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ABSTRACT

This study aimed to evaluate the effects of a commensal Lactobacillus-based consortium (CLC) on
growth performance, gut microbiota, and metabolite profiles in weaned pigs. A total of 48 newly weaned
pigs (7.32 £ 0.96 kg body weight) were randomly allotted to one of two dietary treatments based on a
randomized complete block design with initial body weight as the blocking criterion. Dietary treatments
were a basal nursery diet based on corn-soybean meal (CON) and CON + 0.02% CLC (10 CFU/kg of
diet) containing Lactobacillus amylovorus, L. johnsonii, L. mucosae, L. reuteri, and L. ruminis. Pigs fed
with the CLC exhibited significantly improved body weight gain and feed efficiency compared to controls.
Although hematological parameters remained unaffected, serum levels of AST were reduced by CLC
supplementation, with trends toward decreased ALT and LDH. Lipid profiles improved with elevated HDL
and reduced LDL, alongside significant reductions in serum malondialdehyde (MDA) and cortisol levels.
Gut microbiota analysis revealed that CLC supplementation increased the abundance of Lactobacillus and
Prevotellaceae, with a reduced abundance of Clostridiaceae. Metabolomic profiling showed that CLC
supplementation enriched short-chain fatty acids, particularly lactate and acetate, as well as elevated levels
of amino acids (methionine, glycine, alanine, threonine, and valine) and key intermediates such as malate,
succinic acid, and conjugated linoleic acid. Taken together, dietary supplementation with CLC enhanced
growth performance and systemic health in weaned pigs, potentially by mitigating oxidative stress and
cortisol responses while promoting beneficial shifts in the gut microbiota and metabolome during the
critical post-weaning period.

Keywords: Weaning stress, nursey pigs, commensal Lactobacillus-based consortium, Microbiota,

Metabolomic profiling, stress biomarker
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Introduction

Weaning represents a critical transition in swine production, exposing the immature gastrointestinal tract
of nursery pigs to a multitude of stressors that frequently result in growth retardation and post-weaning
diarrhea. During the post-weaning period, nursery pigs undergo abrupt nutritional changes and
environmental challenges, which destabilize the gut microbiota and increase susceptibility to pathogen
colonization [1]. Thus, weaning stress disrupts physiological homeostasis and provokes inflammatory and
oxidative stress responses, ultimately impairing immunity and heightening the risk of infection in early-life
pigs [2]. One of the significant outcomes of weaning stress is disruption of the gut microbial balance, where
dysbiosis is closely related to colonization resistance and impairs the intrinsic protective functions in the
intestine [3]. This condition makes nursery pigs more susceptible to pathogenic bacteria, intestinal
inflammation, and infection [4, 5]. These health concerns have driven growing interest in nutritional
strategies aimed at alleviating dysbiosis during the post-weaning period.

Dietary supplementation with probiotics has shown promise in improving intestinal health in nursery
pigs [6-8]. Dietary probiotics in starter feeds could enhance nutrient metabolism, including amino acid and
energy pathways, as well as intestinal barrier function of nursery pigs during the post-weaning period [9-
11]. Lactobacillus species are widely recognized for their beneficial roles in maintaining gut homeostasis
and host health via mucosal adhesion, production of organic acids and antimicrobial compounds, and
modulation of immune responses [9]. Interestingly, Lactobacillus species are one of the predominant
beneficial microbes in the gut environment of neonatal pigs around the weaning period, where they play a
pivotal role in stabilizing the intestinal ecosystem and conferring health benefits [12, 13]. Our previous
research employing genomic and culturomic-based analysis identified Lactobacillus species consistently
enriched in fecal samples from nursery pigs fed a multi-strain probiotic after weaning. These species were
associated with enhanced intestinal barrier function after weaning [14]. Furthermore, in vitro studies by Lee
etal. [15] demonstrated that these commensal Lactobacillus strains produce methionine and branched-chain

amino acids, thereby indicating their metabolites potentially benefit intestinal barrier integrity and host
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metabolic support. Furthermore, previous studies have shown that the use of probiotics derived from
commensal microbes, which are well-adapted to the host gut microbiota due to their higher colonization
capacity, better immunological compatibility, enhanced ecosystem recovery, and stronger competitive
exclusion of pathogens [16, 17].

Based on these findings, we hypothesized that supplementation with a consortium of commensal
Lactobacillus strains would mitigate the adverse effects of weaning stress by modulating the gut microbiota,
reducing dysbiosis-related stress responses, and improving growth performance in nursery pigs after
weaning. To test this hypothesis, the objective of the present study was to evaluate the effects of a multi-
strain probiotics formulation, composed of anaerobically cultivable commensal Lactobacillus-based
consortium (CLC), on growth performance, blood parameters, oxidative stress indicators, gut microbiota,

and fecal metabolomic profiles in nursery pigs after weaning.
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Materials and Methods

Probiotics strains

Lactobacillus strains used in this study were isolated from fecal samples of healthy piglets. Briefly, 10
g of fecal sample were diluted in 45 mL L-cysteine solution (8.5 g NaCl, 0.5 g L-cysteine, 1 L distilled
water) and plated on de Man, Rogosa, and Sharpe, with 0.004% bromocresol purple (MRS-BCP) agar. The
plates were incubated anaerobically at 37 °C for 48 h using an anaerobic glove box (Coy Laboratory
Products, Grass Lake, MI, USA). Single colonies were selected randomly, sub-cultured in MRS broth, and
re-streaked onto MRS agar to confirm purity. Following assessment of probiotics properties (unpublished
data), five strains were selected for formulation of the commensal Lactobacillus-based probiotic consortium:
Lactobacillus amylovorus SLAM_LAAO4, L. johnsonii SLAM_LAJO6, L. mucosae SLAM_LAMOS, L.
reuteri SLAM_LARO09, and L. ruminis SLAM_LAR12. The selected strains were propagated in a farm-
scale fermentation medium consisting of 1% glucose, 1% molasses, 0.2% sea salt, and 0.2% yeast extract
at 37 °C. Following cultivation, strains were individually harvested and stored at 4 °C before consortium
preparation. Equal volumes of each strain were combined to formulate the probiotic consortium and
incorporated into the experimental diet to achieve a final concentration of 1 x 10'* CFU/kg of feed, as

previously described [14].

