS). (A) GO biological processes 480 

enriched in DEGs from Week 1, visualized using REVIGO. Each box denotes a GO term, with box size indicating 481 

the relative specificity and semantic contribution of the term within the enriched set. (B) KEGG pathway 482 

enrichment analysis for Week 1 DEGs, presenting fold enrichment (dark bars) alongside the statistical significance 483 

represented by –log₁₀-transformed p-values (light bars). (C) REVIGO plot summarizing the GO biological 484 

processes enriched in DEGs from Week 2, with box dimensions reflecting term relevance and frequency. KEGG 485 

pathway analysis for Week 2 was not conducted due to the limited number of DEGs identified. 486 
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 488 

Figure 4. Co-expression network of functionally enriched genes responding to HS at Week 1. A gene co-489 

expression network was constructed using DEGs identified in heat-stressed pigs in Week 1. Functional grouping 490 

and visualization were conducted using ClueGO, with the following parameters: GO term level range set from 3 to 491 

8, a minimum of three genes per term, and a minimum gene contribution of 4.0%. Nodes represent individual genes 492 

or enriched GO terms, with the  node color reflecting functionally related clusters. Edges indicate co-expression 493 

relationships or shared functional annotations among connected genes. 494 
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 496 

Figure 5. Inferred immune cell landscape in peripheral blood across thermoneutral and heat-stressed pigs. 497 

A heatmap showing the standardized enrichment scores (z-scores) of 40 immune and stromal cell types, inferred 498 

from bulk RNA-seq data using transcriptome-based deconvolution. Columns represent the mean values for each 499 

group at Weeks 0, 1, and 2, while rows correspond to the individual cell types. The color gradient reflects the 500 

relative abundance, with red indicating higher enrichment and blue denoting lower levels. 501 
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 503 

 504 

 505 

Figure 6. rCCA showing distinct host–microbiome association patterns under heat stressed and 506 

thermoneutral conditions. Canonical correlation analysis using rCCA illustrates the differential correlation 507 

structure between fecal microbial genera and peripheral immune cell subsets in (A) heat-stressed and (B) 508 

thermoneutral pigs. Bar plots present the canonical coefficients of the first variate (CV1), with microbial taxa shown 509 

on the left and immune cell types on the right. Red and blue bars indicate positive and negative associations, 510 

respectively, with longer bars denoting greater contributions to the multivariate correlation structure. 511 
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 513 

 514 

Figure 7. Integrated multi-omics correlation framework integrating microbial, transcriptomic, and immune 515 

profiles. In the upper triangular matrix, associations among DEGs and predicted immune cell types are depicted 516 

through Pearson correlation coefficients. Relationships are encoded by a red-to-blue color scale, corresponding to 517 

positive and negative correlations. Numerals denote significant associations (p < 0.05). The lower triangle summarizes 518 

Mantel test outcomes evaluating the global covariation between microbial genera and host-derived transcriptomic or 519 

immune profiles. Statistical relevance is represented by line color (green for significant, gray for non-significant), 520 

while line types distinguish directionality (solid for positive and dotted for negative interactions). 521 
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Supplementary Figure 1. Baseline transcriptomic landscape (Week 0) of whole blood in finishing pigs prior to 523 

heat stress exposure. MDS plot based on variance-stabilized expression profiles showing no distinct separation 524 

between thermoneutral (TN; blue) and heat-stress (HS; red) groups, indicating comparable baseline transcriptional 525 

states before treatment initiation. 526 
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