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Abstract

Selected feed additives (probiotics, prebiotics, synbiotics, postbiotics, phytogenics, feed enzymes, and
organic acids) are reviewed for reported biological responses, and some recent developments when
incorporated into laying hen diets. Several feed enzymes (phytase, carbohydrase, protease, and multi-
enzymes) have been adopted to improve the nutritive quality of feedstuffs by mitigating inherent digestive
function inefficiencies, complementing endogenous enzyme activity, and cleaving anti-nutritional factors
abundant in vegetable-based poultry diets. Phytase use is targeted at hydrolyzing phytate to liberate
phosphorus and possibly other encapsulated nutrients, with widely reported environmental and economic
benefits. Proteases often improve the hydrolysis of amino acids and protein complexes to improve dietary
protein digestibility and utilization, potentially restoring performance losses and maintaining the egg quality
of hens fed low-protein diets whose CP level has been further reduced. The digestibility-enhancing effects
of fiber-degrading carbohydrases are associated with the reduction of intestinal viscosity and improved
energy utilization through depolymerization of soluble non-starch polysaccharides. Considering that
nutrients exist in a complex matrix involving starch and non-starch polysaccharides, protein, lipids,
minerals, and vitamins, laying hens could also benefit from potential additive and synergistic effects
accrued from adopting defined feed enzyme combinations. The incorporation of gut-health-promoting feed
additives (pre, pro, syn- and postbiotics, phytogenics, organic acids) optimizes feed nutrient utilization by
inducing immuno-stimulatory, antimicrobial, and antioxidant activities, modulating gut immune function,
and microbial balance and population. Hen responses to feed additives are context-dependent and highly
variable due to various factors, including rearing system, age, breed, health status, environmental factors,
feed composition and quality, and management. However, on balance, feed additive products with proven
efficacy and financial value are recommended for inclusion in laying hen diets; and could potentiate
optimized performance and egg quality, reduced feed costs, improved animal welfare and skeletal health,
and reduced environmental stress due to nutrient excretion, thereby improving the economic and
environmental sustainability of hen egg production. Strategic application of feed additive combinations

could potentiate additive and synergistic responses.
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INTRODUCTION

Increasing human food production is essential in line with the global population increase and food demand.
As the fastest-growing animal-based food sector, the poultry industry is well-positioned to address rising
consumer expectations and sustainability concerns [1]. The avian egg, beyond being the reproductive unit
for the domestic fowl, is an encapsulated nutrient-dense, highly digestible, and reasonably priced food,
packing proteins, vitamins, micronutrients, and bioactive substances [2; 3]. Accordingly, global egg
production has increased significantly by more than 69% from 2000 to 2021 [3], coinciding with
improvements in egg demand and hen productivity. Asia is showing the greatest production growth,
followed by the Americas, Europe, Africa, and Oceania [4]. With a 34 percent share, China retained its
position as the largest hen egg producer; the other main producers (India, the United States of America,
Indonesia, Brazil, Mexico, Japan, and Russia) each accounted for 3 to 8 percent of the global production
[4]. The combined share of the main producers accounted for more than 69% of the global production by
2021.

The entire layer industry is dependent on the productive efficiency of the hen to lay approximately
one sound egg within 24 -26 hours, making consistent productivity and egg quality the cornerstone of any
successful commercial laying hen enterprise. Modern laying hens exhibit enhanced reproductive
performance and could sustain egg laying further beyond 68-70 weeks of age to reach approximately 100
weeks of age and yield almost 500 eggs of acceptable quality [5; 6]. Achieving and sustaining this high
productivity expectation relies heavily on strategic hen nutrition aimed at maximizing the genetic potential
of modern hens, supporting consistent egg production, maintaining egg quality, and ensuring overall health
and welfare. Early-life nutrition to achieve optimal body weight and composition at sexual maturity
mitigates potential delays in the onset of lay, and optimizing pullet diets potentiates laying persistency [7].

At the same time, the layer industry faces pressure to optimize limited feed resources and phase out
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antibiotic growth promoters [AGPs; 8]. Since feed constitutes the largest input cost, optimizing nutrient
utilization and digestive efficiency is paramount with potential beneficial outcomes on animal performance,
health, and welfare, as well as economic and environmental sustainability.

The poultry industry has had to adapt in line with growing pressures revolving around AGP use
and public health, environmental pollution, animal welfare, changing consumer expectations, and rising
food and feed costs. Notable advances in hen nutrition and modern biotechnology have made it possible to
implement several nutritional approaches aimed at reducing feed costs; maintaining hen health, modulating
gut microbiome population and balance; improving performance; and optimizing feed nutrient utilization.
Improved nutrient utilization reduces nutrient excretion and alleviates environmental stress, promoting
sustainable poultry production [9]. Improved nutrient utilization could additionally improve egg quality
characteristics for functional value in human nutrition. These nutritional strategies often target gut health,
which is defined as the dynamic balance between the diet, commensal microbiome, intestinal mucosa, and
immune system essential for maintaining physiological functions, homeostasis, and resilience against
stressors [8].

