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ABSTRACT 24 

Rumen methanogenesis is a major biological contributor to methane emissions in ruminants, yet the 25 

extent to which functional markers align with taxonomic relationships and how genome content varies 26 

across habitats, remains poorly resolved. In this study, we integrated broad phylogenetic frameworks with 27 

pangenome-resolved analysis to characterize methanogenic archaea from diverse ecosystems, including 28 

seawater, freshwater, sewage, rumen, human gut, soil, and cockroach sources. By combining these 29 

insights with pangenome reconstruction and KEGG-based pathway mapping of methanogenesis, we 30 

reveal key evolutionary and functional patterns. Notably, phylogenies based on 16S rRNA and mcrA 31 

genes showed limited concordance: only two clades exhibited overlap between trees, with most clustering 32 

patterns lacking environmental specificity. This discrepancy reflects the deep conservation of 16S rRNA 33 

compared with the evolutionary plasticity of mcr genes, shaped by lateral gene transfer, gene loss, and 34 

pathway modularity. The pangenome comprised of 8,695 orthogroups across 71 genomes, with core and 35 

soft-core genes enriched in translation, amino acid metabolism, and coenzyme biosynthesis, while the 36 

shell contained many poorly annotated orthogroups, highlighting annotation gaps in archaeal genomes. 37 

KEGG analysis revealed habitat-specific signatures: rumen methanogens were notably depleted in genes 38 

of the acetyl-CoA pathway, whereas human gut methanogens lacked key cofactor biosynthesis modules, 39 

including those for coenzymes M, B, F420, and methanofuran. From rumen-derived shotgun metagenomes, 40 

we identified 53 methane-producing, 4 canonical methanogenic, 10 potential competitor, and 1 41 

methanotrophic metagenome-assembled genomes (MAGs) based on functional gene content. Competitor 42 

candidates included nitrate-reducing and Wood–Ljungdahl pathway (WLP)-utilizing acetogens, 43 

suggesting hydrogen redirection under high-hydrogen or inhibitor conditions. These findings support a 44 

functional marker strategy that integrates 16S rRNA with pathway-specific genes and a pangenome 45 

framework to enhance ecological interpretations of methanogens and to prioritize potential targets for 46 

methane mitigation in ruminants. 47 

Keywords: Comparative pangenome, rumen microbiome, MAGs, methanogen, methane mitigation  48 

49 
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INTRODUCTION 50 

 51 

 Comprehensive efforts have been directed toward elucidating the ecological and metabolic features of 52 

methanogenic archaea to inform effective strategies for mitigating methane emissions in livestock 53 

production systems. Methanogenic archaea inhabit a range of anoxic environments including the rumen, 54 

marine sediments, wetlands, and deep-sea hydrothermal vents, where their dominant methanogenic 55 

pathways, primarily hydrogenotrophic and methylotrophic, vary according to ecological context [1, 2]. 56 

However, many methanogens remain difficult to isolate and cultivate under laboratory conditions, 57 

resulting in a knowledge base that is skewed toward in vitro data from non-rumen habitats and remains 58 

fragmentary with respect to rumen-specific biology [3]. Within the rumen, methane production is strongly 59 

influenced by methanogen diversity, hydrogen flux, and syntrophic interactions with bacterial guilds, yet 60 

the phylogenetic and functional relationships remain poorly defined [4, 5].  61 

 Comparative pangenome analysis provides a genome-wide framework for dissecting these 62 

relationships, enabling gene-level resolution of phylogenetic, functional, and metabolic divergence across 63 

diverse taxa. Notably, the Zoonomia Consortium’s alignment of 240 mammalian genomes has established 64 

a methodological benchmark for large-scale comparative analysis, integrating large-scale genome 65 

alignment, normalization, and statistical inference in a unified analytical pipeline [6]. Building upon such 66 

advances in large-scale genome comparative analysis, similar efforts in the field of animal microbiology 67 

have followed suit. The Hungate1000 project provided foundational resources by sequencing 410 cultured 68 

rumen microbial genomes, which were later expanded by the assembly of 913 metagenome-assembled 69 

genomes (MAGs) from bovine rumen metagenomes and the construction of a 4,941-member Rumen 70 

Uncultured Genome catalogue, expanding the landscape of species- and function-level variation and 71 

strengthening quantitative links to methanogenesis pathways [7, 8]. More recently, genome-resolved 72 

surveys have expanded archaeal resources and environmental breadth, including a catalogue of 998 73 

unique ruminant-gut archaeal genomes across 10 host species and large MAG datasets from Nelore cattle, 74 

which together sharpen genome-level resolution of rumen methanogenesis [9, 10]. Despite these advances, 75 
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several critical questions remain unanswered. It still lacks a genome-resolved understanding of how 76 

methanogen gene repertoires vary across habitats and how these differences map onto phylogenetic 77 

lineages, functional capacities, and methanogenic strategies within the rumen. Furthermore, there is no 78 

integrated framework that connects methanogen genomic features with co-occurring microbial guilds that 79 

either supply reductants or act as metabolic competitors within the methanogenesis network. 80 