Experimental design, animal, and diets

The protocol for animal experiments was reviewed and approved by the Institutional Animal Care and
Use Committee of Chungnam National University, Daejeon, Korea (approval: 202203A-CNU-063). The
animal experiment was conducted in accordance with the guidelines for the care and management of
animals at research facilities in Chungnam National University. A total of 48 weaned pigs [Landrace x
Yorkshire x Duroc; 7.32 + 0.96 kg; 28 days old] were allotted to one of two treatment groups based on a
randomized complete block design with initial BW (heavy and light) as a blocking criterion. Each treatment

group had 6 replicates with 4 pigs per pen. Dietary treatments were a basal nursery diet based on corn-
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soybean meal (CON) and CON + 0.02% CLC, replacing an equal portion of corn in the CON diets. All
experimental diets (Table 1) were formulated to meet or exceed the nutrient requirements described in NRC
(2012). The experimental period was for 4 weeks. All pigs were housed in environmentally controlled pens
set at 28°C ~ 30°C. They were allowed access to feed and water ad libitum during the study. Body weight
(BW) and feed intake were measured weekly to evaluate growth performance, including average daily gain

(ADG), average daily feed intake (ADFI), and gain-to-feed ratio (G:F).

Sample collection

Blood samples were collected from the jugular vein of one pig with a median BW per pen using tubes
(Becton Dickinson Vacutainer Systems, Franklin Lakes, NJ, USA) with or without
ethylenediaminetetraacetic acid (EDTA) at the end of the animal experiment. Collected blood samples were
kept at room temperature for 2 h, centrifuged at 3,000 x g for 15 min to collect serum samples, and stored
at -80°C. Fecal samples were also collected from the pigs randomly selected from each dietary treatment

by rectal palpation after blood sampling. The samples in tubes were stored at -80°C until further analysis.

Hematological profiles and serum biochemical properties

Whole blood samples from EDTA tubes were measured to analyze the blood profiles of total white
blood cells (WBC), red blood cells (RBC), hemoglobin (HGB), hematocrit (HCT), and platelet (PLT), mean
corpuscular volume (MCV), and mean corpuscular hemoglobin concentration (MCHC) using an automated
hematology analyzer calibrated for porcine blood (Scil Vet Animal Blood Counter, Scil Animal Care
Company, Altorf, France). Serum biochemical analysis was performed using the DRI-CHEM NX600V
automated clinical chemistry analyzer (Fujifilm, Tokyo, Japan). Lactate dehydrogenase (LDH), glucose
(GLU), triglycerides (TG), and high-density lipoprotein (HDL) levels were measured according to the
manufacturer’s instructions.

Furthermore, to evaluate the regulation of stress-related biomarkers, the levels of advanced oxidation

protein products (AOPP) and malondialdehyde (MDA) were quantified using a commercial AOPP Kit
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(ab242295; Abcam, Cambridge, UK) and Lipid Peroxidation (MDA) Kit (ab118970; Abcam). For MDA
assay, serum samples were mixed with 42 mM H,SO,4 (2 N sulfuric acid, Duksan, Seoul, Korea) and
phosphotungstic acid solution to precipitate lipids. Glacial acetic acid (Sigma-Aldrich) was used to prepare
Developer VII/TBA Solution. In addition, serum cortisol concentration was quantified using Porcine
Cortisol ELISA kit (E-EL-0159; Elabscience). All procedures were carried out according to the

manufacturer’s instructions.

Gut microbiota analysis using lHlumina sequencing

Fecal DNA was isolated using the PowerSoil DNA Isolation Kit (MO BIO Laboratories, Carlsbad, CA,
USA) according to the manufacturer’s protocol and a previously reported method [18] with minor
adjustments. In short, fecal material was disrupted by vortexing for 2 min with sterile zirconia beads (0.1
mm; BioSpec, Cat. No. 11079101z). DNA vyield and purity were evaluated by spectrophotometric
absorbance readings at 230, 260, and 280 nm using a SpectraMax ABS Plus (Molecular Devices, San Jose,
CA, USA). The V3-V4 hypervariable region of the 16S rRNA gene was amplified using the primer pair:
forward 5'-TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG GTG CCA GCM GCC GCG
GTA A-3" and reverse 5'-GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GGG ACT ACH
VGG GTW TCT AAT-3'. Sequencing was conducted on the Illumina NextSeq platform (Sanigen,
Gyeonggi-do, South Korea).

Raw sequence data were processed using QIIME2 (version 2024.10) implemented on a Linux server
accessed via PUTTY. Reads were quality-filtered and denoised using the DADAZ2 plugin to obtain high-
resolution amplicon sequence variants (ASVs), with removal of chimeric and low-quality sequences.
Taxonomic assignment was performed against the SILVA 138 reference database trained on the V3-V4
region. To characterize microbial diversity, alpha diversity indices (Chaol, Shannon, and Simpson) were
calculated, and beta diversity was evaluated using Bray—Curtis dissimilarity and weighted/unweighted
UniFrac distances. Community dissimilarities were visualized by principal coordinates analysis (PCoA),

and group differences were tested by PERMANOVA with false discovery rate (FDR) correction.
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Profiling of metabolome networks

