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Abstract 11 

Adipogenesis, the differentiation of fibroblast-like precursor cells into mature adipocytes, is a complex 12 
process governed by transcriptional networks and nutrient signaling. Among micronutrients, vitamin A and 13 
its active metabolites, all-trans retinoic acid (atRA), have emerged as potent regulators of adipocyte 14 
development, linking nutritional status to metabolic and physiological outcomes. atRA is generated from 15 
retinol through sequential oxidation by retinol and aldehyde dehydrogenases and exerts transcriptional 16 
control primarily via retinoic acid receptors (RARs) and retinoid X receptors (RXRs). It functions in 17 
dynamic crosstalk with Wnt/b-catenin and other signaling pathways to influence the expression of key 18 
adipogenic transcription factors, including PPARγ and C/EBPα. In vitro evidence from 3T3-L1 and other 19 
mammalian cell models demonstrates that low concentrations of atRA (0.01 to 100 nM) promote adipogenic 20 
commitment and lipid accumulation, whereas higher concentrations (over 1 µM) inhibit differentiation and 21 
stimulate apoptosis through mitochondrial pathways. Comparative in vitro studies across livestock species 22 
reveal that atRA exerts species-specific effects which suppresses adipogenesis in porcine and bovine cells, 23 
while promoting PPARγ-mediated transdifferentiation of avian myoblasts into adipocytes. In vivo, atRA 24 
modulates adipose tissue development in a developmental stage-dependent manner, enhancing 25 
intramuscular fat deposition during fetal and neonatal stages but suppressing white adipose tissue expansion 26 
in adults. Collectively, these finding highlight atRA as a critical integrator of micronutrient signaling, gene 27 
regulation, and adipose tissue plasticity. Understanding the mechanisms of atRA-mediated adipogenesis 28 
provides key insights into the prevention of metabolic disorders and offers practical strategies in improve 29 
meat quality and feed efficiency in animal production system. 30 
 31 
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INTRODUCTION 34 

Adipogenesis, the biological process in which fibroblast-like precursor cells differentiate into fully 35 
developed adipocytes, is a tightly controlled process primarily by transcription factors such as peroxisome 36 
proliferator-activated receptor gamma (PPAR-γ) and the CCAAT/enhancer-binding protein (C/EBP) 37 
family members [1]. Beyond energy storage, adipocytes act as endocrine organs, regulating systemic 38 
metabolism and inflammatory responses. Changes in adipose tissue mass occur through hypertrophy [2] or 39 
hyperplasia [3], both closely linked with conditions such as obesity, cardiovascular diseases, and diabetes 40 
[4] Therefore, understanding adipogenesis is fundamental for elucidating metabolic disorders and 41 
therapeutic strategies. Its regulation is also crucial for livestock production, directly affecting meat quality, 42 
flavor, and feed efficiency [5,6]. Ultimately, clarifying adipogenesis mechanisms benefits both human 43 
health and advancements in animal agriculture. 44 

Vitamin A (also known as retinol) of which active form is all-trans retinoic acid (atRA) is an essential 45 
fat-soluble nutrient [7]. It plays essential roles in maintaining visual function [8], immune regulation [9], 46 
reproduction, and epithelial tissue homeostasis [10,11]. Vitamin A is acquired through dietary sources, 47 
either as preformed vitamin A from animal products or as provitamin A carotenoids derived from plant 48 
foods, which are converted into active forms within the body [12]. Maintaining an optimal balance of 49 
vitamin A is crucial; deficiency leads to severe health problems, such as night blindness [13,14], impaired 50 
immune function [11], and growth retardation [15,16], while hypervitaminosis A can result in toxicity, 51 
characterized by symptoms such as liver damage and teratogenicity [17,18]. In addition to its systemic 52 
effects, the regulation of adipocyte differentiation by vitamin A metabolism highlights its broad 53 
significance, impacting not only the prevention and management of metabolic diseases but also various 54 
aspects of animal agriculture. 55 

In this review, we discuss previously reported studies focusing on the functions of vitamin A in 56 
adipogenesis both in vitro and in vivo. In particular, we delve into the molecular mechanisms underlying 57 
regulatory effects of vitamin A on adipocyte differentiation, encompassing both its pro-adipogenic and anti-58 
adipogenic actions, and their implications for metabolic health and animal agriculture. 59 
 60 