 To address these knowledge gaps, we employed a two-stage comparative genomics approach 81 

integrating phylogenetic reconstruction, pangenome analysis, and metagenomic profiling to 82 

systematically characterize rumen methanogens and their ecological interactions. Initially, we constructed 83 

phylogenetic trees using 16S rRNA and the key methanogenesis marker gene mcrA from methanogens 84 

isolated across diverse ecosystems, and performed habitat-stratified pangenomic comparisons to identify 85 

gene-level signatures and clustering patterns of each habitat. And then, we investigated rumen shotgun 86 

metagenomic data to delineate candidate methane substrate producers, consumers, and competitor 87 

lineages within the methanogenic network, thereby nominating functionally relevant targets for methane 88 

mitigation in rumen ecosystems [11]. 89 

 90 

91 
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MATERIALS AND METHODS 92 

 93 

Genome collection and phylogenetic distribution 94 

 Genomic sequences were retrieved primarily from GenBank, with curated versions cross-validated 95 

via RefSeq. Accession numbers, version identifiers, BioProject, BioSample, TaxID, and download dates 96 

are detailed in Supplementary Table S1. The final dataset included 71 methanogen reference genomes, 97 

spanning 10 from the rumen, 4 from the human gut, 17 freshwater, 14 sewage, 20 seawater, 4 soil, and 2 98 

cockroach-derived strains. For 16S rRNA-based phylogeny, rRNA loci were predicted and extracted 99 

using Barrnap v0.9, followed by coordinate-based trimming to remove incomplete ends. Multiple 100 

sequence alignment was performed using MAFFT v7 [12]. For functional phylogeny, the mcrA gene 101 

(encoding methyl-coenzyme M reductase subunit A) was detected via HMMER v3 searches against the 102 

corresponding Pfam domain, retaining only full-length hits in line with established use of mcrA as a 103 

methanogen marker. The resulting amino-acid sequences were aligned with MAFFT v7 [13-15]. 104 

Maximum-likelihood phylogenies were inferred using IQ-TREE v2, and annotated phylogenetic trees 105 

were visualized with iTOL v6 [16, 17].  106 

 107 

Pangenome analysis 108 

 Pangenome analysis from diverse ecosystems was conducted following established protocols with 109 

minor modifications [11]. The analytical workflow is summarized in Figure 1A. Protein-coding genes 110 

were predicted and functionally annotated from assembled genomes with Prokka v1.14.6 [18]. The 111 

resulting translated proteomes were used for orthogroup inference with OrthoFinder v3.1.0, and 112 

orthogroups (COG) presence–absence matrices were used to delineate core, shell and cloud gene sets 113 

following standard pangenome definitions [19]. Functional annotation of protein sequences was assigned 114 

using eggNOG-mapper v2.1.13 against the eggNOG v5 orthology database. KEGG Orthology (KO) and 115 

Gene Ontology (GO) assignments derived through the eggNOG framework were used to functionally 116 

characterize orthogroups [20, 21]. The combined outputs from OrthoFinder and eggNOG-mapper 117 
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provided gene clusters with consolidated functions, which formed the basis for downstream interpretation 118 

of methanogen pangenome structure across environments [19]. Data visualization was carried out using 119 

Seaborn v0.13.2 and Matplotlib v3.10.6 [22, 23]. The COG were scored as present or absent per strain 120 

and classified by prevalence as follows: core, ≥ 99% of genomes; soft-core, ≥ 95% and < 99%; shell, ≥ 121 

15% and < 95%; cloud, < 15% [24]. Results for the cloud set were omitted. 122 

 123 

KEGG mapping of methanogenesis pathway 124 

 From eggNOG-mapper v2.1.13 annotations of the methanogen reference genomes used in the 125 

pangenome analysis, KEGG Orthology assignments linked to the methanogenesis pathway ko00680 were 126 

retrieved and compiled. A KO was deemed present if at least one encoded protein was annotated with the 127 

respective identifier. Environment-specific KO frequency was calculated as the proportion of genomes in 128 

each habitat containing the KO. The resulting KO-by-environment matrix was visualized both as pathway 129 

tile maps and matrix plots using Matplotlib v3.10.6.  130 

 131 

Functional analysis of rumen MAGs 132 

Schematic workflows of rumen MAGs functional analysis were illustrated in Fig. 1B. Shotgun 133 

metagenome reads were obtained from dairy cow rumen fluid sample sourced from previously published 134 

datasets by Kang et al [25]. Long-read metagenome assembly was performed with metaMDBG v1.2 [26]. 135 

Read mapping and coverage profiling were performed using minimap2 v2.30. Binning was conducted 136 

with SemiBin2 v2.2.0 [27]. Genome quality was evaluated with CheckM2 v1.1.0 and contamination was 137 

filtered using GUNC v1.0.6. Bins with ≥ 50% completeness and < 10% contamination were retained [28-138 

30]. Nonredundant representatives were obtained by dereplication with dRep v3.6.2 [31]. Taxonomic 139 

assignment used GTDB-Tk v2.4.1 with GTDB reference data release r226 [32]. Functional annotation of 140 

predicted protein sequences was performed using eggNOG-mapper v2.1.13. MAGs were categorized into 141 

four ecological roles using curated marker genes. 142 
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Methanogens were identified as archaeal MAGs encoding the methyl-coenzyme M reductase operon 143 