The assay for fecal metabolome analysis was conducted as previously described in Kang et al. [19].
Fecal samples were preserved at —80 °C until subjected to metabolomic profiling. For extraction, each
sample was weighed and suspended in methanol to yield a concentration of 20 mg/mL, followed by
vortexing on ice for 5 min. The suspensions were centrifuged at 15,000 x g for 5 min at 4 °C, and the
resulting supernatants were passed through a 0.2 um polyvinylidene fluoride (PVVDF) syringe filter. Filtered
extracts (200 pL) were evaporated to dryness using a vacuum concentrator and stored at —81 °C until
derivatization and gas chromatography—mass spectrometry (GC-MS) analysis. For derivatization, 30 uL of
methoxyamine hydrochloride (20 mg/mL in pyridine; Sigma, St. Louis, MO, USA) was added to the dried
extract and incubated at 30 °C for 90 min. Subsequently, 50 pL of N,O-bis(trimethylsilyl)trifluoroacetamide
(BSTFA,; Sigma) was introduced and maintained at 60 °C for 30 min. Fluoranthene was included as the
internal standard. GC-MS was performed using a Thermo Trace 1310 gas chromatograph coupled with a
Thermo ISQ LT single quadrupole mass spectrometer (Waltham, MA, USA). Separation was achieved on
a DB-5MS column (60 m length, 0.20 mm internal diameter, 0.25 um film thickness; Agilent, Santa Clara,
CA, USA). Samples were injected at 300 °C with a split ratio of 1:60 and a helium split flow of 90 mL/min.
Chromatographic separation was carried out under a constant helium flow of 1.5 mL/min, with an oven
temperature program of 50 °C (2 min hold), ramped to 180 °C at 5 °C/min (8 min hold), to 210 °C at
2.5 °C/min, and finally to 325 °C at 5 °C/min (10 min hold). Mass spectra were acquired in electron impact
ionization mode with an ion source temperature of 270 °C, scanning a mass-to-charge ratio (m/z) range of
35-650 at a rate of five spectra per second. Data processing was performed using Thermo Xcalibur software
with automated peak detection. Metabolite identification was achieved by matching mass spectra and
retention indices against the NIST Mass Spectral Search Program (version 2.0, Gaithersburg, MD, USA).
Detected metabolite intensities were normalized to the internal standard fluoranthene.

Metabolomics data were first processed using MetaboAnalyst 6.0 (www.metaboanalyst.ca) for

normalization, transformation, and partial least squares—discriminant analysis (PLS-DA). In addition,
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further analyses were conducted in R Studio (version 4.3.2). Specifically, correlation networks between
metabolites were constructed using the igraph and Hmisc packages, visualized with ggraph. Radar charts
were generated with the fmsb package to display group-wise metabolite profiles. Functional associations
between metabolites were evaluated by mapping to KEGG pathways using the KEGGREST and

clusterProfiler packages.

Statistical analysis

For the pig experiment, data were analyzed using the Mixed procedure of SAS (SAS Institute Inc., Cary,
NC, USA) under a randomized complete block design, with the initial body weight (BW) used as a blocking
factor. The pen was considered the experimental unit. The statistical model for analyzing growth
performance and blood profiles included dietary treatment as the fixed effect and initial BW as a random
effect. All data were presented as mean £ SEM. In the results, p < 0.05 was considered significant, whereas
0.05 < p < 0.10 was considered a tendency. Statistical analyses for microbiota and metabolomic data were
performed in Ubuntu 24.04.1 LTS, GraphPad Prism (version 9.0; GraphPad Software, CA, USA) and R
Studio (version 2024.12.0+467, "Kousa Dogwood" Release) on Windows 11 (x64). Nonparametric tests

(Mann-Whitney U or Kruskal-Wallis test) were used when the data did not meet the normality assumptions.

11
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Results

Growth performance of nursing pigs with supplemented with a commensal Lactobacillus-based
probiotic consortium

In preliminary screening, approximately 5,000 anaerobic Lactobacillus strains were isolated from fecal
samples of healthy piglets and evaluated for probiotic potential based on acid and bile tolerance, intestinal
adhesion capacity, and resistance to pathogenic infection using Caenorhabditis elegans as an in vivo model
(unpublished data). Among them, five strains including L. amylovorus SLAM_LAAO4, L. johnsonii
SLAM_LAJO06, L. mucosae SLAM_LAMOS, L. reuteri SLAM_LARO09, and L. ruminis SLAM_LAR12,
were selected and formulated into a commensal Lactobacillus-based consortium used in this study.

Moreover, supplementary effects of commensal Lactobacillus-based consortium were on growth
performance were investigated on weaned pigs. Feed intake and body weight (BW) were recorded
throughout the study period. The initial BW of newly weaned pigs at the beginning was 7.3 £ 1.0 kg, and
there was no difference among treatments (Table 2). By day 28, pigs in the CLC group tended to have
greater BW compared to the CON group (19.42 vs. 18.82 kg; p = 0.067). Moreover, average daily gain
(ADG) was significantly higher in pigs receiving the probiotic consortium (433 vs. 410 g/d, p < 0.05).

However, no significant difference in gain-to-feed ratio (G:F) was observed between the two groups.

Hematological profiles and serum biochemical properties

Dietary supplementation with the commensal Lactobacillus-based consortium did not affect
hematological parameters, including white blood cell and red blood cell counts, hemoglobin concentration,
hematocrit, platelet counts, MCV, or MCHC in nursery pigs (Table 3). pigs supplemented with the
consortium exhibited a significant reduction in serum AST activity compared with the pigs in the control
group ((48.0 vs. 128.0 U/L, p < 0.05; Table 4), and a tendency for lower ALT (50.5 vs. 133.0 U/L, p =
0.053). Serum LDH concentration also tended to be lower in the pigs fed with commensal Lactobacillus-

based consortium (505.0 vs. 730.5 U/L, p = 0.084). Dietary supplementation of commensal Lactobacillus-

12
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based consortium significantly increased HDL concentration (51.0 vs. 29.5 mg/dL, p < 0.05) and decreased
LDL concentration (73.7 vs. 89.4 mg/dL, p < 0.05). No significant differences were observed in glucose,
triglycerides, total cholesterol, or gamma-glutamyl transferase among treatments. Importantly, stress
markers were also affected by the dietary treatment. Supplementation with the commensal Lactobacillus-
based consortium significantly reduced the serum MDA concentration compared with that in the CON
group (0.50 vs. 1.15 umol/mL, p < 0.05; Fig. 1A), whereas levels of AOPP remained unchanged (Fig, 1B).
Additionally, serum cortisol concentrations were markedly reduced in pigs fed the commercial

Lactobacillus-based consortium compared with the control group (27.7 vs. 9.7 ng/mL, p < 0.05; Fig. 1C).