BIOSYNTHESIS, METABOLISM, AND MECHANISM OF 61 

ACTION 62 

atRA Biosynthesis and Metabolic Pathways 63 
atRA is a major bioactive form of retinol. It serves as a critical signaling molecule involved in various 64 

cellular activities such as cell growth, lineage commitment [19], apoptosis [20], and metabolic regulation 65 
[21]. The biosynthesis of atRA is tightly regulated within cells through a two-step oxidative process (Fig. 66 
1a). In the first step, retinol is reversibly oxidized to retinaldehyde by retinol dehydrogenases (RDHs), is 67 
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considered the rate-limiting step in the pathway, and its efficiency is influenced by the availability of 68 
cofactors and binding proteins [22]. In the second, irreversible step, retinaldehyde is further oxidized to 69 
atRA by aldehyde dehydrogenases (ALDHs), particularly those expressed selectively depending on the type 70 
of tissue. This step represents a crucial regulatory point to produce active atRA biologically [22,23]. Unlike 71 
other retinoic acid derivatives, atRA binds with high affinity to retinoic acid receptors (RARs), through 72 
which it directly regulates the transcription of specific target genes via retinoic acid response elements 73 
(RAREs) [19]. 74 

In the storage pathway, lecithin: retinol acyltransferase (LRAT) facilitates the conversion of retinol to 75 
retinyl esters through esterification, which are subsequently stored in lipid droplets [24]. This process 76 
indirectly limits the availability of retinol for atRA synthesis. The activity of LRAT itself is tightly regulated, 77 
being rapidly and markedly upregulated by atRA [25]. When the intracellular concentration of atRA 78 
increases excessively, cytochrome P450 family 26 enzymes (CYP26) are upregulated and become actively 79 
involved in the breakdown of atRA into hydroxylated inactive metabolites [26,27]. This serves as a key 80 
negative feedback mechanism to regulate RA signaling tightly (Fig. 1b). Dysregulation of this feedback 81 
may lead to retinoid toxicity or impaired differentiation processes, especially in tissues with high retinoid 82 
turnover. 83 

The regulation of the retinoid metabolic network is further refined by cellular retinol-binding proteins 84 
(CRBPs) and cellular retinoic acid-binding proteins (CRABPs), which play essential roles in transporting 85 
retinoids within the cell, facilitating their storage, transport, and targeted delivery to specific enzymes or 86 
nuclear receptors. CRBPs primarily bind retinol, directing it either toward storage via esterification or 87 
toward oxidation for atRA biosynthesis, depending on the cell's physiological needs. CRABPs, which are 88 
structurally and immunologically distinct from CRBPs, bind retinoic acid [28] and determine its fate by 89 
mediating its interaction with nuclear receptors like RARs [29] or targeting it for catabolism via CYP26 90 
enzymes [30–32]. The distribution and levels of CRBPs and CRABPs vary across tissues and are subject 91 
to independent regulation. The precise balance of retinoids, maintained by these binding proteins, is crucial. 92 
If these binding proteins do not work properly, the balance of retinoids in the cell can be disturbed, which 93 
may affect how cells grow, develop, and respond to the immune system. Together, these pathways and 94 
binding proteins help control atRA levels in specific tissues [33,34] and keep retinoid balance stable, 95 
making sure that RA signals are precisely regulated in different biological processes and stages of 96 
development. 97 

Recent multi-omics studies have revealed complex molecular signaling networks through which atRA 98 
regulates adipocyte differentiation in livestock species. An integrated analysis of transcriptome and 99 
metabolome in bovine preadipocytes identified 5,257 differentially expressed genes (DEGs) and 328 100 
differentially expressed metabolites (DEMs) during adipogenic differentiation, highlighting key lipid 101 
metabolic regulators such as FADS2, ACOT7, and ACOT2, while revealing that distinct FADS2 isoforms 102 
differentially influence unsaturated fatty acid biosynthesis and adipogenic regulation [35]. Meanwhile, in 103 
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bovine skeletal muscle-derived cells, atRA treatment exhibited a development-phase specific effect on 104 
adipogenic and myogenic gene expression, such as up-regulation of ZFP423 and PPAR γ in the proliferative 105 
phase, but suppression of adipogenic markers during differentiation [36]. These results illustrate that 106 
retinoid signaling in livestock is not simply a linear regulation of RAR/RXR to target gene but rather 107 
integrates with broader lipid and energy metabolic pathways, and its impact depends on the developmental 108 
stage and cellular context. Moreover, such omics-driven insights pave the way identifying novel biomarkers 109 
and species-specific retinoid-responsive modules that could optimize intramuscular fat deposition or 110 
adipose tissue composition in production animals. 111 
 112 
Nuclear Receptors and Signaling Pathways 113 

atRA functions as an important signaling molecule involved in diverse cellular activities. Within the cell, 114 
atRA binds with high affinity to RARα, β, and γ, as well as retinoid X receptors (RXR) α, β, and γ. These 115 
nuclear receptors form heterodimers that directly bind to RAREs, enabling precise regulation of gene 116 
expression. These complexes orchestrate diverse transcriptional programs tailored to the physiological 117 
functions of specific tissues, including liver [37,38], adipose tissue [39], skin [40], and immune cells [41]. 118 
Moreover, their transcriptional activities are finely tuned through dynamic interactions with a variety of 119 
coactivators, such as the NCoA family (SRC-1, TIF2/GRIP1, AIB1) and histone acetyltransferases like 120 
CBP/p300, which promote chromatin remodeling and gene activation [42]. Conversely, in the absence of 121 
ligand binding, RAR/RXR complexes recruit corepressors like NCoR and SMRT to induce chromatin 122 
condensation and repress target gene expression [43]. These regulatory mechanisms enable context-123 
dependent and precise control of gene expression by retinoic acid signaling across different tissues and cell 124 
types. 125 