(mcrA/B/G), optionally supported by mtrA/B/E, which are canonical to methanogenic energy metabolism 144 

[33, 34]. Substrate supply producers were defined as MAGs encoding one or more routes that provide key 145 

methanogenic substrates: H2 production via [FeFe]-hydrogenase (hydA) together with its maturation 146 

genes (hydE/F/G); formate production via pyruvate-formate lyase (pflA/pflB); acetate production via the 147 

phosphotransacetylase–acetate kinase pair (pta/ackA) [35, 36]. Competitive sinks-competitors captured 148 

respiratory pathways that divert the same reductants (H2/electrons) away from methanogenesis. 149 

Dissimilatory nitrate reduction to ammonium (DNRA) was identified by nrfA/H. The reductive Wood–150 

Ljungdahl pathway (WLP) evidenced by cooS (CODH), with fhs and metF treated as supportive folate-151 

branch markers rather than strict requirements [37-39]. Methanotrophs were identified by the presence of 152 

the particulate methane monooxygenase gene pmoA, a widely used functional and phylogenetic marker 153 

[40, 41]. Out of 903 initial bins from SemiBin2, 151 passed CheckM2 filtering, 116 passed GUNC 154 

quality control, and 106 dereplicated MAGs remained. Ultimately, 67 MAGs with functional roles were 155 

used in downstream analysis.  156 

 157 

Statistical analysis 158 

Differential distribution of orthogroups by clade and habitat was assessed using two-sided Fisher’s 159 

exact tests (2 × 2 contingency tables) with Benjamini–Hochberg FDR correction (q ≤ 0.05).  Enrichment 160 

was interpreted via odds ratios (OR): OR > 1 denoting enrichment, OR < 1 indicating depletion. Clade-161 

specific orthogroups were defined as those present in ≥ 80% of strains within a clade and ≤ 20% outside it 162 

[42, 43]. 163 

164 
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RESULTS 165 

 166 

16S rRNA and mcrA phylogeny reveal limited clade concordance 167 

 Comparative phylogenetic analysis based on 16S rRNA and mcrA sequences identified two clades 168 

exhibiting substantial overlap, with Jaccard indices exceeding 0.7. The first clade, comprising strains 169 

from freshwater and seawater habitats, showed a Jaccard index of 0.75 and included 170 

NC_009051.1_Methanoculleus_marisnigri_JR1, NC_009712.1_Methanoregula_boonei_6A8, 171 

NZ_AP019781.1_Methanoculleus_chikugoensis_strain_MG62, 172 

NZ_CP109831.1_Methanoculleus_submarinus_strain_DSM_15122, 173 

NZ_CP113361.1_Methanogenium_organophilum_strain_DSM_3596, and 174 

NZ_JOMF01000012.1_Methanomicrobium_mobile_DSM_1539. A second clade, spanning freshwater 175 

and sewage-derived isolates, yielded a Jaccard index of 0.714 and consisted of 176 

NC_007796.1_Methanospirillum_hungatei_JF-1, NC_018227.2_Methanoculleus_bourgensis_MS2, 177 

NC_019943.1_Methanoregula_formicica_SMSP, 178 

NZ_CP036172.1_Methanofollis_aquaemaris_strain_N2F9704, and 179 

NZ_CP091092.1_Methanomicrobium_antiquum_strain_DSM_21220. 180 

 No additional clades showed concordance above the 0.7 threshold. The lack of clade concordance 181 

between the relatively conserved 16S rRNA tree and the mcrA tree indicates accelerated sequence 182 

divergence in mcrA. Moreover, the failure of environment-based clustering to persist on the mcrA 183 

phylogeny points to frequent horizontal gene transfer events and inherent diversification of this functional 184 

marker (Fig. 2). 185 

 186 

Pangenome architecture and functional classification of COG 187 

 From the 71 methanogen genomes analyzed, a total of 8,695 orthogroups were identified and 188 

classified into core (≥99% genomes), soft-core (≥95% and <99%), and shell (≥15% and <95%) 189 

components. This yielded 385 core, 94 soft-core, and 2,573 shell orthogroups. The most abundant COG 190 
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categories within each group were as follows: J (translation, ribosomal structure and biogenesis; 35.4%), 191 

E (amino acid transport and metabolism; 12.8%), and H (coenzyme transport and metabolism; 12.2%) for 192 

core; H (22.1%), E (19.5%), and J (10.4%) for soft-core; and C (energy production and conversion; 193 

16.9%), K (transcription; 8.9%), and P (inorganic ion transport and metabolism; 8.8%) for shell (Fig. 3B). 194 

