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Abstract  7 

Selected feed additives (probiotics, prebiotics, synbiotics, postbiotics, phytogenics, feed enzymes, and 8 

organic acids) are reviewed for reported biological responses, and some recent developments when 9 

incorporated into laying hen diets. Several feed enzymes (phytase, carbohydrase, protease, and multi-10 

enzymes) have been adopted to improve the nutritive quality of feedstuffs by mitigating inherent digestive 11 

function inefficiencies, complementing endogenous enzyme activity, and cleaving anti-nutritional factors 12 

abundant in vegetable-based poultry diets. Phytase use is targeted at hydrolyzing phytate to liberate 13 

phosphorus and possibly other encapsulated nutrients, with widely reported environmental and economic 14 

benefits. Proteases often improve the hydrolysis of amino acids and protein complexes to improve dietary 15 

protein digestibility and utilization, potentially restoring performance losses and maintaining the egg quality 16 

of hens fed low-protein diets whose CP level has been further reduced. The digestibility-enhancing effects 17 

of fiber-degrading carbohydrases are associated with the reduction of intestinal viscosity and improved 18 

energy utilization through depolymerization of soluble non-starch polysaccharides. Considering that 19 

nutrients exist in a complex matrix involving starch and non-starch polysaccharides, protein, lipids, 20 

minerals, and vitamins, laying hens could also benefit from potential additive and synergistic effects 21 

accrued from adopting defined feed enzyme combinations. The incorporation of gut-health-promoting feed 22 

additives (pre, pro, syn- and postbiotics, phytogenics, organic acids) optimizes feed nutrient utilization by 23 

inducing immuno-stimulatory, antimicrobial, and antioxidant activities, modulating gut immune function, 24 

and microbial balance and population. Hen responses to feed additives are context-dependent and highly 25 

variable due to various factors, including rearing system, age, breed, health status, environmental factors, 26 

feed composition and quality, and management. However, on balance, feed additive products with proven 27 

efficacy and financial value are recommended for inclusion in laying hen diets; and could potentiate 28 

optimized performance and egg quality, reduced feed costs, improved animal welfare and skeletal health, 29 

and reduced environmental stress due to nutrient excretion, thereby improving the economic and 30 

environmental sustainability of hen egg production. Strategic application of feed additive combinations 31 

could potentiate additive and synergistic responses.  32 
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 35 

INTRODUCTION 36 

Increasing human food production is essential in line with the global population increase and food demand. 37 

As the fastest-growing animal-based food sector, the poultry industry is well-positioned to address rising 38 

consumer expectations and sustainability concerns [1]. The avian egg, beyond being the reproductive unit 39 

for the domestic fowl, is an encapsulated nutrient-dense, highly digestible, and reasonably priced food, 40 

packing proteins, vitamins, micronutrients, and bioactive substances [2; 3]. Accordingly, global egg 41 

production has increased significantly by more than 69% from 2000 to 2021 [3], coinciding with 42 

improvements in egg demand and hen productivity. Asia is showing the greatest production growth, 43 

followed by the Americas, Europe, Africa, and Oceania [4]. With a 34 percent share, China retained its 44 

position as the largest hen egg producer; the other main producers (India, the United States of America, 45 

Indonesia, Brazil, Mexico, Japan, and Russia) each accounted for 3 to 8 percent of the global production 46 

[4]. The combined share of the main producers accounted for more than 69% of the global production by 47 

2021. 48 

The entire layer industry is dependent on the productive efficiency of the hen to lay approximately 49 

one sound egg within 24 -26 hours, making consistent productivity and egg quality the cornerstone of any 50 

successful commercial laying hen enterprise. Modern laying hens exhibit enhanced reproductive 51 

performance and could sustain egg laying further beyond 68-70 weeks of age to reach approximately 100 52 

weeks of age and yield almost 500 eggs of acceptable quality [5; 6]. Achieving and sustaining this high 53 

productivity expectation relies heavily on strategic hen nutrition aimed at maximizing the genetic potential 54 

of modern hens, supporting consistent egg production, maintaining egg quality, and ensuring overall health 55 

and welfare. Early-life nutrition to achieve optimal body weight and composition at sexual maturity 56 

mitigates potential delays in the onset of lay, and optimizing pullet diets potentiates laying persistency [7]. 57 

At the same time, the layer industry faces pressure to optimize limited feed resources and phase out 58 
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antibiotic growth promoters [AGPs; 8]. Since feed constitutes the largest input cost, optimizing nutrient 59 

utilization and digestive efficiency is paramount with potential beneficial outcomes on animal performance, 60 

health, and welfare, as well as economic and environmental sustainability.  61 

The poultry industry has had to adapt in line with growing pressures revolving around AGP use 62 

and public health, environmental pollution, animal welfare, changing consumer expectations, and rising 63 

food and feed costs. Notable advances in hen nutrition and modern biotechnology have made it possible to 64 

implement several nutritional approaches aimed at reducing feed costs; maintaining hen health, modulating 65 

gut microbiome population and balance; improving performance; and optimizing feed nutrient utilization. 66 