At higher concentrations (≥1 μM), atRA activates the Wnt/β-catenin signaling pathway, which is closely 126 
associated with the inhibition of adipocyte differentiation [44]. Binding of Wnt ligands to their receptors 127 
inhibits phosphorylation of β-catenin by CK1 and GSK3β, leading to its stabilization and nuclear 128 
accumulation of β-catenin [45–47]. In the nucleus, β-catenin interacts with LEF/TCF transcription factors 129 
to induce the expression of Wnt target genes, such as Axin2 [48]. In this context, atRA, acting through 130 
RARγ, enhances Axin2 expression [49]. Axin2 suppresses the transcription of key adipogenic regulators, 131 
including C/EBPα and PPARγ, thereby reinforcing the anti-adipogenic effects [50]. Additionally, atRA 132 
inhibits the expression of PPARγ and C/EBPα, delaying or blocking adipocyte differentiation [51,52]. This 133 
functional crosstalk between atRA and Wnt signaling represents a critical regulatory mechanism in 134 
adipocyte differentiation (Fig. 1a). 135 

The functional interaction between atRA and Wnt signaling is mediated by the RAR/β-catenin/Axin2 136 
axis, which plays a key role in cell fate determination. Wnt signaling is known to inhibit adipogenesis [53], 137 
while atRA can antagonize or modulate this inhibitory effect. This regulatory interplay is closely connected 138 
to the physiological development of adipocytes [54,55]. atRA also directly influences adipocyte fate by 139 
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regulating the expression of crucial adipogenic transcription factors such as PPARγ and C/EBPα through 140 
the nuclear RAR/RXR heterodimer. The transcriptional effects of atRA depend on its concentration and 141 
timing of exposure [44,56,57], which affects adipocyte maturation and function. Therefore, understanding 142 
the crosstalk between atRA and Wnt signaling is fundamental to revealing the complex mechanisms 143 
governing adipocyte differentiation. 144 

 145 

 146 
Fig. 1 An Illustrative Overview of atRA Biosynthesis and Metabolic Regulation. A. atRA Action and 147 
Crosstalk with Wnt Signaling. Retinol is enzymatically converted to atRA, which binds to RARs and 148 
regulates gene transcription by interacting with DNA response elements. atRA inhibits the expression of 149 
key adipogenic factors such as C/EBPα and PPARγ, while activating Wnt signaling pathways, thereby 150 
playing a crucial role in controlling cell differentiation. B. atRA Biosynthesis and Metabolism. Retinol can 151 
be stored as retinyl esters (RE) in lipid droplets (LD) via the enzyme LRAT. A crucial negative feedback 152 
loop is shown, where excessive atRA is inactivated by CYP26 enzymes to maintain retinoid homeostasis. 153 
 154 

IN VITRO STUDIES OF atRA 155 

Effects on Cell Proliferation, Differentiation, and Apoptosis 156 
Most in vitro studies investigating atRA’s role in adipogenesis have been conducted using mammalian 157 

models [58–61], particularly a mouse-derived preadipocyte cell line, 3T3-L1 cells [44,62–64]. These 158 
studies have revealed that atRA exerts opposing effects on adipocyte differentiation depending on the 159 
treatment concentration and timing, promoting differentiation within certain concentration ranges while 160 
inhibiting it at others [44,64] (Fig. 2). In 3T3-L1 adipocytes, atRA exerts cell type-specific effects through 161 
a sequential process ranging from the uptake of extracellular retinol to the activation of nuclear receptors. 162 

A B 
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High concentrations of atRA (≥1 μM) suppress the expression of the key adipogenic transcription factors 163 
PPARγ and C/EBPα [44] and activate the Wnt/β-catenin signaling pathway [65,66], thereby inhibiting the 164 
differentiation of preadipocytes. High concentrations of atRA inhibit adipocyte differentiation during the 165 
early stages by selectively activating RARγ [67,68]. Activation of RARγ promotes the maintenance of a 166 
stem-like state [69,70]. Low concentrations of atRA (0.01-100 nM) promote lipid accumulation and 167 
increase the expression of mature adipocyte marker genes such as FABP4 [44], adiponectin [71], and LPL 168 
[72] (Fig. 2a). 169 
The process of adipocyte differentiation can be broadly divided into three stages: the early transcriptional 170 