These distributions align with prior archaeal pangenomic surveys, emphasizing conserved functions in 195 

translational machinery and cofactor metabolism across core genomes [44]. In contrast to typical bacterial 196 

patterns, where J, E, and H frequently appear alongside C and F in the core at comparable proportions, the 197 

methanogen set here places energy metabolism and nucleotide transport and metabolism predominantly 198 

outside the core. The core was enriched for COG J, E, and H, contrasting with the bacterial tendency to 199 

balance J, E, and H with C and F at comparable proportions. Therefore, these results support strong 200 

conservation of the information-processing machinery in archaea and suggest an elevated fraction of 201 

poorly annotated proteins reflecting limited study coverage [44-46]. Additionally, rare or composite COG, 202 

including IQ, FG, NU, DJ, DZ, EGP, BQ, and A, were uniquely found within the shell COG. Within the 203 

rumen-enriched clade including NZ_CP118753.2_Methanosphaera_sp._ISO3-F5; 204 

NC_013790.1_Methanobrevibacter_ruminantium_M1; 205 

NZ_CP014265.1_Methanobrevibacter_olleyae_strain_YLM1; 206 

NZ_FMXB01000001.1_Methanobrevibacter_millerae_strain_DSM_16643; 207 

NC_009515.1_Methanobrevibacter_smithii_ATCC_35061; 208 

NZ_BAGX02000054.1_Methanobrevibacter_boviskoreani_JH1, enrichment testing at q ≤ 0.05 showed 209 

COG J to be clade-specifically depleted (OR = 0.08), whereas COG M (Cell wall/membrane/envelope 210 

biogenesis) was relatively enriched (OR = 2.46) (Fig. 3C). The enrichment of cell wall, membrane and 211 

envelope functions in the rumen methanogen clade, relative to other clades, supports the interpretation 212 

that these taxa engage in potential ecological and physical interactions with coexisting rumen microbiome 213 

[47]. 214 

 215 

Environment-specific patterns in methanogenesis gene retention 216 
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 KEGG pathway ko00680 was used to assess methanogenesis gene distribution. The methyl-coenzyme 217 

M reductase complex, a hallmark of methanogenic metabolism, was universally present across all 218 

genomes. Other core methanogenesis enzymes such as heterodisulfide reductase and ferredoxin reductase, 219 

also showed complete conservation across environments. However, human gut–derived methanogens 220 

exhibited substantial depletion of genes involved in the biosynthesis of coenzyme M, coenzyme B, 221 

coenzyme F420, and methanofuran, including K00200, K00201, K00202, K00203, K00205, K00319, 222 

K00320, K00441, K00577, K00578, K00579, K00580, K00581, K00584, K00672, K01499, K06914, 223 

K07072, K07144, K09733, K11212, K11780, K11781, K14941, K16792, K16793, and K18933. This 224 

pattern is an environment-specific signature of human gut methanogens and indicates a strong 225 

dependence on community-supplied intermediates. In contrast, rumen-derived methanogens were notably 226 

depleted in genes involved in the acetyl-CoA pathway genes, including K00192 (OR = 0.1), K00193 (OR 227 

= 0.08), and K00194 (OR = 0.06). The depletion of acetyl-CoA pathway genes in rumen methanogens 228 

indicates a reduced role for acetoclastic methanogenesis. This suggests that hydrogen is competitively 229 

diverted by coexisting rumen microbiome (e.g. acetogen) via the WLP, potentially limiting methane yield 230 

from acetate oxidation (Fig. 4). 231 

 232 

Functional categorization of methanogenesis-related genes in rumen MAGs. 233 

 From long-read metagenomic assemblies of rumen fluid, 67 high-quality MAGs were assigned to 234 

ecological roles based on methanogenesis-related gene content (Fig. 5). Genomes carrying genes that can 235 

supply substrates for methanogenesis were designated producers; archaeal genomes encoding the core 236 

methanogenesis machinery were designated methanogens; genomes encoding pathways that 237 

competitively consume methanogenesis substrates were designated competitors; genomes encoding 238 

methane oxidation were designated methanotrophs. These included 53 producers, 4 methanogens, 10 239 

competitors, and 1 methanotroph. 240 

Among competitor candidates, DNRA MAGs were identified as Bin.31__s_Aristaeella_sp900315675, 241 

Bin.35__s_UBA3792_sp002369195, Bin.38__s_UBA3792_sp902792295, 242 
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Bin.39__s_Faecousia_sp900315595, Bin.41__s_Bulleidia_intestinalis, 243 

Bin.75__s_Denitrobacterium_detoxificans, Bin.122__s_Aristaeella_sp900322155, and 244 

Bin.126__s_Chordicoccus_sp900320575. The thermodynamically favorable nature of DNRA over 245 

methanogenesis positions these taxa as key electron sinks in methane-suppressing communities. DNRA 246 

offers a more favorable free-energy change than the reduction of CO2 to methane, enabling more efficient 247 

withdrawal of electrons. Rumen methane-mitigation strategies that supplement nitrate operate on this 248 

principle. The DNRA competitor candidates identified here support the feasibility of suppressing 249 

methanogenesis through electron competition [48]. The WLP was detected in Bin.4__g_FB2012 and 250 