Improved nutrient utilization reduces nutrient excretion and alleviates environmental stress, promoting 67 

sustainable poultry production [9]. Improved nutrient utilization could additionally improve egg quality 68 

characteristics for functional value in human nutrition. These nutritional strategies often target gut health, 69 

which is defined as the dynamic balance between the diet, commensal microbiome, intestinal mucosa, and 70 

immune system essential for maintaining physiological functions, homeostasis, and resilience against 71 

stressors [8].  72 

One such strategy is the incorporation of feed additives into hen feeding regimens. Feed additives 73 

are typically defined as compounds added to a diet in low amounts (usually 50-500g/tonne) to elicit targeted 74 

responses, independent of the hen’s nutritional requirements [10; 11]. Several feed additives have been 75 

mainstreamed in hen diets to improve feed ingredient quality, performance, and gut health. Feed additive 76 

choice depends on regulatory authorization, availability, and most importantly, economic justification [12]. 77 

Selected feed additives (probiotics, prebiotics, synbiotics, postbiotics, phytogenics, feed enzymes, and 78 

organic acids) are reviewed for their reported effects and recent developments when incorporated into hen 79 

diets. Notably, large amounts of research have been generated on the biological responses of laying hens to 80 

feed additive incorporation, and it is beyond our scope to summarize the amount of information in this field. 81 

This review explores selected feed additives and their role in modulating productivity, egg quality, and gut 82 

health of laying hens while emphasizing key concepts and suggesting critical areas warranting further 83 

exploration.  84 
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 85 

SELECTED FEED ADDITIVES 86 

Exogenous enzymes as feed additives  87 

The availability of exogenous feed enzymes with affordable pricing and established efficacy has given 88 

nutritionists a viable tool to improve feed ingredient quality [11]. Increased knowledge on target feed 89 

constituents and modern biotechnology have made it possible for exogenous feed enzymes to be the one of 90 

the most extensively researched and widely adopted feed additive and could arguably be the most impactful 91 

development in modern poultry nutrition. The growth in the feed enzyme industry is driven by the ban on 92 

AGP use to enhance performance and feed utilization efficiency; increased cost and erratic supply of 93 

conventional feed ingredients, reinforcing the need to maximize nutrient extraction and reduce wastage 94 

through excretion. Feed enzymes targeting various substrates (Table 1) have been mainstreamed in poultry 95 

diets to correct the inherent nutrient utilization inefficiency and mitigate antinutritional factors [13]. Feed 96 

enzymes work through multiple mechanisms to improve nutrient digestibility, including disruption of cell 97 

wall integrity, shifting digestion sites, reducing endogenous secretions, modulating gut microbiota, and the 98 

degradation of specific bonds and antinutritional factors, as illustrated in Figure 1 [11; 14; 15]. Enhanced 99 

nutrient utilization deprives harmful bacteria of nutrients in the lower gut (mainly ceca) and is likely to 100 

result in improved performance, health status, and environmental sustainability. Enzymes are either i) added 101 

“over the top” to adequately formulated rations for additional improvements or ii) incorporated into 102 

nutrient-reduced formulations to restore the nutritional value and compensate for any potentially reduced 103 

performance responses.  104 

 105 

Phytase 106 

Phosphorus is the third most expensive nutrient in poultry diets, following energy and protein. However, 107 

more than 65% of phosphorus in common plant-based feed ingredients is bound to phytate (myo-inositol 108 

hexa-phosphate; IP6), rendering it biologically unavailable without enzyme-induced dephosphorylation. 109 

Phytase inclusion has become a common strategy to catalyze phytate and release phosphorus, with well-110 
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documented environmental and economic benefits [14]. Particularly, supplemental phytase improves 111 

phytate P utilization and reduces P excretion, thereby mitigating environmental pollution. Phytase 112 

supplementation in diets low in available phosphorus (avP) could save on feed costs by decreasing the need 113 

for inorganic P supplementation [16]. Beyond phosphorus release, phytase could exert ‘extra-phosphoric 114 

effects’ by improving the bioavailability of other encapsulated nutrients, including minerals, energy, and 115 

amino acids [17].  116 

Supplemental phytase in hen diets is associated with improved production performance and egg 117 

quality, including enhanced shell quality attributed to improved mineral digestibility [18; 19]. Beyond 118 

production, phytase-mediated improvements in nutrient utilization are linked to improved tibia quality in 119 

terms of higher breaking strength and Mg contents [20]. Furthermore, heat stress, known to disrupt the 120 

physiological function and reduce mineral absorption and retention [21; 22], exacerbates performance 121 

losses, compromises immune response and welfare, and could even result in mortalities, causing 122 

unnecessary economic losses [23]. Phytase supplementation under heat stress conditions may alleviate these 123 

negative responses in laying hens, potentially improving performance and egg quality [24]. Moreover, 124 

phytase has been reported to mitigate the stress response induced by low avP diets, as evidenced by 125 

reductions in circulating stress hormone levels [20].  126 

The widespread adoption of phytase has generated potential interest in its super-dosing effects at 127 

higher than recommended levels [25]. Super-dosing is aimed at greater phytate hydrolysis and liberating as 128 

much phosphorus as possible by generating lower esters of IP6. It was previously reported that 129 

supplemental phytase at 1500 FTU/kg resulted in increased inositol phosphate breakdown and bone quality; 130 

however, performance and egg quality were unaffected from 40 to 60 weeks of age [17]. Furthermore, Lima 131 

et al. [19] reported that optimal performance and egg quality were observed at 1500FTU/kg, and further 132 

supplementation at 3000FTU/kg did not result in extra improvements from 44 to 64 weeks of age. Notably, 133 