One such strategy is the incorporation of feed additives into hen feeding regimens. Feed additives
are typically defined as compounds added to a diet in low amounts (usually 50-500g/tonne) to elicit targeted
responses, independent of the hen’s nutritional requirements [10; 11]. Several feed additives have been
mainstreamed in hen diets to improve feed ingredient quality, performance, and gut health. Feed additive
choice depends on regulatory authorization, availability, and most importantly, economic justification [12].
Selected feed additives (probiotics, prebiotics, synbiotics, postbiotics, phytogenics, feed enzymes, and
organic acids) are reviewed for their reported effects and recent developments when incorporated into hen
diets. Notably, large amounts of research have been generated on the biological responses of laying hens to
feed additive incorporation, and it is beyond our scope to summarize the amount of information in this field.
This review explores selected feed additives and their role in modulating productivity, egg quality, and gut
health of laying hens while emphasizing key concepts and suggesting critical areas warranting further

exploration.



85

86

87
88

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

105

106
107

108
109

110

SELECTED FEED ADDITIVES

Exogenous enzymes as feed additives

The availability of exogenous feed enzymes with affordable pricing and established efficacy has given
nutritionists a viable tool to improve feed ingredient quality [11]. Increased knowledge on target feed
constituents and modern biotechnology have made it possible for exogenous feed enzymes to be the one of
the most extensively researched and widely adopted feed additive and could arguably be the most impactful
development in modern poultry nutrition. The growth in the feed enzyme industry is driven by the ban on
AGP use to enhance performance and feed utilization efficiency; increased cost and erratic supply of
conventional feed ingredients, reinforcing the need to maximize nutrient extraction and reduce wastage
through excretion. Feed enzymes targeting various substrates (Table 1) have been mainstreamed in poultry
diets to correct the inherent nutrient utilization inefficiency and mitigate antinutritional factors [13]. Feed
enzymes work through multiple mechanisms to improve nutrient digestibility, including disruption of cell
wall integrity, shifting digestion sites, reducing endogenous secretions, modulating gut microbiota, and the
degradation of specific bonds and antinutritional factors, as illustrated in Figure 1 [11; 14; 15]. Enhanced
nutrient utilization deprives harmful bacteria of nutrients in the lower gut (mainly ceca) and is likely to
result in improved performance, health status, and environmental sustainability. Enzymes are either i) added
“over the top” to adequately formulated rations for additional improvements or ii) incorporated into
nutrient-reduced formulations to restore the nutritional value and compensate for any potentially reduced

performance responses.

Phytase

Phosphorus is the third most expensive nutrient in poultry diets, following energy and protein. However,
more than 65% of phosphorus in common plant-based feed ingredients is bound to phytate (myo-inositol
hexa-phosphate; 1P6), rendering it biologically unavailable without enzyme-induced dephosphorylation.

Phytase inclusion has become a common strategy to catalyze phytate and release phosphorus, with well-
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documented environmental and economic benefits [14]. Particularly, supplemental phytase improves
phytate P utilization and reduces P excretion, thereby mitigating environmental pollution. Phytase
supplementation in diets low in available phosphorus (avP) could save on feed costs by decreasing the need
for inorganic P supplementation [16]. Beyond phosphorus release, phytase could exert ‘extra-phosphoric
effects’ by improving the bioavailability of other encapsulated nutrients, including minerals, energy, and
amino acids [17].

Supplemental phytase in hen diets is associated with improved production performance and egg
quality, including enhanced shell quality attributed to improved mineral digestibility [18; 19]. Beyond
production, phytase-mediated improvements in nutrient utilization are linked to improved tibia quality in
terms of higher breaking strength and Mg contents [20]. Furthermore, heat stress, known to disrupt the
physiological function and reduce mineral absorption and retention [21; 22], exacerbates performance
losses, compromises immune response and welfare, and could even result in mortalities, causing
unnecessary economic losses [23]. Phytase supplementation under heat stress conditions may alleviate these
negative responses in laying hens, potentially improving performance and egg quality [24]. Moreover,
phytase has been reported to mitigate the stress response induced by low avP diets, as evidenced by
reductions in circulating stress hormone levels [20].

The widespread adoption of phytase has generated potential interest in its super-dosing effects at
higher than recommended levels [25]. Super-dosing is aimed at greater phytate hydrolysis and liberating as
much phosphorus as possible by generating lower esters of IP6. It was previously reported that
supplemental phytase at 1500 FTU/kg resulted in increased inositol phosphate breakdown and bone quality;
however, performance and egg quality were unaffected from 40 to 60 weeks of age [17]. Furthermore, Lima
et al. [19] reported that optimal performance and egg quality were observed at 1500FTU/kg, and further
supplementation at 3000FTU/kg did not result in extra improvements from 44 to 64 weeks of age. Notably,
lower phytase levels (500 and 1000 FTU/kg) were sufficient to maintain the hens’ physical and
physiological status [19]. Despite the promising findings, it is the authors’ observation that phytase super-
dosing in laying hens remains largely unexplored. The next step would be to conduct further research on

phytase super-dosing to determine the optimal inclusion levels that will save on feed cost while optimizing
6
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performance, egg quality, gut health, and bone function, without adversely affecting the hens' physiological

balance.