Bin.73__s_Ruminococcus_sp002394695, suggesting these taxa divert hydrogen away from 251 

methanogenesis (Fig. 5). Given the depletion of acetoclastic methanogenesis in rumen methanogens, we 252 

prioritized taxa that can divert hydrogen as mitigation candidates, and the genus Ruminococcus appears to 253 

be a promising candidate for hydrogen competition in the rumen ecosystem. 254 

255 
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DISCUSSION 256 

 257 

This study includes two major components, an environment-based analysis of methanogenic archaea 258 

and a rumen shotgun MAG analysis. For the methanogen component, we combined established elements 259 

from prior workflows. The phylogenetic reconstruction followed the analysis flow of Ou et al. [49], and 260 

the pangenome analysis followed the framework of Prondzinsky et al. [11]. Environmental classification 261 

was assigned from the isolation context of each reference genome, allowing us to examine genetic 262 

features of methanogens alongside habitat-specific patterns. For the rumen MAG component, the 263 

assembly, mapping, and binning steps were guided by the Oxford Nanopore long-read shotgun workflow, 264 

which is well-suited for processing Oxford Nanopore Technologies data. Quality filtering and curation 265 

followed the methods of Richy et al. [50], and functional annotation was performed using eggNOG-266 

mapper [20], consistent with the methanogen analysis. Although the rumen MAG pipeline is not directly 267 

derived from a single paper, once MAGs are recovered by binning, the subsequent interpretation is tool-268 

independent, following the curation and QC sequence proposed by Richy et al. [50]. Similarly, eggNOG-269 

mapper provides a complementary route to functional annotation in lineages, such as methanogens, where 270 

curated annotations remain limited. Therefore, these choices support the reproducibility of the workflow 271 

employed in this study.  272 

Methanogenic archaea play a central role in regulating hydrogen flux and methane output across 273 

anaerobic ecosystems [1]. However, conventional reliance on cultivation-dependent methods and single-274 

marker analyses has left substantial gaps in our understanding of their ecological differentiation and 275 

evolutionary dynamics [7]. To address this, we integrated broad phylogenetic analyses with genome-276 

resolved comparisons to explore how environmental context shapes methanogen lineage structure and 277 

pathway composition, and how these patterns could inform methane-mitigation strategies [51]. The 278 

pangenome-based genomic analysis examines lineage-specific and niche-linked gene clusters that are 279 

involved in microbial metabolism, particularly methanogenesis, thereby identifying candidate genomic 280 

and metabolic targets for methane mitigation [52]. In line with this perspective, a methanogen pangenome 281 
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analysis resolved a large conserved core together with habitat relevant accessory variability, providing a 282 

rational map to distinguish conserved enzymatic nodes from context-specific accessory modules that are 283 

pertinent to mitigation [11]. Advancing high-quality genome references and refining functional 284 

annotations will connect genotype to mechanism in rumen systems, supporting the design of targeted, 285 

microbiome-informed strategies to reduce methane emissions in livestock production [8]. 286 

The mcrA is a canonical component of methanogenesis and has served as a defining molecular marker 287 

for methanogens. Earlier studies suggested that mcrA sequences could substitute for 16S rRNA in 288 

taxonomic classification because both markers produced largely congruent phylogenetic trees [15, 53]. 289 

However, more recent work has revealed substantial discordance between mcrA- and 16S-based 290 

phylogenies, influenced by environmental niche, taxonomic scope, primer design, and analytical 291 

framework [54]. These findings underscore the limitations of using any single functional gene as a 292 

universal proxy for evolutionary inference [55, 56]. In other words, using a single functional gene as a 293 

representative marker to describe evolutionary relationships or to conduct phylogenetic analysis among 294 

different organisms can be inappropriate. Our results strongly reinforce this point: except for two minor 295 

clades (one comprising 5 methanogens from sewage and freshwater, and another comprising 6 296 

methanogens from freshwater and seawater), no meaningful congruence was observed between 16S 297 

rRNA and mcrA trees (Fig. 2). This limited overlap suggests that phylogenetic resolution in methanogens 298 

operates primarily at the genus level and that evolutionary patterns are not clearly partitioned by habitat. 299 

The divergence reflects the conservative evolutionary trajectory of 16S rRNA compared with the more 300 

dynamic mcrA, which is subject to lateral gene transfer, modular pathway organization, and selective 301 

gene loss [57, 58]. Supporting this, functional analyses revealed that methanogens exhibited low retention 302 

of acetoclastic methanogenesis genes, whereas human gut methanogens showed marked depletion in 303 

cofactor biosynthesis modules for coenzymes M, B, F420, and methanofuran (Fig. 4). These pathway 304 

differences argue against a single canonical methanogenesis route across habitats and help explain why 305 

mcrA-based phylogeny alone does not recapitulate 16S rRNA relationships. Therefore, the phylogenetic 306 

and genome content results support a marker strategy that integrates 16S rRNA with multiple pathway 307 
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genes and genome-resolved context, rather than relying on mcrA alone, for robust taxonomic inference 308 

and for ecological interpretation across environments. 309 

Because mcrA did not reliably capture environment-specific structure in our phylogenies, we integrated 310 

pangenome-based clade definitions with environmental metadata to track niche-linked genomic 311 

adaptations. The methanogen pangenome revealed a clear hierarchical organization, with core and soft-312 

core gene sets enriched in housekeeping functions such as translation (COG J), amino acid metabolism 313 