lower phytase levels (500 and 1000 FTU/kg) were sufficient to maintain the hens’ physical and 134 

physiological status [19]. Despite the promising findings, it is the authors’ observation that phytase super-135 

dosing in laying hens remains largely unexplored. The next step would be to conduct further research on 136 

phytase super-dosing to determine the optimal inclusion levels that will save on feed cost while optimizing 137 
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performance, egg quality, gut health, and bone function, without adversely affecting the hens' physiological 138 

balance.  139 

 140 

Protease  141 
The supply of protein (amino acids) occupies the second most expensive component of poultry diets after 142 

energy. Strikingly, significant quantities of feed protein (around 18-20%) are known to escape complete 143 

digestion in the avian gastrointestinal tract [26], leading to undesirable hindgut fermentation and elevated 144 

nitrogen excretion, with associated negative effects on bird health and environmental sustainability [27]. 145 

Exogenous protease supplementation has emerged as a promising strategy to optimize protein digestibility 146 

and utilization, particularly in low CP/AA diets [28]. The rationale behind this approach is to provide 147 

enough room for protease-mediated improvements in amino acid metabolism that could restore potential 148 

performance deficits with reduced CP/AA diets [29]. By improving protein digestibility and utilization, 149 

protease adoption also allows for partial displacement of expensive protein ingredients, thereby supporting 150 

hen performance at relatively reduced costs.  151 

When incorporated into laying hen diets, protease has been reported to supplement endogenous 152 

protease activity and enhance the digestibility of protein and amino acids [29; 30; 31] These improvements 153 

are attributed to potential additive effects on gut function, including shifting the site of digestion to more 154 

proximal segments [32], reducing endogenous losses [33], and enhancing amino acid availability for mucin 155 

synthesis [34]. Additionally, supplemental protease has been associated with enhanced gut morphology [29]; 156 

stabilized gut pH [26]; upregulated expression of intestinal amino acid transporters [35]; suppression of 157 

pathogenic microorganisms [36]; and mitigation of anti-nutritional factors in plant-based diets [37]. The 158 

benefits of protease extend beyond amino acid utilization, thereby improving the digestibility of ME, net 159 

energy, fat, and starch [33].  160 

The digestibility-enhancing effect of protease is linked to improved performance metrics, 161 

including egg mass, weights, and feed conversion ratios [29; 30; 31], effectively restoring reported 162 

performance losses from feeding low-protein diets [28]. We previously investigated the effects of 163 

supplementing a multiprotease combining acid (pepsin-type protease), neutral (metallo-endopeptidase), and 164 
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alkaline (serine endopeptidase) proteases, produced by Aspergillus niger, Bacillus subtilis, and Bacillus 165 

licheniformis, respectively [29]. Multiprotease supplementation led to improved productive performance 166 

(feed conversion efficiency, egg weights, egg mass), and egg quality (Haugh units and egg-breaking 167 

strength [29]. Improved internal egg quality, especially elevated Haugh units, indicating enhanced egg 168 

freshness and protein content [31]. Improved eggshell breaking strength suggests an “extra-proteinaceous” 169 

influence on mineral absorption and utilization, potentially reducing egg breakage during transport and 170 

handling [29; 38].  171 

Furthermore, reducing dietary protein often increases the dietary energy-protein ratio, potentially 172 

leading to higher fat deposition, particularly abdominal fat [39]. Although short-term increases in carcass 173 

fat may indicate sufficient energy status [40], excessive fat accumulation, as could be the case with longer 174 

laying cycles, could decrease egg production and quality [41]. Interestingly, supplemental protease in low 175 

CP/AA diets may potentially counteract these effects. For instance, Yi et al. [42] reported that broilers that 176 

were fed alkaline protease extracted from Bacillus licheniformis exhibited decreased fat accumulation, 177 

likely mediated by a shift in gut microbiota, specifically increased Bacteroidetes and reduced Firmicutes. 178 

These findings warrant further investigation in laying hens to elucidate potential interactions between 179 

protease, microbiome composition, and fat metabolism.  180 

Varied results have also been reported [43] and could be explained by differences in diet (protein 181 

quality, feed ingredient type) and bird-related factors (age and genotype). Furthermore, excessive CP 182 

reduction can compromise performance due to inadequate non-essential amino acids, disrupted electrolyte 183 

balance, and lowered potassium levels [44]. Protease products with proven efficacy in improving amino 184 

acid digestibility should be considered for inclusion in low-CP diets to restore performance losses, eliciting 185 

both economic and environmental benefits. Mineral digestibility and utilization are integral to laying hen 186 

performance. It is the author’s observation that not much has been done to understand the effects of protease 187 

on mineral digestibility and utilization, bone mineralization, and egg quality. Future studies should address 188 

these gaps to improve the current understanding of the broader impacts of protease inclusion in laying hen 189 

diets.  190 



9 
 

 191 

Carbohydrases 192 
Energy, a property derived from nutrient metabolism, is known to be the most expensive dietary 193 

requirement in feed formulations. As monogastrics, poultry inherently lack the endogenous enzymes to 194 

degrade the complex structures of plant cell walls, especially non-starch polysaccharides (NSPs) present in 195 

common feedstuffs [45; 46]. Non-starch polysaccharides (NSPs) are a diverse group of complex 196 