Protease

The supply of protein (amino acids) occupies the second most expensive component of poultry diets after
energy. Strikingly, significant quantities of feed protein (around 18-20%) are known to escape complete
digestion in the avian gastrointestinal tract [26], leading to undesirable hindgut fermentation and elevated
nitrogen excretion, with associated negative effects on bird health and environmental sustainability [27].
Exogenous protease supplementation has emerged as a promising strategy to optimize protein digestibility
and utilization, particularly in low CP/AA diets [28]. The rationale behind this approach is to provide
enough room for protease-mediated improvements in amino acid metabolism that could restore potential
performance deficits with reduced CP/AA diets [29]. By improving protein digestibility and utilization,
protease adoption also allows for partial displacement of expensive protein ingredients, thereby supporting
hen performance at relatively reduced costs.

When incorporated into laying hen diets, protease has been reported to supplement endogenous
protease activity and enhance the digestibility of protein and amino acids [29; 30; 31] These improvements
are attributed to potential additive effects on gut function, including shifting the site of digestion to more
proximal segments [32], reducing endogenous losses [33], and enhancing amino acid availability for mucin
synthesis [34]. Additionally, supplemental protease has been associated with enhanced gut morphology [29];
stabilized gut pH [26]; upregulated expression of intestinal amino acid transporters [35]; suppression of
pathogenic microorganisms [36]; and mitigation of anti-nutritional factors in plant-based diets [37]. The
benefits of protease extend beyond amino acid utilization, thereby improving the digestibility of ME, net
energy, fat, and starch [33].

The digestibility-enhancing effect of protease is linked to improved performance metrics,
including egg mass, weights, and feed conversion ratios [29; 30; 31], effectively restoring reported
performance losses from feeding low-protein diets [28]. We previously investigated the effects of

supplementing a multiprotease combining acid (pepsin-type protease), neutral (metallo-endopeptidase), and
7
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alkaline (serine endopeptidase) proteases, produced by Aspergillus niger, Bacillus subtilis, and Bacillus
licheniformis, respectively [29]. Multiprotease supplementation led to improved productive performance
(feed conversion efficiency, egg weights, egg mass), and egg quality (Haugh units and egg-breaking
strength [29]. Improved internal egg quality, especially elevated Haugh units, indicating enhanced egg
freshness and protein content [31]. Improved eggshell breaking strength suggests an “extra-proteinaceous”
influence on mineral absorption and utilization, potentially reducing egg breakage during transport and
handling [29; 38].

Furthermore, reducing dietary protein often increases the dietary energy-protein ratio, potentially
leading to higher fat deposition, particularly abdominal fat [39]. Although short-term increases in carcass
fat may indicate sufficient energy status [40], excessive fat accumulation, as could be the case with longer
laying cycles, could decrease egg production and quality [41]. Interestingly, supplemental protease in low
CP/AA diets may potentially counteract these effects. For instance, Yi et al. [42] reported that broilers that
were fed alkaline protease extracted from Bacillus licheniformis exhibited decreased fat accumulation,
likely mediated by a shift in gut microbiota, specifically increased Bacteroidetes and reduced Firmicutes.
These findings warrant further investigation in laying hens to elucidate potential interactions between
protease, microbiome composition, and fat metabolism.

Varied results have also been reported [43] and could be explained by differences in diet (protein
quality, feed ingredient type) and bird-related factors (age and genotype). Furthermore, excessive CP
reduction can compromise performance due to inadequate non-essential amino acids, disrupted electrolyte
balance, and lowered potassium levels [44]. Protease products with proven efficacy in improving amino
acid digestibility should be considered for inclusion in low-CP diets to restore performance losses, eliciting
both economic and environmental benefits. Mineral digestibility and utilization are integral to laying hen
performance. It is the author’s observation that not much has been done to understand the effects of protease
on mineral digestibility and utilization, bone mineralization, and egg quality. Future studies should address
these gaps to improve the current understanding of the broader impacts of protease inclusion in laying hen