Regulation of gut microbiota by supplementation of commensal Lactobacillus-based consortium

Dietary supplementation with the commensal Lactobacillus-based consortium resulted in a marked shift
in gut microbial composition, favoring enrichment of Lactobacillus and Prevotellaceae lineages while
suppressing Clostridiaceae (Fig. 2A). At day 28, the relative abundance of Lactobacillus was elevated in
the CLC group compared to the control (18.8% vs. 12.1%), alongside increases in Prevotella (6.2% vs.
2.2%), Prevotellaceae (2.8% vs. 0.9%), and Butyricicoccaceae (0.4% vs. 0.1%). In contrast, Clostridiaceae
abundance was notably reduced in the CLC group (9.3% vs. 20.8%). Corresponding log. fold-changes were
+0.64 (Lactobacillus), +1.50 (Prevotella), +1.57 (Prevotellaceae), +2.54 (Butyricicoccaceae), and —1.16
(Clostridiaceae), suggesting a probiotic-induced remodeling of dominant microbial taxa. Supplementation
with commensal Lactobacillus-based consortium also increased gut microbiota diversity and evenness at
day 28 (Fig. 2B, C). Shannon entropy rose from 5.29 + 0.79 in Control (n=6) to 6.05 + 0.35 in CLC (n=6)
at day 28 (p = 0.056; Fig. 2B). Pielou evenness increased from 0.61 + 0.07 to 0.68 + 0.03 (p = 0.035; Fig.
2C), indicating a more uniform taxonomic distribution within the gut microbial community under the
probiotic treatment.

Principal coordinate analysis (PCoA) based on Weighted and Unweighted UniFrac distances revealed
distinct clustering patterns between groups. Unweighted and weighted UniFrac ordinations determined a

consistent displacement of CLC group from CON group (Fig. 2D, E). Weighted UniFrac PCoA, which

13
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incorporates taxa abundance, accounted for 35.65% and 20.11% of the variation along PC1 and PC2,
respectively, and demonstrated clear separation of the CLC group from controls (Fig. 2D). Similarly,
unweighted UniFrac PCoA, explained 21.18% (PC1) and 13.43% (PC2) of the variation, with CLC samples
diverging along PC1 from the control group (Fig. 2E). These multivariate analyses reinforce a probiotic-

driven reconfiguration of the gut microbiota.

Correlation between gut microbiota and metabolites

Principal component analysis (PCA) was used to examine overall metabolic differences among the
weaning, CON, and CLC groups. The first two components accounted for 66.4% of the total variance (PC1,
53.2%; PC2, 13.2%). Notably, the weaning and CON groups clustered closely, whereas the CLC group was
distinctly separated along PC1 (Fig. 3A), indicating that supplementation with the commensal
Lactobacillus-based consortium substantially altered the metabolic landscape relative to natural weaning.
Partial least squares discriminant analysis (PLS-DA) further revealed that multiple metabolites contributed
significantly to the observed group separation. Oxalate demonstrated the most significant coefficient,
followed by 2-hydroxy-3-methylbutyric acid, valine, methionine, 2-hydroxyisocaproic acid, stearate,
cholestanol, arabinose, and methylbutanoic acid. These metabolites were consistently elevated in the CLC
group and suppressed in the weaning group, with the CON group showing intermediate levels, suggesting
that the CLC supplementation was the primary driver of these metabolic changes during the post-weaning
period. (Fig. 3B).

The heatmap provided a complementary perspective on these differences across a broader range of
metabolites. A marked elevation in the levels of amino acids (proline, glycine, alanine, valine, methionine),
organic acids (malate, oxalate, glycolate, butyrate), lipids and sterols (oleate, stearate, stigmasterol,
conjugated linoleic acid), and several carbohydrate-related compounds (arabinose, gluconate, glucose) was
observed in the CLC group. In contrast, a marked suppression in the levels of these metabolites was
observed in the feces collected at weaning. The CON group exhibited a mixture of intermediate and low

levels. (Fig. 3C). This coordinated elevation of amino acid, organic acid, and lipid metabolites in the CLC

14
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group indicates a broad upregulation of energy, protein, and lipid metabolism, likely reflecting enhanced
microbial activity and nutrient assimilation during the post-weaning period.

Volcano plot analysis revealed pronounced differences in metabolite abundance between the CON and
CLC groups. Several amino acids were significantly enriched following supplementation of commensal
Lactobacillus-based consortium during the post-weaning period, including glycine (FC = 26,468.9; FDR =
0.0191), aspartate (FC = 7,687.5; FDR = 0.0191), serine (FC = 7,094.2; FDR = 0.0191), proline (FC =
1,071.9; FDR =0.0191), alanine (FC = 34.2; FDR = 0.0191), threonine (FC = 13.4; FDR = 0.0191), valine
(FC = 7.11; FDR = 0.00621), and 5-oxoproline (FC = 12.2; FDR = 0.0191). Methionine also showed an
upward trend (FC = 2.998; FDR = 0.0805), although it did not reach statistical significance. Notably, the
huge fold change observed for glycine is likely attributable to its near-zero levels in the control group.
However, consistent increases across biological replicates support the biological relevance of this finding.
Collectively, these results indicate that CLC supplementation enhanced amino acid biosynthesis and one-
carbon metabolism, pathways that provide precursors for protein synthesis, methyl-donor chemistry, and
antioxidant defense. Significant increases were also detected for lactate (FC = 66.2; FDR = 0.0172), malate
(FC = 22.6; FDR = 0.0280), and conjugated linoleic acid (FC = 10.1; FDR = 0.0431). Additional
metabolites, including succinic acid (FC = 5.31; FDR = 0.0870), glucose (FC = 3.35; FDR = 0.0870),
cholesterol (FC = 2.02; FDR = 0.0689), methylsuccinic acid (FC = 4.15; FDR = 0.200), and 2-hydroxy-3-
methylbutyric acid (FC = 1.55; FDR = 0.231), displayed upward trends but did not reach FDR < 0.05. These
findings suggest that supplementation of commensal Lactobacillus-based consortium during the post-
weaning period influenced central carbon metabolism by promoting glycolytic and TCA cycle
intermediates, while also modulating redox balance and lipid turnover (Fig. 4A-C). Network analysis
mapped these changes to amino acid metabolism (glycine, serine, threonine, alanine, valine, and 5-
oxoproline), one-carbon pathways (glycine, serine, threonine, and methionine), and transamination
reactions (aspartate, alanine, and proline). The enrichment of lactate, malate, and succinate family members
pointed to enhanced glycolysis, TCA flux, and the glyoxylate/dicarboxylate cycle, reflecting higher