carbohydrates that differ in structure, size, and water solubility. They include cellulose, hemicelluloses such 197 

as arabinoxylans, β-glucans, and fructans [47;48]. In common grain-based poultry diets, cellulose, 198 

arabinoxylans, and β-glucans make up the bulk of the fiber content [49]. NSPs impair nutrient utilization 199 

by increasing digesta viscosity, inhibiting intestinal peristalsis, prolonging digesta passage rate, disrupting 200 

microbiota balance, and reducing endogenous enzyme activity [47;48;49]. It is becoming increasingly 201 

important to consider the role of non-starch polysaccharides (NSPs), particularly β-mannans, in triggering 202 

what is known as a feed-induced immune response [50]. This response causes birds to expend additional 203 

energy to sustain an unnecessary immune activation, ultimately diverting resources away from growth and 204 

productive purposes [51]. Collectively, these digestive disturbances reduce nutrient digestibility and 205 

performance [48; 49]. To address the rising energy supply cost and improve energy utilization, exogenous 206 

carbohydrases such as xylanases, β-mannanases, and β-glucanases are increasingly being adopted to 207 

catalyze specific substrates, as illustrated in Table 1 [15; 49; 52]. Increased energy utilization efficiency 208 

may partially compensate energy requirements and allow the inclusion of relatively inexpensive and mostly 209 

fibrous ingredients, reducing feed costs without compromising performance [53]. 210 

Today, nearly all diets that are wheat or barley-based incorporate xylanase and β-glucanase 211 

enzymes to improve nutrient digestion and feed efficiency. Increasing evidence shows that carbohydrases 212 

improve nutrient digestibility by depolymerizing soluble NSPs, reducing intestinal viscosity, and enhancing 213 

nutrient availability [46; 47; 54]. Supplemental beta 1–4, endo-xylanase was reported to modulate gut 214 

viscosity, caecal pH, digesta transit, NSP degradation, and microbiota composition, leading to improved 215 

energy utilization and lower excreta moisture [55]. Lowered excreta moisture is correlated with reduced 216 

incidence of dirty eggs [56], even though conflicting results have also been reported [53; 57]. Xylanase 217 
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supplementation has also been associated with improved feed conversion ratio, egg mass, egg production, 218 

and egg quality traits such as yolk color, shell thickness, albumen height, and Haugh unit [45; 53; 58]. 219 

Similarly, supplemental β-mannanase restored the performance losses of energy-reduced diets by 220 

modulating gut morphology, reducing inflammation, improving energy utilization, and promoting 221 

beneficial cecal microbiota [47].  222 

Supplemental carbohydrase effects on hen performance and egg quality are variable and 223 

inconsistent. For instance, Cufadar et al. [59] reported that the laying performance of White Leghorn LSL 224 

laying hens was unaffected by a bacterial endo 1,4-β-xylanase supplemented from 52 to 64 weeks of age. 225 

These observations suggest the high degree of complexity in the development and application of 226 

carbohydrases in laying hen diets, presenting both challenges and opportunities for optimizing carbohydrase 227 

enzyme utilization. Variability in response is primarily attributed to differences in NSP type and 228 

concentration [48], alongside other factors such as hen age and strain, enzyme source and dose, and feed 229 

ingredient composition and batch variation [45; 57]. Carbohydrase products with proven efficacy in nutrient 230 

digestibility should be considered for inclusion in laying hen diets and could potentiate improved productive 231 

performance and egg quality. 232 

 233 

Multienzymes 234 

Poultry diets constitute multiple ingredients (corn, wheat, soybean meal, by-products) that are structurally 235 

complex and could each contain different antinutritional factors (NSPs, phytates, protease inhibitors). 236 

Supplemental multienzymes have been investigated as a strategy to enhance complementary and additive 237 

effects across various feed components and are postulated to be more effective than single enzyme 238 

approaches in greater substrate hydrolysis and reducing the antinutritive effects on overall nutrient 239 

utilization [52]. Gunawardana et al. [60] demonstrated that a multienzyme blend containing xylanases, β-240 

glucanases, mannanases, pectinases, and proteases improved energy and protein utilization, effectively 241 

improving egg production, body weight, egg mass, feed conversion, and albumen and yolk solids. 242 

Concomitantly, Scheideler et al. [61] reported that a multi-enzyme combining xylanase, protease, and 243 

amylase influenced protein and mineral (calcium and phosphorus) retention without affecting feed intake, 244 
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feed conversion efficiency, egg production, egg weight, or egg mass. Furthermore, a non-starch 245 

polysaccharide-targeting enzyme blend containing xylanase, β-glucanase, galactosidase, and 246 

galactomannanase increased nitrogen digestibility and reduced excreta ammonia emissions with no adverse 247 

effects on egg quality or productive performance [62]. Further evidence reported synergistic effects on 248 

laying performance and egg quality of hens, which are attributed to the modulation of gut health [63; 64]. 249 

These findings support the strategic adoption of multienzymes as a promising approach to optimize nutrient 250 

utilization, enhance production efficiency, and improve environmental sustainability for laying hens.   251 

 252 

Biotics as feed additives 253 

Chicken gut harbors a highly complex and dynamic microbial ecosystem that constitutes an integral part of 254 

the gut health nexus with definitive impacts on the overall health and productivity [65; 66; 67]. Several 255 

feed-related approaches targeted at modulating the gut microbiome are available, including probiotics, 256 

prebiotics, synbiotics, and postbiotics. Probiotics are defined as single or mixed cultures of non-pathogenic, 257 

live microbes that could exert health and productive benefits to the host when supplied in adequate amounts. 258 