phase, the mitotic clonal expansion (MCE) phase, and the late terminal differentiation phase [73]. Among 171 
these, the MCE phase is characterized by cells re-entering the cell cycle and proliferating after the activation 172 
of early transcription factors [73], thereby increasing cell number to establish a sufficient cellular pool 173 
necessary for subsequent adipocyte differentiation. Multiple studies have demonstrated that MCE is an 174 
essential prerequisite for adipogenesis, emphasizing that precise regulation of cell cycle entry and exit 175 
critically influences differentiation efficiency [74–76]. Notably, atRA has been reported to exert a 176 
significant regulatory effect on the MCE phase in the 3T3-L1 cell model [44]. Treatment with a low 177 
concentration of atRA (1 nM) resulted in the highest proliferation rate and simultaneous G0/G1 cell cycle 178 
arrest observed at day 2, suggesting a dual mechanism by which atRA coordinates cell division and growth 179 
inhibition to secure an adequate cell number during MCE and activate the differentiation program. 180 
Furthermore, atRA concentrations ranging from 0.01 to 100 nM progressively increased the expression of 181 
S/G2 phase-related proteins such as Cdk1 and Cdk2, which are likely to promote DNA synthesis and entry 182 
into cell division, thereby maximizing proliferative capacity in the early MCE stage. Conversely, high 183 
concentrations of atRA (1 to 10 µM) led to dominant expression of G0/G1 phase marker proteins, including 184 
Cdk4, a key regulator of the G1/S transition through its interaction with Cyclin D, when overexpressed, can 185 
cause prolonged retention of cells in the G1 phase before S phase entry. Combined with changes in Cdk1 186 
expression, this results in cells being arrested in G1 rather than progressing through S/G2/M phases, 187 
ultimately inhibiting DNA synthesis and cell division and delaying or blocking the adipogenic 188 
differentiation program (Fig. 2b). 189 

Although direct reports on atRA-induced apoptosis in mature adipocytes are limited [77], studies on 190 
adipose-derived stem cells (ADSCs) have shown that atRA treatment notably increases the expression of 191 
pro-apoptotic proteins, such as BAX and BAK, and promotes caspase-3 expression. It also alters the 192 
expression of anti-apoptotic proteins, such as BCL-2, and increases mitochondrial membrane permeability, 193 
indicating apoptosis via the intrinsic mitochondrial pathway [78]. This trend is like mechanisms reported 194 
in acute promyelocytic leukemia (APL) cells [78–80] and other cancer cell models [20,81,82], where atRA 195 
induces upregulation of BAX, suppression of BCL-2 expression, triggers activation of the caspase signaling 196 
cascade, and facilitates the release of cytochrome c. These findings suggest that atRA triggers apoptosis 197 
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primarily through mitochondrial functional alterations and regulation of BCL-2 family proteins. These 198 
findings suggest that atRA influences adipose tissue by regulating adipocyte numbers and remodeling 199 
metabolism, yet the specific stages of adipogenesis and the signaling pathways involved remain to be fully 200 
understood. 201 

 202 

   203 
Fig. 2. Dual Regulation of Adipocyte Differentiation by atRA Concentration. A. At low atRA 204 
concentrations (approximately 0.01-100 nM), atRA promotes adipocyte differentiation by enhancing lipid 205 
accumulation and increasing the expression of mature adipocyte marker genes. Conversely, at high atRA 206 
concentrations (approximately >100 nM), atRA inhibits adipocyte differentiation by suppressing the 207 
expression of key transcription factors PPARγ and C/EBPα, and by inhibiting the Wnt/β-catenin signaling 208 
pathway. B. atRA modulates gene expression and cell cycle progression during adipocyte differentiation. 209 
During the Early transcriptional phase, low atRA (blue) upregulates C/EBP family transcription factors, 210 
while high atRA (red) suppresses. In the MCE phase, low atRA increases Cdk1 and Cdk2 expression, 211 
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facilitating G2/M phase entry. Conversely, high atRA reduces Cdk4 and Cdk1 levels, resulting in a 212 
pronounced G1 arrest. 213 
 214 
Disease Modeling in Culture Systems 215 