microbial and host energy turnover. Lipid-associated intermediates, such as conjugated linoleic acid and
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cholesterol, are linked to membrane composition and redox control, further indicating metabolic
remodeling beyond amino acids. Taken together, these findings demonstrate that Lactobacillus-based
consortium supplementation significantly elevated multiple amino acids, increased intermediates of central
carbon metabolism, and modulated lipid/redox pathways. This coordinated remodeling suggests that CLC
treatment counteracted post-weaning metabolic deficiencies and supported pathways associated with

growth, energy efficiency, and stress resilience (Fig. 4D).
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DISCUSSION

Weaning stress is a major factor that negatively affects the growth and health of nursery pigs and has
been well identified as a key challenge causing substantial economic loss in the swine industry [20-22]. To
alleviate the detrimental effects of this stressor, various nutritional strategies have been employed, including
the use of animal-derived protein sources, dairy byproducts, functional ingredients, and dietary additives in
nursery pig diets [23-25]. Despite these advances in nutritional management, growth retardation and post-
weaning diarrhea remain serious concerns in swine production [26]. Understanding the mechanisms by
which weaning stress impairs health and systemic metabolism is important for developing effective
strategies to reduce the negative impact of weaning stress. Among nutritional interventions, probiotic
supplementation is an effective dietary strategy to beneficially modulate microbial composition and
metabolic functions, enhance gut barrier integrity, alleviate inflammation, and influence systemic health
[27]. Recent studies have further demonstrated that probiotics have also been shown to alleviate stress by
restoring microbial balance, enhancing gut health, and modulating neuroendocrine signaling through the
gut-brain axis [28-30]. Similarly, recent evidence showed that Lactobacillus supplementation could
enhance host defense with intestinal immunity by activating immune cells through NF-kB and mitogen-
activated protein kinase (MAPK) signaling pathways in suckling piglets [31]. Among the diverse probiotic
candidates, Lactobacillus species is a well-known lactic acid bacterium commonly identified in the intestine
and provides multiple health benefits for the host [9, 15, 16]. Lactobacillus produces lactic acid to support
maintaining an acidic luminal environment that suppresses the colonization of opportunistic harmful
bacteria and helps microbial homeostasis [32-34]. Lactobacillus also positively regulates mucosal immune
responses, increases IgA secretion, and reduces inflammation [35, 36]. These properties have been involved
in the prevention of gastrointestinal disorders, reduced allergic responses, and favorable effects on nutrient
metabolism and growth. A recent report by He et al. [37] demonstrated that a combination of Lactobacillus
sp. and Bifidobacterium thermacidophilum, isolated from pigs, markedly enhanced growth performance,

intestinal morphology, and systemic immunity in weaned pigs by reducing pro-inflammatory cytokines and
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modulating gut microbiota. Unlike single-strain supplementation, the synergistic application of two
commensal species improved glycerophospholipid and cholesterol metabolism, highlighting a multi-omics
mechanism that links microbial modulation to systemic metabolic remodeling. These findings support the
potential of host-adapted probiotic consortia as an effective feed additive for health, which aligns with the
objectives of the present study but extends the concept by focusing exclusively on supplemental effects of
commensal Lactobacillus strains derived from pigs.

Notably, commensal Lactobacillus strains exhibit strong adaptability to the gut environment, supporting
effective microbial colonization through producing more methionine and branched-chain amino acids,
contributing to the maintenance of intestinal barrier integrity and metabolic support [15, 29]. Based on these
findings, the present study was conducted to evaluate whether a consortium of the five commensal
Lactobacillus strains could attenuate the adverse effects of weaning stress on the growth and health of
nursery pigs. Our results demonstrate that dietary supplementation with the commercial Lactobacillus-
based consortium significantly enhanced BW gain with reduced stress markers and improved HDL to LDL
ratio. Importantly, these physiological improvements were accompanied by distinct shifts in fecal microbial
composition, characterized by increased beneficial taxa, and elevated production of metabolites associated
with amino acid, central carbon, and lipid metabolism. Therefore, this study can indicate that the commensal
Lactobacillus-based consortium could reduce the negative impacts of weaning stress on the growth and
health of nursery pigs through positive changes in gut microbiota with enhanced production of essential
metabolites.