For optimal efficacy, probiotic microbes must be non-pathogenic, improve hut function and health, adhere 259 

to the intestinal epithelium, survive and thrive in the prevailing acidic environment in the gut, and retain 260 

viability during storage, processing, and transportation [68]. Some commonly used probiotic bacteria 261 

species include Bacillus, Streptococcus, Lactobacillus, Lactococcus, Saccharomyces, Aspergillus, and 262 

Enterococcus [69]. Probiotic bacteria could be delivered as single or multi-strain formulations via feed or 263 

water in the form of either granules, powder, liquid, paste, or gel [69].  264 

Even though the probiotic mode of action is complex (Figure 2), probiotics are suggested to be 265 

most effective following a disturbance. The beneficial effects of live microbial feed supplements are 266 

mediated through multiple pathways including the microbiota–gut–brain, microbiota–gut–immune, and the 267 

microbiota–gut–bone axes. Probiotic bacteria enhance microbial communities through competitive 268 

exclusion and antagonism towards pathogenic bacteria [70; 71]. By improving and/or maintaining intestinal 269 

microbial diversity and balance, probiotics are reported to enhance colonization resistance against stressors; 270 
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catalyze immune responses; promote gut integrity; and improve laying hen performance [71]. Probiotic-271 

mediated improvements in laying hen performance, egg quality, and physiological responses are often 272 

linked to metabolites such as short-chain fatty acids (SCFAs) and bile acids [66].  273 

We previously reported that multi-strain probiotic supplementation of Bacillus subtilis PB6, B. 274 

subtilis FXA, and B. licheniformis G3 at 3×108 CFU/kg of feed improved egg quality, several tibia traits, 275 

and populations of beneficial cecal bacteria while reducing egg yolk cholesterol [67]. Suggesting the impact 276 

of the microbiota-gut-liver axis in bile acid enterohepatic circulation, the capacity of probiotics to lower 277 

yolk cholesterol has been corroborated by Li et al. [72] using a dried Bacillus subtilis culture. Reduced yolk 278 

cholesterol levels are attributed to several mechanisms, including bile salt hydrolase-mediated 279 

deconjugation of conjugated bile acids into free bile acids, which are less efficiently reabsorbed in the ileum 280 

and more readily excreted via the feces [67]. Additionally, probiotic bacteria can directly assimilate 281 

cholesterol for their metabolism. Furthermore, SCFAs, particularly propionate, may inhibit hepatic 282 

cholesterol synthesis by downregulating 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA 283 

reductase), the rate-limiting enzyme in the mevalonate pathway [73]. These probiotic-mediated processes 284 

in reducing yolk cholesterol align with health-conscious consumer demands. 285 

As breeding targets are increasingly focused on extended laying cycles, bone health becomes 286 

increasingly critical for maintaining performance and egg quality [74]. Laying hens possess three primary 287 

bone types- cortical, trabecular, and medullary. The medullary bone, which develops at the onset of sexual 288 

maturity, acts as a labile calcium reservoir buffering against dietary calcium insufficiency during eggshell 289 

formation [6]. In contrast, cortical bone provides structural support for the skeleton and is produced through 290 

osteoblastic activity till the onset of sexual maturity and egg production. Long-term laying behavior leads 291 

to supplemental calcium extraction from structural bone (cortical and trabecular), occasioning net loss of 292 

mineral mass, and may lead to osteoporosis (cage fatigue syndrome) and reduced egg quality over time 293 

[75]. Improvement of tibia traits is linked to probiotic modulation of mineral absorption and bone 294 

mineralization through various mechanisms, including stimulating intestinal epithelial cell proliferation and 295 

differentiation [66], and lowering gut pH [67], potentially mitigating age-related skeletal deterioration and 296 

eggshell defects.  297 
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Prebiotics, on the other hand, are selectively fermented feed ingredients that stimulate the growth 298 

and activity of beneficial gut bacteria, indirectly exerting beneficial effects on host health [71]. Prebiotics 299 

could fuel the growth of beneficial gut microbes while limiting the establishment of foodborne pathogens, 300 

thereby improving host microbial balance [76]. Prebiotic fermentation could also inhibit hindgut protein 301 

fermentation, effectively decreasing toxic secondary nitrogen metabolites, improving nitrogen balance, and 302 

promoting gut health function [77]. Common prebiotic compounds include oligosaccharides such as inulin, 303 

lactulose, fructooligosaccharides (FOS), mannan-oligosaccharides (MOS), galactooligosaccharides (GOS), 304 

and xylo-oligosaccharides [70]. Prebiotics may exert effects similar to probiotics by enhancing gut health, 305 

modulating immune responses, and improving host performance (Figure 2). For instance, dietary inclusion 306 

of MOS has been reported to enhance productive performance and reproductive function in laying hens 307 