(COG E), and coenzyme metabolism (COG H) (Fig. 3A). This pattern is in accordance with previous 314 

archaeal pangenomic studies that reported similar enrichment of informational processes in conserved 315 

gene sets [59]. The archaeal distribution contrasts with typical bacteria, where J, E and H tend to occur 316 

alongside C and F for energy metabolism and nucleotide transport and metabolism at comparable 317 

proportions [45]. These results indicate strong conservation of transcription, translation, and replication in 318 

archaea, and also suggest a higher fraction of proteins lacking confident annotation due to limited study 319 

coverage [44, 46]. The shell gene set further contained numerous poorly annotated or lineage-specific 320 

orthogroups, highlighting persistent annotation gaps within archaeal genomics. Within the rumen-derived 321 

methanogen clade, the shell showed enrichment for cell wall, membrane, and envelope biogenesis, 322 

consistent with tight attachment to symbiotic bacteria in the rumen and with sustained requirements for 323 

maintenance and remodeling of archaeal cell envelopes based on pseudomurein and S-layers [60] (Fig. 324 

3B). This interpretation aligns with prior observations of Methanobrevibacter ruminantium M1, which 325 

encodes multiple adhesin-like proteins such as Mru_1499 capable of binding directly to protozoa and 326 

hydrogen-donating bacteria [61]. The ether lipid membrane typical of archaea also requires compositional 327 

maintenance under volatile fatty acids, long-chain fatty acids, and osmotic stress prevalent in the rumen, 328 

which helps explain the relative expansion of membrane and envelope biosynthesis pathways [47]. The 329 

observed depletion of COG J outside the core aligns with the broader archaeal trend, which preserves 330 

translation and ribosome biogenesis functions as deeply conserved core features [62].  331 

 Methanogenesis is generally categorized into hydrogenotrophic, acetoclastic, and methylotrophic 332 

pathways [63]. Our KEGG-based screening revealed that genes supporting methylotrophic 333 
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methanogenesis were retained at relatively low frequencies (mean ratio 0.32) across environments (Fig. 4), 334 

consistent with previous reports indicating that hydrogenotrophic methanogenesis is the dominant route, 335 

with methylotrophy operating as a niche-specific, facultative strategy [64]. The result reflects gene 336 

presence only, and previous studies show that methylotrophic methanogenesis can become prominent in 337 

settings with abundant methylated substrates [1, 65]. Among environment-specific distinctions, human 338 

gut methanogens exhibited pronounced depletion of cofactor biosynthetic genes associated with 339 

coenzymes M, B, F420, and methanofuran. This is consistent with metabolic streamlining during host-340 

associated adaptation [66]. Human gut-associated Methanomassiliicoccales exemplify this trend, with loss 341 

of canonical coenzyme M biosynthesis genes and atypical energy conservation modules, as well as loss of 342 

the Wood–Ljungdahl methyl branch, supporting a hydrogen-dependent methyl-reducing lifestyle that 343 

increases reliance on community-supplied intermediates [67, 68]. Alternative or yet-unresolved routes for 344 

coenzyme M formation and exogenous supply have been proposed, which together suggest that human 345 

gut methanogens may depend more on community interdependence and pathway substitution than on 346 

strict de novo cofactor synthesis [66, 69]. 347 

Interestingly, depletion of acetyl-CoA pathway genes was clearly observed in rumen-derived 348 

methanogens (Fig. 4). This pattern supports that hydrogenotrophic methanogenesis predominates in the 349 

rumen and that acetoclastic activity is low [70]. It consists of the dominance of Methanobrevibacter, 350 

which relies primarily on the hydrogenotrophic route, and the low prevalence of Methanosarcinales, 351 

which can perform acetoclastic methanogenesis. Together, these features indicate limited acetate use in 352 

rumen methanogenesis. The deficit of acetyl-CoA pathway genes in rumen methanogens is therefore best 353 

interpreted as an outcome of ecological selection pressures [71, 72]. Acetate has been considered a 354 

substrate for acetoclastic methanogenesis, which led to the view that acetate-forming bacteria hinder 355 

methane mitigation [73]. Recent studies instead highlight competition for metabolic hydrogen as the main 356 

control [74, 75]. When methanogenesis is suppressed, electron flow is redirected toward alternative 357 

hydrogen sinks such as propionate formation and reductive acetogenesis, with accompanying increases in 358 

volatile fatty acid yields. Consistent with this mechanism, recent genome-resolved and metabolite-359 
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profiling work shows that 3-nitrooxypropanol (3-NOP) cuts methane by ~60% while stimulating 360 

reductive acetogenesis and shifting SCFA and H2 dynamics without depressing intake [76]. A previous 361 

meta-analysis also indicated consistent shifts toward propionate and activation of acetogenic lineages, 362 

while acetoclastic methanogenesis appears uncommon in the rumen [77]. Taken together, these results 363 

support positioning acetate production as part of a reallocation of hydrogen sinks among the competitive 364 

routes that can antagonize methanogenesis under inhibition regimes [78].  365 

 In the genome-resolved functional classification based on rumen shotgun sequencing data, 366 

competitors were divided into a DNRA group that draws electrons away from methanogenesis and a WLP 367 

group that competes for H2. Thermodynamically, DNRA offers a larger free-energy gain than CO2 368 

reduction. Under standard conditions, the reduction of CO2 to CH4 is on the order of -131 kJ mol-1, 369 