diets.
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Carbohydrases

Energy, a property derived from nutrient metabolism, is known to be the most expensive dietary
requirement in feed formulations. As monogastrics, poultry inherently lack the endogenous enzymes to
degrade the complex structures of plant cell walls, especially non-starch polysaccharides (NSPs) present in
common feedstuffs [45; 46]. Non-starch polysaccharides (NSPs) are a diverse group of complex
carbohydrates that differ in structure, size, and water solubility. They include cellulose, hemicelluloses such
as arabinoxylans, B-glucans, and fructans [47;48]. In common grain-based poultry diets, cellulose,
arabinoxylans, and p-glucans make up the bulk of the fiber content [49]. NSPs impair nutrient utilization
by increasing digesta viscosity, inhibiting intestinal peristalsis, prolonging digesta passage rate, disrupting
microbiota balance, and reducing endogenous enzyme activity [47;48;49]. It is becoming increasingly
important to consider the role of non-starch polysaccharides (NSPs), particularly 3-mannans, in triggering
what is known as a feed-induced immune response [50]. This response causes birds to expend additional
energy to sustain an unnecessary immune activation, ultimately diverting resources away from growth and
productive purposes [51]. Collectively, these digestive disturbances reduce nutrient digestibility and
performance [48; 49]. To address the rising energy supply cost and improve energy utilization, exogenous
carbohydrases such as xylanases, p-mannanases, and B-glucanases are increasingly being adopted to
catalyze specific substrates, as illustrated in Table 1 [15; 49; 52]. Increased energy utilization efficiency
may partially compensate energy requirements and allow the inclusion of relatively inexpensive and mostly
fibrous ingredients, reducing feed costs without compromising performance [53].

Today, nearly all diets that are wheat or barley-based incorporate xylanase and B-glucanase
enzymes to improve nutrient digestion and feed efficiency. Increasing evidence shows that carbohydrases
improve nutrient digestibility by depolymerizing soluble NSPs, reducing intestinal viscosity, and enhancing
nutrient availability [46; 47; 54]. Supplemental beta 1-4, endo-xylanase was reported to modulate gut
viscosity, caecal pH, digesta transit, NSP degradation, and microbiota composition, leading to improved
energy utilization and lower excreta moisture [55]. Lowered excreta moisture is correlated with reduced

incidence of dirty eggs [56], even though conflicting results have also been reported [53; 57]. Xylanase
9
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supplementation has also been associated with improved feed conversion ratio, egg mass, egg production,
and egg quality traits such as yolk color, shell thickness, albumen height, and Haugh unit [45; 53; 58].
Similarly, supplemental p-mannanase restored the performance losses of energy-reduced diets by
modulating gut morphology, reducing inflammation, improving energy utilization, and promoting
beneficial cecal microbiota [47].

Supplemental carbohydrase effects on hen performance and egg quality are variable and
inconsistent. For instance, Cufadar et al. [59] reported that the laying performance of White Leghorn LSL
laying hens was unaffected by a bacterial endo 1,4-p-xylanase supplemented from 52 to 64 weeks of age.
These observations suggest the high degree of complexity in the development and application of
carbohydrases in laying hen diets, presenting both challenges and opportunities for optimizing carbohydrase
enzyme utilization. Variability in response is primarily attributed to differences in NSP type and
concentration [48], alongside other factors such as hen age and strain, enzyme source and dose, and feed
ingredient composition and batch variation [45; 57]. Carbohydrase products with proven efficacy in nutrient
digestibility should be considered for inclusion in laying hen diets and could potentiate improved productive

performance and egg quality.

Multienzymes

Poultry diets constitute multiple ingredients (corn, wheat, soybean meal, by-products) that are structurally
complex and could each contain different antinutritional factors (NSPs, phytates, protease inhibitors).
Supplemental multienzymes have been investigated as a strategy to enhance complementary and additive
effects across various feed components and are postulated to be more effective than single enzyme
approaches in greater substrate hydrolysis and reducing the antinutritive effects on overall nutrient
utilization [52]. Gunawardana et al. [60] demonstrated that a multienzyme blend containing xylanases, p-
glucanases, mannanases, pectinases, and proteases improved energy and protein utilization, effectively
improving egg production, body weight, egg mass, feed conversion, and albumen and yolk solids.
Concomitantly, Scheideler et al. [61] reported that a multi-enzyme combining xylanase, protease, and

amylase influenced protein and mineral (calcium and phosphorus) retention without affecting feed intake,
10
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feed conversion efficiency, egg production, egg weight, or egg mass. Furthermore, a non-starch
polysaccharide-targeting enzyme blend containing xylanase, p-glucanase, galactosidase, and
galactomannanase increased nitrogen digestibility and reduced excreta ammonia emissions with no adverse
effects on egg quality or productive performance [62]. Further evidence reported synergistic effects on
laying performance and egg quality of hens, which are attributed to the modulation of gut health [63; 64].
These findings support the strategic adoption of multienzymes as a promising approach to optimize nutrient

utilization, enhance production efficiency, and improve environmental sustainability for laying hens.