Lactobacillus populations are frequently diminished or destabilized during the post-weaning period, and
recovery of their abundance through probiotic supplementation has been consistently associated with
enhanced microbial diversity and improved intestinal health of nursery pigs [38, 39]. In the present study,
supplementation of commensal Lactobacillus-based consortium distinctly altered the gut microbiota of
nursery pigs after weaning. Specifically, the relative abundance of Lactobacillus and Prevotellaceae
increased, whereas Clostridiaceae decreased, indicating that probiotic consortium intervention affects the

bacterial community for a more favorable configuration [40]. Previous studies have demonstrated that
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elevated Lactobacillus levels are associated with improved gut morphology and enhanced barrier integrity
in post-weaning pigs [36, 41]. The enrichment of Lactobacillus is particularly significant, as these strains
are known to produce lactic acid, generate vitamins, and synthesize amino acids, thereby lowering luminal
pH and conferring competitive advantages against pathogenic colonization [42]. Yie et al. [43] recently
reported that Lactobacillus supplementation could enhance epithelial barrier function by upregulating tight
junction proteins and promoting anti-inflammatory cytokine responses, indicating that host-adapted
Lactobacillus species may exert outstanding mucosal protective effects under weaning stress conditions.
Considering these functional traits, the decline in Clostridiaceae, a family of opportunistic harmful bacteria
associated with enterocolitis, may be attributed to competition in mucosal adhesion, antimicrobial peptide
production, and the production of short-chain fatty acids, particularly lactate and acetate [44]. The increased
abundance of Prevotellaceae may also reflect metabolic adaptation, as this family is involved in
carbohydrate fermentation and SCFA production, contributing to host energy metabolism and mucosal
health [45]. These metabolites contribute to energy production and gut health. These shifts indicate that
supplementation of commensal Lactobacillus-based consortium promoted cooperative networks of
commensal taxa, reinforcing colonization resistance and metabolic stability. Significant increases in
Shannon diversity and Pielou evenness indices were also observed, indicating the establishment of a more
stable and functionally enriched microbial ecosystem [46]. Previous findings reported that increased
microbial diversity after probiotic supplementation is associated with reduced incidence of post-weaning
diarrhea and enhanced intestinal homeostasis [47, 48]. Although these findings highlight the ability of
porcine gut-derived commensal Lactobacillus strains to beneficially shape microbial communities, a
limitation of this study is that only porcine-origin strains were evaluated. Evidence from previous studies
suggests that probiotics from different hosts can vary in colonization efficiency, metabolite production, and
immune-modulatory capacity [49]. Therefore, further studies should directly compare porcine and non-
porcine Lactobacillus strains to evaluate how their origin influences microbial ecology and physiological

responses of nursery pigs under stress conditions.
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The fecal metabolite profile provided additional mechanistic insight into how supplementation of the
commensal Lactobacillus-based consortium could be related to the alleviation of weaning stress. Notably,
there was a significant enrichment of SCFAs, particularly lactate and acetate, which are well-established
for their roles in enhancing epithelial barrier integrity and attenuating intestinal inflammation [50, 51].
These metabolite shifts were strongly consistent with the microbial composition changes, as increased
abundance of Lactobacillus and Prevotellaceae related to enhanced fermentation of carbohydrate and
protein sources and SCFAs production [14]. Network analysis further highlighted lactate as a central hub
metabolite, connected with glucose and amino acid metabolism, supporting its role as a key mediator of
microbial shifts to systemic metabolic remodeling [52]. SCFAs provide available energy substrates for
enterocytes and promote nutrient absorption efficiency [53], which may explain the enhanced feed
utilization and body weight gain in the probiotic-supplemented group. Moreover, SCFAs have been
reported to regulate host lipid metabolism [54], an observation that complements the improved HDL/LDL
profile found in this study. Changes in lipid-associated metabolites, such as phospholipid and bile acid
derivatives, indicates that commensal Lactobacillus-based consortium can affect host physiology outcomes
with reduced hepatic stress and improved energy production, consistent with both the observed decline in
liver stress markers [55]. Thus, the results suggest that restructuring of the community directly contributed
to systemic metabolic and health improvements. In addition, increased levels of amino acid intermediates,
including methionine, glycine, alanine, threonine, and valine, were consistent with the metabolic capacity
of commensal Lactobacillus strains [14]. The enrichment of these metabolites is well aligned with the
genomic and culture-based findings from our previous work, which showed that the five Lactobacillus
species isolated from pigs were capable of synthesizing methionine and BCAAs [9]. These AA metabolites
could be utilized for epithelial proliferation and repair, which is supported by the previous findings of
improved gut barrier integrity following probiotic supplementation [52]. Although such metabolite
enrichment may also reflect interactions with other feedstuffs, it also raises the intriguing question of
whether supplementation with the Lactobacillus-based consortium could partially substitute for the use of

synthetic amino acids or protein-based feedstuffs, warranting further investigation in future studies. As

20



421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445

446

microbial restructuring, SCFAs, amino acid derivatives, and lipid-related metabolites are central mediators
related to the changes in gut microbiota, including Lactobacillus and Prevotellaceae, and the reduction of
Clostridiaceae, leading to improvements in health and growth of nursery pigs after weaning [56].
Weaning stress is also recognized to disrupt systemic physiology, often manifesting as altered
hematological and biochemical parameters indicative of inflammation, oxidative stress, and impaired
metabolic regulation in nursery pigs [57]. Previous studies have shown that elevated hepatic enzyme
activities (AST and ALT) and systemic stress biomarkers (MDA and cortisol) in pigs after weaning [58,
59]. Dysregulation of lipid metabolism, typically characterized by reduced HDL and elevated LDL, has
also been linked to microbial dysbiosis during this critical period [60, 61]. The results in this study also
show that pigs supplemented with the Lactobacillus-based consortium had significantly lower AST and a
trend for reduced ALT and LDH. These results indicate that the Lactobacillus-based consortium could
alleviate stress response that is commonly related to systemic inflammation and oxidative damage during
the post-weaning period. A increased HDL/LDL ratio implies enhancing lipid utilization and promoting a
healthy status [62]. Improvements in serum profiles and liver function following microbiome-targeted
interventions have also been reported in previous clinical trials showing fecal microbiota transplantation
(FMT) in adolescents with obesity resulted in reduced systemic inflammation and higher HDL
concentrations [63]. Similar reductions in hepatic enzyme activity have been reported following
supplementation of L. casei or L. plantarum, further supporting the role of probiotics in alleviating liver
injury [64, 65]. Marked reduction in serum MDA further highlights the capacity of probiotics to suppress
lipid peroxidation, indicating a reduction in systemic oxidative stress caused by weaning [47]. These
outcomes are strongly supported by the changes in fecal metabolites, which increased AA, leading to
improved one-carbon metabolism and glutathione synthesis, key pathways in redox balance [66]. In
addition, increases in key lipid- and energy-related metabolites, such as conjugated linoleic acid, lactate,
malate, succinate, and glucose, indicating alterations in central carbon metabolism, redox pathways, and
lipid turnover that further supported systemic metabolic stability [60]. Therefore, this study found that