Using atRA in cell culture systems allows for precise explanation of molecular mechanisms related to 216 
metabolic diseases. In the 3T3-L1 adipocyte culture model, atRA exhibits dual effects depending on 217 
treatment concentration, timing, and the stage of cell differentiation. Low-dose or late-stage treatment 218 
promotes adipocyte differentiation by increasing the expression of mature adipocyte markers such as 219 
FABP4 and adiponectin, whereas high-dose treatment strongly inhibits lipid accumulation and 220 
differentiation by suppressing the expression of PPARγ and C/EBPα [44]. In the hepatocyte cell model 221 
(HepG2 cells), atRA suppresses the expression of SREBP-1c and FASN genes involved in de novo 222 
lipogenesis [83,84], increases the transcription factor C/EBPα leading to inhibition of cell proliferation, 223 
and reduces PLAU (involved in expansion and remodeling of adipose tissue) expression, thereby blocking 224 
pro-growth signals and decreasing hepatic lipid accumulation [85]. These results highlight the promise of 225 
atRA as a candidate treatment for non-alcoholic fatty liver disease (NAFLD). Additionally, in 226 
cardiovascular disease models, atRA inhibits excessive proliferation of vascular smooth muscle cells 227 
(VSMCs) and acts through activation of the AMPK signaling pathway to suppress mTOR signaling [86], 228 
demonstrating its influence on atherosclerosis and related cardiovascular conditions. atRA promotes 229 
myofiber formation and mitochondrial biogenesis in mouse myoblasts [87], and enhances insulin synthesis 230 
and secretion in the pancreatic beta-cell model, contributing to glucose homeostasis [88]. Furthermore, in 231 
inflammation-related disease models, atRA plays a key role in regulating macrophage M1/M2 polarization 232 
[89]. Studies in murine macrophage cells have shown that atRA suppresses the NF-κB signaling pathway, 233 
leading to decreased expression of pro-inflammatory cytokines IL-6 and TNF-α, thereby alleviating 234 
metabolic inflammation [90]. Collectively, these results indicate that atRA exerts specific and context-235 
dependent regulatory effects across diverse cell types and pathological environments, highlighting its value 236 
as a useful in vitro model for studying metabolic and inflammatory diseases as well as for potential 237 
therapeutic development. 238 

To date, researches on disease modeling related to atRA have primarily focused on human and rodent 239 
cell lines; however, expanding studies to livestock species such as pigs, cattle, sheep, and chickens is 240 
critically important. Livestock play a vital role as food sources and provide more realistic models for 241 
studying metabolic and inflammatory diseases due to their distinct physiological characteristics and 242 
environmental exposures compared to humans. For example, atRA strongly inhibits differentiation of 243 
porcine preadipocytes by reducing the mRNA expression of PPARγ, RXRα, SREBP-1c, and FABP4 244 
through activation of retinoic acid receptors [61]. Additionally, atRA induces muscle fiber type switching 245 
in cultured bovine satellite cells (BSCs), increasing expression of oxidative metabolism-related MHC I and 246 
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decreasing MHC IIX via the PPARδ pathway [91]. In ovine myoblasts, atRA suppresses cell proliferation 247 
while increasing expression of myogenin and myosin heavy chain proteins; this process involves elevated 248 
H3K4me3 and reduced H3K27me3, modulating transcriptional activation, and further activates GLUT4 249 
expression and mTOR signaling pathways to influence muscle metabolism and growth [92]. 250 

Studies on primary cultured preadipocytes from Holstein cattle showed that atRA inhibits proliferation 251 
and induces apoptosis in pre-confluent preadipocytes. In post-confluent preadipocytes, atRA suppressed 252 
differentiation by reducing PPARγ and C/EBPα protein expression. In mature adipocytes, atRA (conc.: 0.2, 253 
2, and 20 nM) stimulated basal lipolysis but did not affect epinephrine-stimulated lipolysis[59]. These 254 
results suggest that atRA regulates lipid accumulation and breakdown in bovine adipocytes, potentially 255 
playing a role in modulating lipid metabolism and preventing metabolic diseases in over-conditioned dry 256 
cows [59]. In avian myoblasts, atRA treatment increased intracellular lipid accumulation and adipogenic 257 
gene expression, notably by directly inducing PPARγ expression[93]. The extent of transdifferentiation was 258 
dependent on PPARγ activation, and treatment with PPARγ agonists alone was insufficient to trigger 259 
adipocyte transdifferentiation in the absence of atRA[93]. These findings indicate that atRA-driven PPARγ 260 
expression is critical for the conversion of myoblasts into adipocytes and highlight atRA as a potential novel 261 
regulator to improve marbling in poultry production [93].Collectively, these findings suggest that atRA 262 
exerts species-specific yet consist of regulatory functions on lipid metabolism and muscle development in 263 
livestock cells. For instance, atRA-mediated induction of PPARγ is essential for transdifferentiation of 264 
myoblast into adipocyte in avian systems [93], while in porcine and bovine cells, atRA predominantly 265 
suppresses adipogenesis and modulates muscle fiber characteristics through nuclear receptor pathways [91]. 266 
Such comparative evidence highlights atRA as a central molecular determinant orchestrating the balance 267 
between myogenesis and adipogenesis across livestock species, linking its relevance not only to human 268 
metabolic disorders but also to meat quality traits in animal production. 269 
Such livestock-based in vitro models are invaluable for specifically understanding the molecular 270 

mechanisms regulated by atRA in agriculturally important species. Research on atRA-related signaling and 271 
gene expression regulation in livestock cells contributes not only to improving animal health, productivity, 272 
meat quality, and resistance to metabolic diseases but also enhances comparative biological insights into 273 
atRA biology across mammals. Furthermore, these livestock models hold promise as platforms applicable 274 
to both human and animal studies for exploring nutritional or pharmacological interventions aimed at 275 
preventing or treating metabolic disorders. 276 
 277 