[78]. Conversely, productive performance, immune response, and blood parameters of laying hens were 308 

unaffected by FOS [79].  309 

Furthermore, it is also reasoned that synergistic effects could be drawn from both prebiotics and 310 

probiotics in a combined form as synbiotics. The justification for synbiotics is that a fermentable prebiotic 311 

substrate could increase the number, survival, and establishment of beneficial probiotic bacteria [71]. In 312 

laying hens, synbiotics are increasingly explored as nutritional strategies to optimize gut health, nutrient 313 

digestibility, productive performance, egg quality, immune modulation, and pathogen suppression [71]. 314 

However, it has been noted that consistent additive or synergistic impacts are rare. In many cases, either 315 

prebiotics or probiotics could effectively improve laying performance, egg quality, nutrient absorption, and 316 

host physiological responses [80].  317 

Recently, attention has been drawn to postbiotics, which are soluble and non-viable metabolites 318 

from microorganisms that have biological activity when supplied in adequate amounts. These include cell 319 

wall fragments, extracellular vesicles, short-chain fatty acids, enzymes, bacteriocins, vitamins, and other 320 

metabolic by-products with the potential to suppress pathogens, strengthen gut barrier function, and 321 

modulate immunity and gut microbiome [81]. Several other names have been used for postbiotics, including 322 

pseudo-probiotics, ghost probiotics, paraprobiotics, metabiotics, abiotics, cell-free supernatants, and 323 

biogenics [82]. Postbiotics are reported to overcome some problems associated with probiotics, including 324 
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viability during storage, the temporary nature of colonization, and the possible transfer of virulent genes to 325 

pathogenic bacteria. Postbiotics are ascribed to be stable and safe with reduced impact on feed nutrient 326 

components [82]. Choe et al. [83] reported that metabolite combinations of the Lactobacillus plantarum 327 

RI11, RG14, and RG11 improved egg production, modulated fecal microbiota and pH, triggered intestinal 328 

morphological changes, and reduced plasma and yolk cholesterol concentrations. 329 

Collectively, dietary approaches targeting gut microbiota can regulate the delicate balance between 330 

microbiota, diet, mucosa, and immune function, with definite influences on hen health and overall 331 

productivity [8; 84]. Nevertheless, variabilities in responses remain a challenge, suggesting the complex 332 

nature of the development and application of these microbiota-modulating approaches in laying hen diets. 333 

For instance, Mahdavi et al. [85] found no significant effects of a multi-strain probiotic containing B. 334 

subtilis and B. licheniformis on laying performance or egg quality. The observed variabilities stress the 335 

species and/or strain specificity of probiotic bacteria and are attributed to the differences in microbial strains, 336 

dosages of administration, administration methods, environmental stress, and diet composition [67]. These 337 

variabilities present an exciting opportunity for the continued evaluation of probiotics, prebiotics, synbiotics, 338 

and postbiotics, when used singly or in combination, to determine their specific efficacy when incorporated 339 

into laying hen diets.  340 

 341 

Organic acids as feed additives 342 

Organic acids (OAs) are original constituents of plant and animal tissues and include a variety of acids such 343 

as lactate, acetate, propionate, butyrate, and tannic acids, among others [70; 86]. They are also produced 344 

via microbial fermentation of carbohydrates in the ceca. According to Pham et al. [87], OAs are chemically 345 

classified according to their carbon chain length into short-chain (SCFAs; 1–6 carbon atoms), medium-346 

chain (MCFAs; 7–12 carbon atoms), or long-chain (LCFAs; 13-21 carbon atoms). Singular or combined 347 

forms of OAs are supplied in water, sprayed in litter, or mixed in feed to exert several beneficial activities 348 

related to energy metabolism, antimicrobial control, and feed quality preservation [88]. Regarding energy 349 
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metabolism, acetate is utilized as an energy substrate for muscle tissue, propionate supports the 350 

gluconeogenic pathway to generate glucose, and butyrate fuels ceco-colonic epithelial cells [86]. 351 

Beyond metabolic functions, OAs exert antimicrobial effects against pH-sensitive bacteria; lower 352 

gut pH; promote gut development, maturation, and integrity; and enhance nutrient utilization, health, and 353 

productivity as illustrated in Figure 3 [71; 88]. Their ability to lower chyme pH increases pepsin activity 354 

and calcium uptake, promoting protein degradation and mineral uptake [86]. These improvements can 355 

translate to improved internal egg and eggshell quality [89; 90; 91]. Improved eggshell qualities are 356 

attributed to improved integrity of reproductive organs, particularly the shell gland [92]. Improvements in 357 

egg production and weight have also been reported [90; 93], though a lack of significant effects on both 358 

egg production and quality has also been observed [94].  359 

The variability in responses is attributed to differences in OA type, dosage used, hen age, and diet 360 

composition.  The effectiveness of OAs depends on their ability to change from the un-dissociated to the 361 

dissociated form, their pKa value, and hydrophobicity. Of interest, the activity and concentration of OAs 362 

could be reduced in the distal gut segments unless they are protected by encapsulation [10; 95]. Furthermore, 363 

blending different OAs is recommended to cater to variations in membrane permeability [70]. Notably, 364 

excessive supplementation can be detrimental, leading to reduced villus height and width, and crypt depth 365 

[96]. Administration of low dosages [70] or adherence to proper dosage [86] is crucial to maintain overall 366 

gut health as previously defined [8]. Continuous testing to determine the optimal dosage that supports 367 

performance and gut health function without adversely affecting the hens' physiological and metabolic 368 

balance is recommended.    369 

 370 

Phytogenics as feed additives 371 

Phytogenic feed additives (PFAs) are a wide variety of natural bioactive compounds derived from plants. 372 