Biotics as feed additives

Chicken gut harbors a highly complex and dynamic microbial ecosystem that constitutes an integral part of
the gut health nexus with definitive impacts on the overall health and productivity [65; 66; 67]. Several
feed-related approaches targeted at modulating the gut microbiome are available, including probiotics,
prebiotics, synbiotics, and postbiotics. Probiotics are defined as single or mixed cultures of non-pathogenic,
live microbes that could exert health and productive benefits to the host when supplied in adequate amounts.
For optimal efficacy, probiotic microbes must be non-pathogenic, improve hut function and health, adhere
to the intestinal epithelium, survive and thrive in the prevailing acidic environment in the gut, and retain
viability during storage, processing, and transportation [68]. Some commonly used probiotic bacteria
species include Bacillus, Streptococcus, Lactobacillus, Lactococcus, Saccharomyces, Aspergillus, and
Enterococcus [69]. Probiotic bacteria could be delivered as single or multi-strain formulations via feed or
water in the form of either granules, powder, liquid, paste, or gel [69].

Even though the probiotic mode of action is complex (Figure 2), probiotics are suggested to be
most effective following a disturbance. The beneficial effects of live microbial feed supplements are
mediated through multiple pathways including the microbiota—gut—brain, microbiota—gut-immune, and the
microbiota—gut-bone axes. Probiotic bacteria enhance microbial communities through competitive
exclusion and antagonism towards pathogenic bacteria [70; 71]. By improving and/or maintaining intestinal

microbial diversity and balance, probiotics are reported to enhance colonization resistance against stressors;
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catalyze immune responses; promote gut integrity; and improve laying hen performance [71]. Probiotic-
mediated improvements in laying hen performance, egg quality, and physiological responses are often
linked to metabolites such as short-chain fatty acids (SCFAs) and bile acids [66].

We previously reported that multi-strain probiotic supplementation of Bacillus subtilis PB6, B.
subtilis FXA, and B. licheniformis G3 at 3x10® CFU/kg of feed improved egg quality, several tibia traits,
and populations of beneficial cecal bacteria while reducing egg yolk cholesterol [67]. Suggesting the impact
of the microbiota-gut-liver axis in bile acid enterohepatic circulation, the capacity of probiotics to lower
yolk cholesterol has been corroborated by Li et al. [72] using a dried Bacillus subtilis culture. Reduced yolk
cholesterol levels are attributed to several mechanisms, including bile salt hydrolase-mediated
deconjugation of conjugated bile acids into free bile acids, which are less efficiently reabsorbed in the ileum
and more readily excreted via the feces [67]. Additionally, probiotic bacteria can directly assimilate
cholesterol for their metabolism. Furthermore, SCFAs, particularly propionate, may inhibit hepatic
cholesterol synthesis by downregulating 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA
reductase), the rate-limiting enzyme in the mevalonate pathway [73]. These probiotic-mediated processes
in reducing yolk cholesterol align with health-conscious consumer demands.

As breeding targets are increasingly focused on extended laying cycles, bone health becomes
increasingly critical for maintaining performance and egg quality [74]. Laying hens possess three primary
bone types- cortical, trabecular, and medullary. The medullary bone, which develops at the onset of sexual
maturity, acts as a labile calcium reservoir buffering against dietary calcium insufficiency during eggshell
formation [6]. In contrast, cortical bone provides structural support for the skeleton and is produced through
osteoblastic activity till the onset of sexual maturity and egg production. Long-term laying behavior leads
to supplemental calcium extraction from structural bone (cortical and trabecular), occasioning net loss of
mineral mass, and may lead to osteoporosis (cage fatigue syndrome) and reduced egg quality over time
[75]. Improvement of tibia traits is linked to probiotic modulation of mineral absorption and bone
mineralization through various mechanisms, including stimulating intestinal epithelial cell proliferation and
differentiation [66], and lowering gut pH [67], potentially mitigating age-related skeletal deterioration and

eggshell defects.
12
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Prebiotics, on the other hand, are selectively fermented feed ingredients that stimulate the growth
and activity of beneficial gut bacteria, indirectly exerting beneficial effects on host health [71]. Prebiotics
could fuel the growth of beneficial gut microbes while limiting the establishment of foodborne pathogens,
thereby improving host microbial balance [76]. Prebiotic fermentation could also inhibit hindgut protein
fermentation, effectively decreasing toxic secondary nitrogen metabolites, improving nitrogen balance, and
promoting gut health function [77]. Common prebiotic compounds include oligosaccharides such as inulin,
lactulose, fructooligosaccharides (FOS), mannan-oligosaccharides (MOS), galactooligosaccharides (GOS),
and xylo-oligosaccharides [70]. Prebiotics may exert effects similar to probiotics by enhancing gut health,
modulating immune responses, and improving host performance (Figure 2). For instance, dietary inclusion
of MOS has been reported to enhance productive performance and reproductive function in laying hens
[78]. Conversely, productive performance, immune response, and blood parameters of laying hens were
unaffected by FOS [79].