whereas the reduction of NO3
- to NH3 is on the order of -600 kJ mol-1, making DNRA a stronger electron 370 

sink [79]. This thermodynamic advantage intensifies competition for the reductants used in 371 

methanogenesis, and nitrate has been widely evaluated as a rumen methane mitigation agent [80]. Recent 372 

in vitro and applied studies corroborate nitrate-driven methane suppression with concomitant microbiome 373 

and fermentation shifts, including dose-dependent responses and cation-specific effects [81]. Prior studies 374 

reported methane reductions with Denitrobacterium supplementation alone, in combination with nitrate, 375 

and with the combined treatment showing a greater effect than either alone, consistent with electron 376 

diversion via DNRA by Denitrobacterium [48, 82]. Consistent with this, our analysis detected DNRA 377 

genes in genera such as Aristaeella, Faecousia, Bulleidia, and Chordicoccus (Fig. 5). Although direct 378 

evidence linking these genera to DNRA remains limited and precludes immediate designation as nitrate 379 

reducers, their gene content highlights them as competitor candidates for future methane mitigation assays. 380 

In the rumen, the WLP is thermodynamically and kinetically disadvantaged while methanogenesis 381 

dominates, yet it can emerge as an alternative H2 sink when methanogenesis is suppressed or when H2 382 

partial pressure increases [83]. Classical incubations and experiments with methanogenesis inhibitors 383 

such as BES repeatedly showed activation of indigenous acetogens and increased acetate production 384 

under methanogenesis suppression, supporting an inhibition-induced shift toward WLP [84, 85]. More 385 
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recent meta-omics studies indicate the presence of acetogenic lineages not only within Lachnospiraceae 386 

but also within Ruminococcaceae, with enrichment of WLP marker genes and acetate formation when 387 

methanogenic pressure is reduced [86, 87]. In the present study, the detection of Ruminococcaceae MAGs 388 

including fhs and cooS as WLP markers suggests potential facultative switching to an H2-sink role, even 389 

though these taxa are generally recognized as primary fermenters that produce H2 (Fig. 5). Unlike DNRA, 390 

WLP does not depend on an external electron acceptors, but under localized H2 accumulation or 391 

methanogenesis inhibition, it can operate as a competing electron sink and reroute H2 flow in ways that 392 

contribute to methane mitigation  [88].  393 

 Our findings confirm that the comparative genome-resolved approach is a powerful tool for 394 

identifying a targeted strategy to mitigate ruminant methane production. Integrating phylogenetic and 395 

pangenome information allows the approach to focus on a practical set of organisms and modules for 396 

experimental validation. The WLP, identified as a novel candidate, provides a concrete establishment for 397 

targeted assays and follow-up experiments. These findings enhance our genome-resolved understanding 398 

of methanogens and reveal how their metabolic pathways vary in response to ecological niche 399 

differentiation. However, functional annotation of archaeal genomes remains incomplete because there 400 

are still uncharacterized proteins compared to bacteria, which limits pathway-level inference and 401 

experimental validation due to the limited cultivability of methanogens. Coordinated multiomics 402 

workflows, integrating expanded archaeal genome references with culturomics, metatranscriptomics, and 403 

metabolomics, will be essential to confirm whether the predicted roles are expressed under actual rumen 404 

conditions. Systematic curation of archaeal functional databases and targeted validation of key modules 405 

highlighted by pangenome analyses may enhance annotation precision and strengthen the mechanistic 406 

relation between methanogen genomics and methane-mitigation strategies, thereby supporting the 407 

development of more effective and sustainable interventions in livestock production. 408 

409 
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Summary and Conclusion 410 

 411 

 In this study, we integrated broad phylogenetic reconstruction with pangenome-resolved analyses to 412 

interrogate the diversity and functional attributes of methanogens across diverse ecosystems. By 413 

constructing both 16S rRNA- and mcrA-based phylogenies and coupling them with pangenome 414 

comparisons, we assessed habitat-specific clustering and identified gene-level signatures associated with 415 

environmental adaptation. Using rumen shotgun sequencing metagenomes, we determined putative 416 

methanogenic producers, hydrogen competitors, and methanotrophs within the methane network and 417 

prioritized candidate taxa for in vitro methane mitigation strategies. In contrast, rumen methanogens are 418 

enriched for genes linked to cell envelope biogenesis, consistent with sustained physical interactions in 419 

the rumen. Furthermore, the observed depletion of acetyl-CoA pathway genes in rumen methanogens 420 

suggests limited acetoclastic activity and raises the potential for hydrogen redirection via the WLP in non-421 

archaeal partners. These findings support a functional marker strategy that integrates 16S rRNA with 422 

pathway-specific genes and a pangenome framework to enhance ecological interpretations of 423 

methanogens and to prioritize potential targets for methane mitigation in ruminants. 424 

425 
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FIGURE LEGENDS 

 

Fig. 1. Comparative pangenomic workflow for methanogens across diverse ecosystems. (A) Pipeline 

for reference methanogen genomes. Assembled genomes were annotated with Prokka, translated 

proteomes were functionally annotated with eggNOG-mapper, and orthogroups were inferred 

with OrthoFinder to yield gene clusters with consolidated annotations. (B) Pipeline for analyzing 

rumen shotgun sequencing metagenomes. Long-read assemblies were generated with metaMDBG, 

reads were mapped with minimap2, bins were reconstructed with SemiBin2, quality was screened 

with CheckM2 and GUNC, nonredundant representatives were obtained with dRep, taxonomy 

was assigned with GTDB-Tk, and proteins were annotated with eggNOG-mapper to enable 

downstream functional clustering. Both pipelines produce orthogroups with consolidated 

functional labels that feed into prevalence analysis and pathway-level summaries. 