dietary supplementation with a commensal Lactobacillus-based consortium effectively mitigates the
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systemic physiological disruptions associated with weaning stress. However, as this study focused on gut
microbial composition, metabolite profiles, and systemic health parameters, it remains uncertain whether
the beneficial outcomes were mediated by enhanced intestinal function, or whether modulation of stress
responses via the microbes—gut—brain axis signaling also contributed. Future studies integrating intestinal
tissue analyses with neuroendocrine and behavioral assessments will be essential to explain the mechanistic
pathways underlying the observed benefits, including host—microbe interactions, intestinal regulation, and
neuroendocrine signaling pathways.

The beneficial effects of live Lactobacillus supplementation in swine diets have been well established.
Recent evidence also highlights that postbiotic approaches using heat-killed Lactobacillus strains can bring
immune and metabolic advantages [67], suggesting that further investigations into such strategies could
further enhance feed utilization and stability with their health benefits. In addition, modulation of the gut—
lung axis by the commensal Lactobacillus-based consortium may help alleviate ammonia-induced stress
and reduce ammonia gas emission by improving nitrogen metabolism and microbial balance in the intestine
[68]. Cheng and Kim [69] also recently demonstrated that microorganisms, including bacteria, can serve as
nutritional and functional feedstuffs for pigs, suggesting sustainable alternatives to conventional protein
supplements. These microbial ingredients are rich in high-quality protein, amino acids, fatty acids, and
bioactive metabolites that improve growth performance, feed efficiency, and intestinal health by
modulating immune responses and microbial balance in the gut [69]. Recent literature collectively suggests
that a wide range of further studies are being conducted to explore the potential of probiotics, including
Lactobacillus, with their value not only as feed additives but also as sustainable nutrient resources that

enhance the growth and health of pigs.
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CONCLUSION

In conclusion, dietary supplementation with a commensal Lactobacillus-based consortium appears to
confer tangible benefits to nursery pigs by enhancing growth performance and systemic health. These
effects are likely mediated through attenuation of oxidative stress and stress-related responses, alongside
improvements in gut microbial diversity and metabolite profiles during the post-weaning period. Although
these findings highlight the potential of commensal Lactobacillus-based consortium in mitigating weaning-
associated challenges, the underlying biological mechanisms remain to be fully elucidated. Moreover, as
probiotic effects may differ according to strain origin, potentially showing variation in efficacy, further
comparative evaluations will be valuable. Integrative multi-omics approaches that connect microbial and
metabolic alterations with host physiological and neuroendocrine responses will provide deeper

mechanistic insight into the systemic benefits of probiotic consortium during the post-weaning period.
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719  Table 1. Composition of basal diet (as-fed basis)

720

Item Basal diet
Feedstuff, %

Corn, yellow 50.05
Soybean meal, 44% CP 21.20
Soy protein concentrate 10.00
Whey powder 12.50
Soybean oil 2.50
Limestone 1.40
Dicalcium phosphate 1.22
Vitamin-mineral premix? 0.30
L-Lys HCI 0.38
DL-Met 0.30
L-Thr 0.15
Total 100.00
Calculated energy and nutrient contents

Dry matter, % 90.01
Metabolizable energy, kcal/kg 3,490
Crude protein, % 22.18
SID? Lysine, % 1.41
Calcium, % 0.98
STTD?® Phosphorus, % 0.42

721 YVitamin-mineral premix provided the following quantities of vitamins and minerals per kilogram of
722  complete diet: vitamin A, 12,000 IU; vitamin D3, 2,500 1U; vitamin E, 30 1U; vitamin K3, 3 mg; o-

723  pantothenic acid, 15 mg; nicotinic acid, 40 mg; choline, 400 mg; and vitamin B, 12 pg; Fe, 90 mg from
724 iron sulfate; Cu, 8.8 mg from copper sulfate; Zn, 100 mg from zinc oxide; Mn, 54 mg from manganese
725  oxide; I, 0.35 mg from potassium iodide; Se, 0.30 mg from sodium selenite.

726  2SID, standardized ileal digestible.

727  9STTD, standardized total tract digestible.

728
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729  Table 2. Growth performance of nursery pigs fed with commensal Lactobacillus-based consortium®
730

Item? Control CLC SEM p-value
BW, kg

do 7.33 7.30 0.82 0.920
d7 8.58 8.58 0.86 0.987
d14 11.00 11.14 0.87 0.672
d21 14.58 14.92 0.74 0.403
d28 18.82 19.42 0.60 0.067
ADG, g/d

dOto7 179 183 6 0.531
d7to 14 344 366 13 0.263
d14to21 513 539 23 0.339
d21to 28 605 643 25 0.297
Overall 410 433 9 0.037
ADFI, g/d

dOto7 285 297 8 0.317
d7to 14 525 564 17 0.129
dl4to21 676 688 21 0.652
d21to 28 870 880 22 0.634
Overall 589 607 10 0.180
G:F

dOto7 0.63 0.62 0.03 0.712
d7to 14 0.66 0.65 0.04 0.905
d14to21 0.76 0.79 0.05 0.565
d21to28 0.70 0.73 0.04 0.513
Overall 0.70 0.71 0.03 0.549

731 YEach value is the mean value of 6 replicates (4 pigs/pen). SEM indicates standard error of the mean.
732 CON indicates pigs fed diets without commensal Lactobacillus-based consortium; CLC indicates pigs fed
733 diets with commensal Lactobacillus-based consortium at 0.02%;