Furthermore, it is also reasoned that synergistic effects could be drawn from both prebiotics and
probiotics in a combined form as synbiotics. The justification for synbiotics is that a fermentable prebiotic
substrate could increase the number, survival, and establishment of beneficial probiotic bacteria [71]. In
laying hens, synbiotics are increasingly explored as nutritional strategies to optimize gut health, nutrient
digestibility, productive performance, egg quality, immune modulation, and pathogen suppression [71].
However, it has been noted that consistent additive or synergistic impacts are rare. In many cases, either
prebiotics or probiotics could effectively improve laying performance, egg quality, nutrient absorption, and
host physiological responses [80].

Recently, attention has been drawn to postbiotics, which are soluble and non-viable metabolites
from microorganisms that have biological activity when supplied in adequate amounts. These include cell
wall fragments, extracellular vesicles, short-chain fatty acids, enzymes, bacteriocins, vitamins, and other
metabolic by-products with the potential to suppress pathogens, strengthen gut barrier function, and
modulate immunity and gut microbiome [81]. Several other names have been used for postbiotics, including
pseudo-probiotics, ghost probiotics, paraprobiotics, metabiotics, abiotics, cell-free supernatants, and

biogenics [82]. Posthiotics are reported to overcome some problems associated with probiotics, including
13
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viability during storage, the temporary nature of colonization, and the possible transfer of virulent genes to
pathogenic bacteria. Postbiotics are ascribed to be stable and safe with reduced impact on feed nutrient
components [82]. Choe et al. [83] reported that metabolite combinations of the Lactobacillus plantarum
RI11, RG14, and RG11 improved egg production, modulated fecal microbiota and pH, triggered intestinal
morphological changes, and reduced plasma and yolk cholesterol concentrations.

Collectively, dietary approaches targeting gut microbiota can regulate the delicate balance between
microbiota, diet, mucosa, and immune function, with definite influences on hen health and overall
productivity [8; 84]. Nevertheless, variabilities in responses remain a challenge, suggesting the complex
nature of the development and application of these microbiota-modulating approaches in laying hen diets.
For instance, Mahdavi et al. [85] found no significant effects of a multi-strain probiotic containing B.
subtilis and B. licheniformis on laying performance or egg quality. The observed variabilities stress the
species and/or strain specificity of probiotic bacteria and are attributed to the differences in microbial strains,
dosages of administration, administration methods, environmental stress, and diet composition [67]. These
variabilities present an exciting opportunity for the continued evaluation of probiotics, prebiotics, synbiotics,
and postbiotics, when used singly or in combination, to determine their specific efficacy when incorporated

into laying hen diets.

Organic acids as feed additives

Organic acids (OAs) are original constituents of plant and animal tissues and include a variety of acids such
as lactate, acetate, propionate, butyrate, and tannic acids, among others [70; 86]. They are also produced
via microbial fermentation of carbohydrates in the ceca. According to Pham et al. [87], OAs are chemically
classified according to their carbon chain length into short-chain (SCFAs; 1-6 carbon atoms), medium-
chain (MCFAs; 7-12 carbon atoms), or long-chain (LCFAs; 13-21 carbon atoms). Singular or combined
forms of OAs are supplied in water, sprayed in litter, or mixed in feed to exert several beneficial activities

related to energy metabolism, antimicrobial control, and feed quality preservation [88]. Regarding energy
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metabolism, acetate is utilized as an energy substrate for muscle tissue, propionate supports the
gluconeogenic pathway to generate glucose, and butyrate fuels ceco-colonic epithelial cells [86].

Beyond metabolic functions, OAs exert antimicrobial effects against pH-sensitive bacteria; lower
gut pH; promote gut development, maturation, and integrity; and enhance nutrient utilization, health, and
productivity as illustrated in Figure 3 [71; 88]. Their ability to lower chyme pH increases pepsin activity
and calcium uptake, promoting protein degradation and mineral uptake [86]. These improvements can
translate to improved internal egg and eggshell quality [89; 90; 91]. Improved eggshell qualities are
attributed to improved integrity of reproductive organs, particularly the shell gland [92]. Improvements in
egg production and weight have also been reported [90; 93], though a lack of significant effects on both
egg production and quality has also been observed [94].

The variability in responses is attributed to differences in OA type, dosage used, hen age, and diet
composition. The effectiveness of OAs depends on their ability to change from the un-dissociated to the
dissociated form, their pKa value, and hydrophobicity. Of interest, the activity and concentration of OAs
could be reduced in the distal gut segments unless they are protected by encapsulation [10; 95]. Furthermore,
blending different OAs is recommended to cater to variations in membrane permeability [70]. Notably,
excessive supplementation can be detrimental, leading to reduced villus height and width, and crypt depth
[96]. Administration of low dosages [70] or adherence to proper dosage [86] is crucial to maintain overall
gut health as previously defined [8]. Continuous testing to determine the optimal dosage that supports
performance and gut health function without adversely affecting the hens' physiological and metabolic

balance is recommended.