They include complex secondary constituents, such as terpenoids (linalool, menthol, borneol, geraniol, α-373 

terpineol), phenolics (tannins), and low molecular weight aliphatic hydrocarbons (thymol, eugenol, 374 

carvacrol, cinnamaldehyde) [97]. PFAs are broadly classified based on their biological origin, formulation, 375 
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chemical description, and purity into herbs, botanicals, essential oils, and oleoresins [98]. Phytogenics are 376 

thought to be natural, less toxic, and residue-free, and thus have been widely applied in both human and 377 

animal industries in the form of oregano, green tea, peppermint, aloe vera, moringa, cinnamon, garlic, 378 

thyme, turmeric, rosemary, and coriander, among many others [13; 99]. Phytogenics are widely reported to 379 

possess strong antimicrobial, immune-enhancing, anti-inflammatory, and antioxidant activities [13].  380 

Although the phytogenic mechanism of action is complex and not completely elucidated, it is 381 

suggested that PFAs activate the aryl hydrocarbon receptor (AhR) and nuclear factor-erythroid-derived 2-382 

like 2 (Nrf2) signaling pathways, which induce cytoprotective, homeostatic, and immune-protective effects, 383 

as illustrated in Figure 4 [100; 101]. Specifically, AhR regulates the expression of genes responsible for the 384 

detoxification and elimination of xenobiotic compounds, while Rrf2 regulates antioxidant response and 385 

inflammatory modulation [100]. Additionally, PFAs may induce antipathogenic effects by damaging 386 

bacterial membranes, promoting the colonization of beneficial gut microbiota, or modulating immune 387 

responses [13]. Strikingly, essential oils (steam-distilled extracts of volatile plant compounds) are ascribed 388 

to be of higher biological activity and have been widely tested in poultry diets [102; 103].  389 

The beneficial phytogenic-mediated effects on production performance and egg quality have been 390 

widely reported [103; 104]. Reported improvements include enhanced eggshell thickness, higher egg 391 

weight and mass, improved tibia traits, and protein digestibility [105; 106; 107]. Additionally, supplemental 392 

PFA-induced modulation of cecal microbiota and gut morphology (longer villus heights and higher villus 393 

heights to crypt depth ratio) could translate to improved internal egg nutrient content (riboflavin, thiamine, 394 

selenium, and phosphorus) and thicker eggshells [108]. Dietary PFAs were reported to down-regulate AhR-395 

associated gene expression while up-regulating the Nrf2-related genes, leading to improved gut 396 

cytoprotection and performance [100]. Notably, inconsistent results regarding supplemental phytogenics 397 

have also been documented [105].  398 

A wide variety of PFAs are available for dietary utilization across different geographical areas of 399 

the world, but the efficacy of PFA supplementation is debatable due to their complexity, instability, lack of 400 

full understanding of their modes of action, and hence, the commonly reported variabilities in laying hen 401 

responses to PFAs. Variability in phytogenic efficacy is attributed to the differences in source and 402 
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composition of the active components, method of preparation and storage, feed inclusion levels, bird 403 

genetics and age (laying phase), and overall diet composition [70; 101; 109]. When incorporating PFAs into 404 

diets, consideration should be paid to accreditation, potential contamination, mode of action, experimental 405 

testing, quality, feed matrix interactions, and economic value [12]. Strikingly, a negative effect of higher 406 

essential oil dosages was observed on biomechanical properties and mineral contents of the tibia [106], 407 

highlighting the importance of appropriate dosing used to avoid undesired physiological responses. More 408 

effort is still needed to determine the appropriate inclusion levels of phytogenic feed additives and to fully 409 

expound their mode of action on gut microbiota, function, and immunology, and bird performance when 410 

incorporated into laying hen diets.  411 

 412 

Combination of feed additives 413 

Nutrients exist in a complex matrix involving starch and non-starch polysaccharides, protein, lipids, 414 

minerals, and vitamins [33]. It is reasoned that feed additive combinations may yield synergistic and 415 

additive effects, especially in antibiotic growth promoter (AGP)-free systems [9; 110]. Organic acids may 416 

synergize with probiotics (by lowering pH favoring Lactobacilli) and with enzymes (improving 417 

digestibility). While antinutritional factors in PFAs could limit their utility, co-supplementation with 418 

exogenous enzymes could improve their bioavailability and effectiveness [99]. Furthermore, NSP 419 

depolymerization by carbohydrases generates oligosaccharides that may exert a prebiotic effect, supporting 420 

live in-feed microbials [57; 111]. Supplemental β-mannanase derived from Paenibacillus lentus bacteria 421 

combined with a multi-strain probiotic (Lactobacillus acidophilus, L. bulgaricus, L. plantarum, L. 422 

rhamnosus, Bifidobacterium bifidum, Enterococcus faecium, and Streptococcus thermophilus) improved 423 

the laying rate, egg weight, and egg mass while modulating intestinal morphology [112].  424 