 

Fig. 2. Phylogenetic relationships of methanogens from diverse ecosystems using 16S rRNA and 

mcrA gene sequences. (A) Phylogenetic tree constructed from 16S rRNA gene sequences 

extracted from 71 methanogen genomes. Source environments are color-coded as follows: 

seawater (cyan), freshwater (pink-violet), sewage (orange), rumen (red), human gut (gray), 

ground (brown), and cockroach (yellow). (B) Phylogenetic tree based on mcrA gene sequences 

from the same 71 genomes. Red boxes highlight clades showing concordance between the 16S 

rRNA and mcrA phylogenies from rumen-derived methanogen genomes. Trees were inferred 

under a maximum-likelihood framework and include N = 71 genomes in both panels. Both trees 

are midpoint-rooted; the scale bar denotes expected substitutions per site. Branch-support values 

were computed and are shown at major nodes (see Methods for model settings; if not displayed, 

they were omitted for clarity). Tip labels were truncated to ensure legibility at print size; full 

strain names are provided in Supplementary Table S1. 
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Fig. 3. Comparative pangenome analysis of methanogens across diverse ecosystems. (A) 

Orthogroups were classified by prevalence across all genomes: ≥99% (core), ≥95% and <99% 

(soft-core), and ≥15% and <95% (shell). Core, soft-core, and shell genes are represented in dark, 

medium, and light green, respectively. Source environments are color-coded as follows: seawater 

(cyan), freshwater (pink-violet), sewage (orange), rumen (red), human gut (gray), ground (brown), 

and cockroach (yellow). The “Pressure” scale denotes the per-orthogroup presence ratio across 

strains (0 - 1). (B) COG functional category distributions for methanogen pangenome partitions. 

Bar plots show the percentage of orthogroups assigned to each COG functional category, based 

on eggNOG-mapper annotations mapped onto OrthoFinder-derived orthogroup. X-axis: COG 

category; y-axis: percentage of orthogroups. Correct “COG DISTRIBUTION” in all panel titles. 

 

Fig. 4. Identification of methanogenesis-associated genes in methanogens from diverse ecosystems. 

Methanogenesis pathway map overlaid with KEGG Orthology (KO)-level, environment-specific 

gene retention values. Each KO box corresponds to a methanogenesis-related complex within 

KEGG pathway ko00680. Gene retention is defined as the proportion of genomes within each 

environment that encode the KO, ranging from 0 (absent) to 1 (present in all genomes). Color 

intensity reflects the per-environment gene retention ratio (see right-side gradient scale). Source 

environments are color-coded as follows: seawater (cyan), freshwater (pink-violet), sewage 

(orange), rumen (red), human gut (gray), ground (brown), and cockroach (yellow). Between 

environment differences were tested with two-sided Fisher’s exact tests and adjusted by the 

Benjamini–Hochberg procedure; unless stated otherwise, significance is reported at q < 0.05. 

Significant between-environment differences included K00192 rumen OR = 0.10, K00193 rumen 

OR = 0.08, K00194 rumen OR = 0.06, K22480 rumen OR = 11.375, K00918 seawater OR = 8, 

K01985 seawater OR = 0.06. No human gut-specific retention was observed for K00200, K00201, 

K00202, K00203, K00205, K00319, K00320, K00441, K00577, K00578, K00579, K00580, 

K00581, K00584, K00672, K01499, K06914, K07072, K07144, K09733, K11212, K11780, 
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K11781, K14941, K16792, K16793, K18933. 

 

Fig. 5. Functional classification of methanogenesis-associated roles in rumen MAGs. Metagenome-

assembled genomes (MAGs) derived from rumen shotgun datasets were functionally categorized 

based on the presence of methanogenesis-related genes. Substrate supply genes included: 

hydrogen production (hydA/E/F/G), formate production (pflA/pflB), and acetate production 

(pta/ackA). Methanogens were marked by the presence of mcrA/B/G (methyl-coenzyme M 

reductase) and mtrA/B/E (coenzyme M methyltransferase). Competing pathways included: 

Wood–Ljungdahl pathway (cooS/fhs/metF) and nitrate reduction to ammonium (nrfA/H). 

Methanotrophs were identified via pmoA (particulate methane monooxygenase). Black tiles 

indicate gene presence; blank tiles denote absence. Rows are grouped by functional modules: 

substrate supply (teal), methanogenesis (orange), competitive sinks (red), and methanotrophy 

(light salmon). The role of MAGs are color-coded in the top bar: producers (blue), methanogens 

(red), competitors (orange), and methanotrophs (purple). 
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