734 2BW, body weight; ADG, average daily gain; ADFI, average daily feed intake; G:F, gain to feed ratio.
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Table 3. Effects of commensal Lactobacillus-based consortium on hematological profiles of nursery
pigs®

Item? Control CLC SEM p-value
White blood cells, x10%/uL 18.2 18.2 15 0.987
Red blood cells, x10%/pL 5.1 5.8 0.5 0.321
Hemoglobin, g/dL 10.1 10.3 0.3 0.481
Hematocrit, % 32.6 35.2 2.3 0.332
Platelet, x10%/uL 254.3 331.0 36.2 0.168
MCV, um? 67.2 60.8 4.1 0.298
MCHC, g/dL 32.6 29.2 2.8 0.407

DEach value is the mean value of 6 replicates (4 pigs/pen). SEM indicates standard error of the mean.
CON indicates pigs fed diets without commensal Lactobacillus-based consortium; CLC indicates pigs fed
diets with commensal Lactobacillus-based consortium at 0.02%; Blood samples were collected on d 28
after weaning

IMCV, mean corpuscular volume; MCHC, mean corpuscular hemoglobin concentration.
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744  Table 4. Effects of commensal Lactobacillus-based consortium supplementation on serum biochemical
745  profile and stress markers of nursery pigs®

746
Item Control CLC SEM  p-value
AST, Aspartate aminotransferase, U/L 128.0 48.0 124 <0.001
ALT, Alanine aminotransferase, U/L 133.0 50.5 35.0 0.053
LDH, Lactate dehydrogenase, U/L 730.5 505.0 82.1 0.084
GGT, Gamma-glutamyl transferase, U/L 40.3 36.5 51 0.607
Glucose, mg/dL 79.3 82.2 4.0 0.632
TG, Triglycerides mg/dL 62.8 60.8 6.8 0.835
TCHO, Total cholesterol, mg/dL 131.5 136.8 4.7 0.438
HDL, High-density lipoprotein, mg/dL 29.5 51.0 1.7 <0.001
LDL, Low-density lipoprotein, mg/dL 89.4 73.7 3.4 0.010

747  YEach value is the mean value of 6 replicates (4 pigs/pen). SEM indicates standard error of the mean.
748  CON indicates pigs fed diets without commensal Lactobacillus-based consortium; CLC indicates pigs fed
749  diets with commensal Lactobacillus-based consortium at 0.02%.

750
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Figure legends

Figure 1. Serum stress markers of nursery pigs fed with commensal Lactobacillus-based consortium.
Serum samples were collected at day 28 after weaning. CON indicates pigs fed diets without commensal
Lactobacillus-based consortium. CLC indicates pigs fed diets supplemented with commensal
Lactobacillus-based consortium at 0.02%. (A) serum malondialdehyde (MDA) concentration. (B) serum
advanced oxidation protein products (AOPP) concentration. (C) serum cortisol concentration. Bars

represent the mean + SEM. Statistical significance between groups indicates ***p < 0.05.

Figure 2. Gut microbiota of nursery pigs fed with commensal Lactobacillus-based consortium. (A)
Genus/family-level composition. Stacked bars show the average of relative abundance for gut microbiota
at weaning and d 28 after weaning of the pigs fed control diets (Control) or diets with commensal
Lactobacillus-based consortium (CLC). (B) Pielou evenness and (C) Shannon index at day 28. Statistical
significance was determined using Welch’s student’s t-test for Pielou evenness and Shannon diversity. (D)
Principal coordinate analysis (PCoA) based on weighted UniFrac distance at day 28. (E) Unweighted
UniFrac distances at day 28. (F) Log2 fold-change of selected genera in response to the consortium

supplementation. (G) Volcano plot showing log2 fold change and statistical significance for each bacterium.

Figure 3. Comparative fecal metabolomic analysis among weaning, control, and commensal
Lactobacillus-based consortium groups. (A) Principal component analysis (PCA) score plots of
metabolites in the feces of pigs between the MSP and control groups. (B) The sparse PLS-DA (sPLS-DA)
algorithm represents selected metabolites for a given component. The absolute values of their loadings rank
metabolites. (C) Heatmap showing significantly differentially abundant fecal metabolites among treatment
groups based on normalized GC/MS peak intensities. Principal component analysis (PCA), variable
importance plot (VIP), and hierarchical clustering heatmap were generated using MetaboAnalyst

(www.metaboanalyst.ca). Data were log-transformed and auto-scaled before metabolite data analysis. CON
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indicates pigs fed diets without commensal Lactobacillus-based consortium. CLC indicates pigs fed diets
supplemented with commensal Lactobacillus-based consortium at 0.02%. Statistical significance among
groups was determined using one-way ANOVA followed by Tukey’s post hoc test, and differences were

considered significant at p < 0.05.

Figure 4. Comparison of fecal metabolite composition between control diet- and commensal
Lactobacillus-based consortium-fed nursery pigs. (A) Volcano plot showing log2 fold change and
statistical significance for each metabolite. (B) Relative fold change of representative amino acid—related
metabolites and lipid/energy/redox-related metabolites. (C) Network analysis considering significantly
altered metabolites to functional pathways. All metabolite intensities were log-transformed and auto-scaled
before analysis. Volcano plots and network analysis were generated using MetaboAnalyst
(www.metaboanalyst.ca) and independently verified in Python (pandas, scipy, numpy). One-way ANOVA
determined group differences and p-values were corrected for multiple testing using the Benjamini—
Hochberg false discovery rate (FDR). Fold change (FC) was calculated as the ratio of mean abundance in
CLC relative to control. CON indicates pigs fed diets without commensal Lactobacillus-based consortium.
CLC indicates pigs fed diets supplemented with commensal Lactobacillus-based consortium at 0.02%.
Metabolites with FDR < 0.05 were considered statistically significant, whereas those with higher FDR but
consistent directional shifts were indicated as trends. In bar plots, significance is denoted by p < 0.05 (*), p

<0.01 (**), and p < 0.001 (***).
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