THE EFFECT OF RETINOIC ACID ON ADIPOSE TISSUE OF 278 

ANIMAL 279 

To extend cellular observations to physiological contexts, subsequent studies have investigated the 280 
effects of retinoic acid in animal models. In rodent studies, daily subcutaneous injection of atRA in adult 281 
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mice reduces adipocyte size and decreases white adipose tissue (WAT) mass in epididymal, inguinal, and 282 
retroperitoneal fat [94]. This morphological change is accompanied by upregulation of central regulators 283 
of fatty acid oxidation, including PGC-1α, PPARα, and CPT1, suggesting an enhanced capacity for lipid 284 
catabolism. Similarly, atRA treatment to adult obese mice promotes weight loss, reduces WAT mass, and 285 
alleviates hepatic lipid accumulation [95]. Moreover, atRA administration partially reverses the adiposity 286 
of mice induced by a vitamin A-deficient diet and downregulates PPARγ2 expression level in WAT, a key 287 
marker of lipogenesis and adipogenesis [96]. Collectively, these findings indicate that retinoic acid 288 
functions as an inhibitor of adipogenesis in mature mice. 289 

In livestock, manipulating vitamin A status – through dietary supplementation, restriction, or 290 
intramuscular injection of retinoic acid – has emerged as a strategy to modulate intramuscular fat (marbling), 291 
a critical determinant of beef flavor and tenderness. In pregnant beef cattle, vitamin A supplementation 292 
from day 180 of gestation until parturition increases intramuscular fat deposition in the offspring throughout 293 
postnatal life, with elevated expression of the preadipocyte marker DLK1, and the adipogenic marker 294 
PPARγ in neonatal skeletal muscle [97]. Likewise, intramuscular injection of vitamin A at birth and at 1 295 
month of age in Black Angus steers enhances PDGFRα⁺ adipose progenitors and improves marbling scores 296 
[98,99]. By contrast, in later life stages, vitamin A restriction is required to enhance marbling: mature steers 297 
fed low- or no-vitamin A diets exhibit greater intramuscular fat deposition largely through adipocyte 298 
hyperplasia [100–103]. Comparable effects have been reported in pigs and sheep. Lambs receiving vitamin 299 
A supplementation or intramuscular injections during early postnatal development show increased numbers 300 
of preadipocytes and intramuscular adipocytes, alongside upregulation of adipogenic markers such as 301 
CEBPα and CEBPβ in the longissimus dorsi muscle [104,105]. In female pigs, restricting vitamin A intake 302 
during the grower and finisher phase enhances intramuscular fat levels in the longissimus muscle [106]. 303 

In avian species, vitamin A has long been implicated in adipogenesis, the direct effects of embryonic 304 
atRA exposure on adipose development have only recently been investigated. In quail embryos, in ovo 305 
administration of atRA at embryonic day (E) 7 led to increased inguinal fat mass and enlarged adipocytes 306 
by E14, accompanied by upregulation of pro-adipogenic genes (PPARγ, Fabp4) and downregulation of the 307 
preadipocyte marker Dlk1 [56]. Similarly, in broiler chickens, in ovo injection of 500 nM atRA at E10 308 
enhanced adipose tissue accumulation and adipocyte hypertrophy during embryogenesis, although these 309 
effects did not persist after hatching [107]. Beyond its roles in proliferation and apoptosis, atRA exerts 310 
distinct metabolic and transcriptional effects on white, beige, and brown adipocytes across both rodent and 311 
livestock species. In white adipocytes, high concentrations of atRA (≥1 μM) generally suppress 312 
differentiation by downregulating PPARγ and C/EBPα, thereby maintaining cells in a preadipocyte-like 313 
state [94]. Conversely, brown and beige adipocytes exhibit enhanced thermogenic activity in response to 314 
atRA exposure, characterized by the upregulation of UCP1, CIDEA and mitochondrial biogenesis genes 315 
[108]. Recent findings in bovine [109] and porcine [110] adipose tissues demonstrate that dietary vitamin 316 
A restriction or pharmacological modulation of retinoid signaling alters the mRNA expression levels of 317 
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UCP1, PGC-1α, and ZFP423, suggesting that RA metabolism contributes to the recruitment of beige-like 318 
adipocytes even in livestock species [55,109]. Furthermore, chronic atRA treatment promotes oxidative 319 
metabolism, as evidenced by increased TCA cycle intermediates and glucose oxidation, coupled with the 320 
downregulation of glycolytic enzymes such as PFKP and G6PDH. This metabolic shift implies enhanced 321 
mitochondrial activation and fatty acid oxidation, particularly in metabolically active depots [55,111]. 322 