Recently, attention has been drawn to stimbiotics, defined as non-digestible but fermentable 425 

additives that accelerate fiber-degrading microbiome establishment in the GIT [113]. Stimbiotic dosages 426 

are usually low and enhance the fermentation of dietary fiber already present in the feed, rather than serving 427 

as a direct fermentable substrate as in the case of prebiotics [113]. While stimulating probiotic bacteria 428 
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without providing adequate substrates can induce detrimental effects on microbiota balance, xylanase 429 

inclusion when feeding high levels of prebiotic xylo-oligosaccharides exerted stimbiotic effects, optimizing 430 

probiotic bacteria diversity [114]. Furthermore, combined incorporation of compound acidifiers (fumaric, 431 

sorbic, citric, and malic acids at 1.5g/kg) and plant essential oils (cinnamaldehyde, carvacrol, and thymol 432 

at 100 mg/kg) improved egg quality, alleviated inflammatory responses, increased digestive enzyme 433 

activities, and enhanced serum antioxidant capacity [97]. However, excessive supplementation of the 434 

compound acidifiers increased serum MDA levels in the Wang et al. [97] study, indicating enhanced 435 

oxidative stress. The need to determine the optimal dosage and ratio of combined feed additives that will 436 

maximize benefits without compromising the physiological functions of the birds is stressed. Future 437 

development of feed additives should consider combinations to determine potential synergistic and additive 438 

effects in laying hen responses.  439 

 440 

FUTURE DIRECTIONS AND SUMMARY 441 

Given the considerable advances in the understanding of laying hen nutrition and modern biotechnology, 442 

several feed additives are routinely incorporated into the feeding program of laying hens. Despite being 443 

used in low amounts (usually 50-500g/tonne), the selected feed additives (probiotics, prebiotics, synbiotics, 444 

postbiotics, phytogenics, feed enzymes, and organic acids) showed immense potential to maintain 445 

productive performance and egg quality and could also improve gut and musculoskeletal health and 446 

function. The strategic application of feed additive combinations could also potentiate several additive and 447 

synergistic responses. Optimized nutrient utilization through feed additives is aimed at reducing feed costs, 448 

maintaining animal health and welfare, improving productivity, and reducing nutrient excretion to the 449 

environment. Reduced nutrient excretion could alleviate environmental stress and contribute to the 450 

sustainability of poultry production. Furthermore, improved nutrient utilization could enrich egg quality 451 

characteristics for their functional value in human nutrition. Feed additive products with proven efficacy 452 

are recommended for inclusion in laying hen diets and could potentiate several responses, as summarised 453 

in Figure 5. A pragmatic future for layer nutrition lies in strategies that could integrate enzymes to unlock 454 
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maximal feed nutrient value; biotics to stabilize microbiota; organic acids to exert antimicrobial effects 455 

against pH-sensitive bacteria and optimize gut function; and phytogenics to enhance antioxidant status, 456 

immune function and gut resilience. However, while many effects are described, deeper understanding of 457 

gut microbiome shifts, mucosal immunity pathways, and systemic metabolic effects in layers is incomplete. 458 

It is also evident that laying hen responses seem to be largely dependent on breed, hen age, health status, 459 

feed composition and quality, environmental factors, and management. These variabilities in laying hen 460 

responses are not uncommon, suggesting that it may not always be economically beneficial to supplement 461 

feed additive compounds, especially under commercial conditions. The reported variabilities present an 462 

opportunity for further research on the specific efficacy of these feed additives on the performance, egg 463 

quality, and gut health of laying hens under varied experimental conditions that could favorably mimic 464 

commercial conditions with larger flock sizes and extended laying cycles. Practical implementation will 465 

require problem diagnosis (poor shell strength, inconsistent egg weight, pathogen load); defining expected 466 

outcomes; evidence-based product selection; careful formulation (matrix adjustments for enzymes); 467 

consideration of additive compatibility when combinations are adopted; accounting for strain- and product-468 

specific variation (particularly for probiotics and phytogenics); monitoring performance; and economic 469 

assessment to gauge if the returns justify the expense. Ultimately, we wish to maintain egg quality and 470 

safety; achieve breeding objectives of longer laying cycles and persistence in laying performance; and 471 

improve skeletal, immune, and gut health under commercial conditions. 472 
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Figure 1. Mode of action, beneficial activities and impacts of incorporating exogenous enzymes in laying hen diets 835 
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Figure 2. Classification, mode of action and some beneficial activities associated with biotic feed additives in laying hen diets 838 
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Figure 3. Different forms of application and possible mode of action of organic acids 840 
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Figure 4. Overview of phytogenic feed additives, including classifications and potential modes of action 843 
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Figure 5: Possible impacts of the dietary incorporation of the selected feed additives in laying hen diets  845 
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Table 1. Enzyme types and target substrates 848 

Enzyme type Target substrate Target feedstuff 
Phytases Phytate All plant-derived ingredients 
Proteases Proteins All plant protein sources 
Carbohydrases 

Xylanase 
Pectinase 
β-Glucanase 
α-Galactosidase 
Amylase 
Mannanase, cellulase, hemicellulase  

 
Arabinoxylan 

Pectin 
β-Glucan 

Oligosaccharides 
Amylose 

Mannan, cellulose, hemicellulose 

 
Wheat, rye, triticale, barley, fibrous plant materials 

Plant-derived ingredients  
Barley, oats, and rye 

Oilseed meals and grain legumes 
Cereal grains, grain legumes 

Plant-derived ingredients, fibrous plant materials 
Lipase Lipids Lipids in feed ingredients  

Adapted from Kiarie et al [10]; Perera and Ravindran, [11]; and Ravindran, [15]  849 