Phytogenics as feed additives

Phytogenic feed additives (PFAS) are a wide variety of natural bioactive compounds derived from plants.
They include complex secondary constituents, such as terpenoids (linalool, menthol, borneol, geraniol, a-
terpineol), phenolics (tannins), and low molecular weight aliphatic hydrocarbons (thymol, eugenol,

carvacrol, cinnamaldehyde) [97]. PFAs are broadly classified based on their biological origin, formulation,
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chemical description, and purity into herbs, botanicals, essential oils, and oleoresins [98]. Phytogenics are
thought to be natural, less toxic, and residue-free, and thus have been widely applied in both human and
animal industries in the form of oregano, green tea, peppermint, aloe vera, moringa, cinnamon, garlic,
thyme, turmeric, rosemary, and coriander, among many others [13; 99]. Phytogenics are widely reported to
possess strong antimicrobial, immune-enhancing, anti-inflammatory, and antioxidant activities [13].

Although the phytogenic mechanism of action is complex and not completely elucidated, it is
suggested that PFAs activate the aryl hydrocarbon receptor (AhR) and nuclear factor-erythroid-derived 2-
like 2 (Nrf2) signaling pathways, which induce cytoprotective, homeostatic, and immune-protective effects,
as illustrated in Figure 4 [100; 101]. Specifically, AhR regulates the expression of genes responsible for the
detoxification and elimination of xenobiotic compounds, while Rrf2 regulates antioxidant response and
inflammatory modulation [100]. Additionally, PFAs may induce antipathogenic effects by damaging
bacterial membranes, promoting the colonization of beneficial gut microbiota, or modulating immune
responses [13]. Strikingly, essential oils (steam-distilled extracts of volatile plant compounds) are ascribed
to be of higher biological activity and have been widely tested in poultry diets [102; 103].

The beneficial phytogenic-mediated effects on production performance and egg quality have been
widely reported [103; 104]. Reported improvements include enhanced eggshell thickness, higher egg
weight and mass, improved tibia traits, and protein digestibility [105; 106; 107]. Additionally, supplemental
PFA-induced modulation of cecal microbiota and gut morphology (longer villus heights and higher villus
heights to crypt depth ratio) could translate to improved internal egg nutrient content (riboflavin, thiamine,
selenium, and phosphorus) and thicker eggshells [108]. Dietary PFAs were reported to down-regulate AhR-
associated gene expression while up-regulating the Nrf2-related genes, leading to improved gut
cytoprotection and performance [100]. Notably, inconsistent results regarding supplemental phytogenics
have also been documented [105].

A wide variety of PFAs are available for dietary utilization across different geographical areas of
the world, but the efficacy of PFA supplementation is debatable due to their complexity, instability, lack of
full understanding of their modes of action, and hence, the commonly reported variabilities in laying hen

responses to PFAs. Variability in phytogenic efficacy is attributed to the differences in source and
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composition of the active components, method of preparation and storage, feed inclusion levels, bird
genetics and age (laying phase), and overall diet composition [70; 101; 109]. When incorporating PFAs into
diets, consideration should be paid to accreditation, potential contamination, mode of action, experimental
testing, quality, feed matrix interactions, and economic value [12]. Strikingly, a negative effect of higher
essential oil dosages was observed on biomechanical properties and mineral contents of the tibia [106],
highlighting the importance of appropriate dosing used to avoid undesired physiological responses. More
effort is still needed to determine the appropriate inclusion levels of phytogenic feed additives and to fully
expound their mode of action on gut microbiota, function, and immunology, and bird performance when

incorporated into laying hen diets.

Combination of feed additives

Nutrients exist in a complex matrix involving starch and non-starch polysaccharides, protein, lipids,
minerals, and vitamins [33]. It is reasoned that feed additive combinations may yield synergistic and
additive effects, especially in antibiotic growth promoter (AGP)-free systems [9; 110]. Organic acids may
synergize with probiotics (by lowering pH favoring Lactobacilli) and with enzymes (improving
digestibility). While antinutritional factors in PFAs could limit their utility, co-supplementation with
exogenous enzymes could improve their bioavailability and effectiveness [99]. Furthermore, NSP
depolymerization by carbohydrases generates oligosaccharides that may exert a prebiotic effect, supporting
live in-feed microbials [57; 111]. Supplemental B-mannanase derived from Paenibacillus lentus bacteria
combined with a multi-strain probiotic (Lactobacillus acidophilus, L. bulgaricus, L. plantarum, L.
rhamnosus, Bifidobacterium bifidum, Enterococcus faecium, and Streptococcus thermophilus) improved
the laying rate, egg weight, and egg mass while modulating intestinal morphology [112].