Retinoid signaling via RARα and its metabolic enzyme RDH1 is essential for maintaining BAT atRA 323 
levels, mitochondrial integrity, and systemic glucose homeostasis [112]. Disruption of this regulatory axis, 324 
through RARα inhibition or RDH1 deficiency[112,113], reduces UCP1 expression[108]. However, the 325 
mechanistic basis linking atRA to adipogenic fate determination (white vs. beige vs. brown) remains poorly 326 
defined in livestock. Species-specific differences in RAR/RXR sensitivity, local retinoid metabolism, and 327 
adipose depot–dependent signaling likely underlie the divergent adipogenic and metabolic outcomes 328 
observed among ruminants, pigs, and rodents. Thus, comparative in vitro and in vivo analyses are required 329 
to elucidate how atRA coordinates cellular differentiation, mitochondrial remodeling, and lipid metabolism 330 
across species knowledge that could ultimately inform nutritional or pharmacological strategies to modulate 331 
adipose plasticity in livestock. 332 
In summary, these findings collectively indicate that the influence of retinoic acid on adipose development 333 

is both stage and species dependent. atRA promotes adipogenesis during early developmental stages 334 
particularly in embryos and neonates while in later life it generally suppresses adipogenesis. In avian 335 
embryos, however, their adipogenic effects appear largely restricted to the prenatal period. 336 
 337 
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Table 1. Summary of the effect of retinoic acid on adipose tissue of mammals. 338 

Species Age Administration VitA dose or 
concentration Main effects Overall adipogenic 

outcome Reference 

NMRI male mice 
12-week-
old 

atRA s.c., once daily 
for 4 days 10, 50, 100 mg/kg 

iWAT, eWAT, rWAT mass↓ 
WAT UCP1/2, PGC-1α, PPARα 
and CPT1 mRNA↑ 

Inhibit [94] 

C57BL/6Ntac 
mice 

>16-week-
old 

subcutaneous 
implantation of RA 
pellet, 5 weeks 

NA  
eWAT and aWAT mass↓ 
Adipocyte size↓ 
Liver lipid accumulation↓ 

Inhibit [95] 

NMRI male mice 
3-week-
old 

VitA-deficient diet 
for 10 weeks followed 
by atRA s.c. (once 
daily for 4 days) 

VitA-deficient diet: 
<0.38 IU/kcal 
atRA s.c.: 100 mg/kg 

VitA-deficient diet: iWAT and 
eWAT mass↑, adiposity index↑, 
eWAT PPARγ2, ADD1/SREBP1c 
and C/EBPα mRNA↑ 
atRA sc injection: body weight↓, 
eWAT mass↓, iWAT and eWAT 
PPARγ2 mRNA↓, eWAT 
ADD1/SREBP1c and C/EBPα 
mRNA↓ 

VitA-deficient diet: 
Promote 
atRA sc injection: 
Inhibit 

[96] 

Pregnant Angus-
Simmental cross 
bred multiparous 
cows 

Day 180 of 
gestation 

Basal diet enriched 
with pure VitA until 
parturition 

12200 IU VitA/kg in 
feed 

Offspring calves: IMF%↑, skeletal 
muscle DLK1, PPARγ↑ 

Promote [97] 

Angus steer 
calves 

Newborn VitA i.m. at birth and 
1-month-old 

150000 IU 

IMF%↑, marbling score↑, 
subcutaneous adipocyte 
diameter↓, Biceps femoris muscle 
PDGFRα, PPARγ, and ZFP423 
mRNA↑ 

Promote [99] 

Angus steer 
calves 

Newborn 
VitA i.m. at birth and 
1-month-old 

150000 or 300000 IU 
IMF%↑, marbling score↑, Biceps 
femoris muscle PPARγ and 
ZFP423 mRNA↑ 

Promote [114] 

Angus steers 12-month-
old 

Standard commercial 
feedlot ratios without 
VitA over 300 days 

NA IMF%↑ Promote [115] 
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Holstein steers NA 
VitA-restricted diet 
for 131 or 243 days 

~950 IU of VitA 
equivalents/kg of 
DM 

VitA-restricted diet for 243 days: 
IMF%↑ Promote [100] 

Angus-cross 
steers NA 

No VitA 
supplementation in 
high-moisture or dry 
corn for 145 days 

High-moisture corn: 
1300 IU/kg VitA 
Dry corn: 1100 
IU/kg VitA 

Marbling score↑ Promote [101] 

Angus steers 
12-month-
old 

Non VitA-
supplemented diet for 
10 months 

NA 
IMF%↑, marbling score↑, cell 
number per IMF fleck↑ Promote [103] 