Recently, attention has been drawn to stimbiotics, defined as non-digestible but fermentable
additives that accelerate fiber-degrading microbiome establishment in the GIT [113]. Stimbiotic dosages
are usually low and enhance the fermentation of dietary fiber already present in the feed, rather than serving

as a direct fermentable substrate as in the case of prebiotics [113]. While stimulating probiotic bacteria
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without providing adequate substrates can induce detrimental effects on microbiota balance, xylanase
inclusion when feeding high levels of prebiotic xylo-oligosaccharides exerted stimbiotic effects, optimizing
probiotic bacteria diversity [114]. Furthermore, combined incorporation of compound acidifiers (fumaric,
sorbic, citric, and malic acids at 1.5g/kg) and plant essential oils (cinnamaldehyde, carvacrol, and thymol
at 100 mg/kg) improved egg quality, alleviated inflammatory responses, increased digestive enzyme
activities, and enhanced serum antioxidant capacity [97]. However, excessive supplementation of the
compound acidifiers increased serum MDA levels in the Wang et al. [97] study, indicating enhanced
oxidative stress. The need to determine the optimal dosage and ratio of combined feed additives that will
maximize benefits without compromising the physiological functions of the birds is stressed. Future
development of feed additives should consider combinations to determine potential synergistic and additive

effects in laying hen responses.

FUTURE DIRECTIONS AND SUMMARY

Given the considerable advances in the understanding of laying hen nutrition and modern biotechnology,
several feed additives are routinely incorporated into the feeding program of laying hens. Despite being
used in low amounts (usually 50-500g/tonne), the selected feed additives (probiotics, prebiotics, synbiotics,
postbiotics, phytogenics, feed enzymes, and organic acids) showed immense potential to maintain
productive performance and egg quality and could also improve gut and musculoskeletal health and
function. The strategic application of feed additive combinations could also potentiate several additive and
synergistic responses. Optimized nutrient utilization through feed additives is aimed at reducing feed costs,
maintaining animal health and welfare, improving productivity, and reducing nutrient excretion to the
environment. Reduced nutrient excretion could alleviate environmental stress and contribute to the
sustainability of poultry production. Furthermore, improved nutrient utilization could enrich egg quality
characteristics for their functional value in human nutrition. Feed additive products with proven efficacy
are recommended for inclusion in laying hen diets and could potentiate several responses, as summarised

in Figure 5. A pragmatic future for layer nutrition lies in strategies that could integrate enzymes to unlock
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maximal feed nutrient value; biotics to stabilize microbiota; organic acids to exert antimicrobial effects
against pH-sensitive bacteria and optimize gut function; and phytogenics to enhance antioxidant status,
immune function and gut resilience. However, while many effects are described, deeper understanding of
gut microbiome shifts, mucosal immunity pathways, and systemic metabolic effects in layers is incomplete.
It is also evident that laying hen responses seem to be largely dependent on breed, hen age, health status,
feed composition and quality, environmental factors, and management. These variabilities in laying hen
responses are not uncommon, suggesting that it may not always be economically beneficial to supplement
feed additive compounds, especially under commercial conditions. The reported variabilities present an
opportunity for further research on the specific efficacy of these feed additives on the performance, egg
quality, and gut health of laying hens under varied experimental conditions that could favorably mimic
commercial conditions with larger flock sizes and extended laying cycles. Practical implementation will
require problem diagnosis (poor shell strength, inconsistent egg weight, pathogen load); defining expected
outcomes; evidence-based product selection; careful formulation (matrix adjustments for enzymes);
consideration of additive compatibility when combinations are adopted; accounting for strain- and product-
specific variation (particularly for probiotics and phytogenics); monitoring performance; and economic
assessment to gauge if the returns justify the expense. Ultimately, we wish to maintain egg quality and
safety; achieve breeding objectives of longer laying cycles and persistence in laying performance; and

improve skeletal, immune, and gut health under commercial conditions.
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835  Figure 1. Mode of action, beneficial activities and impacts of incorporating exogenous enzymes in laying hen diets
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838  Figure 2. Classification, mode of action and some beneficial activities associated with biotic feed additives in laying hen diets
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840  Figure 3. Different forms of application and possible mode of action of organic acids
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843  Figure 4. Overview of phytogenic feed additives, including classifications and potential modes of action
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845  Figure 5: Possible impacts of the dietary incorporation of the selected feed additives in laying hen diets
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848  Table 1. Enzyme types and target substrates

Target feedstuff

Enzyme type Target substrate

Phytases Phytate
Proteases Proteins
Carbohydrases

Xylanase Arabinoxylan

Pectinase Pectin

B-Glucanase B-Glucan

a-Galactosidase Oligosaccharides

Amylase Amylose

Mannanase, cellulase, hemicellulase Mannan, cellulose, hemicellulose
Lipase Lipids

All plant-derived ingredients
All plant protein sources

Wheat, rye, triticale, barley, fibrous plant materials
Plant-derived ingredients
Barley, oats, and rye
Oilseed meals and grain legumes
Cereal grains, grain legumes
Plant-derived ingredients, fibrous plant materials
Lipids in feed ingredients

849  Adapted from Kiarie et al [10]; Perera and Ravindran, [11]; and Ravindran, [15]
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