Hu sheep lambs Newborn 
VitA or RA i.m. at 1, 
7, 14, and 21 days of 
age 

VitA i.m.: 7500 IU 
RA i.m.: 7500 IU 

VitA i.m.: intramuscular SVF 
cells formed adipocytes↑, 
adipocyte numbers of LD and ST 
muscle↑, LD C/EBPα and 
C/EBPβ mRNA↑ 

Promote [104] 

Rasa Aragonesa 
lambs 

Newborn 

VitA supplementation 
by capsule, twice a 
week until 58 days of 
age 

500000 IU 
IMF mass↑, the number of 
adipocytes in the perirenal depot↑ 

Promote [105] 

Crossbred (Large 
White × Landrace 
× Duroc) pigs 

NA 

Non VitA-
supplemented diet 
during grower (68-
124 days) and finisher 
(124-159 days) phase 

NA LD IMF%↑ Promote [106] 

s.c., subcutaneous injection; i.m., intramuscular injection; WAT, white adipose tissue; eWAT, epididymal WAT; iWAT, inguinal WAT; rWAT, retroperitoneal WAT; 339 
aWAT, abdominal WAT; RA, retinoic acid; atRA, all-trans retinoic acid; VitA, vitamin A; IMF, intramuscular fat; LD, Longissimus dorsi; ST, semitendinosus; SVF, 340 
stromal vascular fraction; NA, not available. 341 
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CONCLUSION 343 

Significant progress has been made in understanding the effects of atRA on adipogenesis, yet several 344 
critical knowledge gaps remain. Current knowledge is largely derived from murine cell lines, particularly 345 
3T3-L1 preadipocytes, which cannot fully recapitulate the complexity of adipose biology across different 346 
species [44,63,116–119]. The different responses to atRA in rodents, ruminants, and poultry emphasize the 347 
importance of studying multiple species to identify which mechanisms are universal and which are specific 348 
to each species. Another major challenge lies in resolving the temporal and concentration-dependent effects 349 
of atRA. Evidence suggests that the stage of adipocyte differentiation and the local microenvironment 350 
strongly influence atRA signaling outcomes, yet systematic analyses across developmental stages and tissue 351 
contexts remain limited. 352 

Moreover, while atRA has been shown to interact with nuclear receptors (RAR/RXR) [120,121] and 353 
signaling cascades such as Wnt/β-catenin [122,123], MAPK [124], and PI3K/AKT [125], the context-354 
dependent hierarchy and cross-regulation of these pathways are poorly understood. Advances in single-cell 355 
multi-omics, spatial transcriptomics, and metabolomics are likely to provide powerful tools to address these 356 
questions. 357 

Understanding the regulatory role of atRA also holds important applied value. In livestock, targeted 358 
modulation of retinoid signaling can improve feed efficiency [6,56], meat quality [58], and metabolic 359 
regulation. In human medicine, selective manipulation of retinoid pathways may offer novel therapeutic 360 
strategies for obesity [21], diabetes [126], and nonalcoholic fatty liver disease [127]. Accordingly, the 361 
development of tissue-selective RAR/RXR agonists and antagonists, alongside nutritional interventions 362 
aimed at modulating endogenous retinoid metabolism, represents a promising frontier for future research.  363 

However, practical applications of vitamin A modulation in livestock must carefully balance efficacy 364 
with safety. Excessive or prolonged supplementation can lead to hepatic toxicity, impaired growth, or 365 
reproductive disorders, while insufficient levels may compromise immune and metabolic function. For 366 
instance, in broiler breeders, dietary supplementation exceeding 45,000–135,000 IU vitamin A/kg feed 367 
induced liver dysfunction could reduce fertility and alter immune responses [128]. Excessive vitamin A 368 
intake in cattle has been associated with decreased feed intake, hepatic dysfunction, and abnormal bone 369 
growth, particularly when intake levels greatly exceed recommended dietary requirement [129]. These 370 
findings highlight the narrow physiological window required for optimal vitamin A status in livestock. 371 
Therefore, precise dose optimization, adherence to regulatory limits, and long-term safety evaluations are 372 
essential for translating retinoid signaling research into sustainable livestock production strategies. 373 

Adipogenesis is a complex, tightly regulated process that integrates endocrine, nutritional, and molecular 374 
cues to maintain energy homeostasis and influence metabolic health. Among these regulatory factors, atRA 375 
emerges as a broadly acting and condition-dependent regulator. In vitro evidence suggests that low 376 
concentrations (approximately 0.01-100 nM) of atRA may facilitate early adipogenic commitment, whereas 377 
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higher concentrations (approximately ≥1 μM) generally suppress differentiation through nuclear receptor–378 
mediated transcriptional repression and activation of inhibitory signaling cascades [44]. atRA modulates 379 
fat accumulation in a stage- and timing-dependent manner in vivo, enhancing intramuscular fat and 380 
adipogenic marker expression (DLK1, PPARγ, PDGFRα) during fetal and early postnatal stages [98,114], 381 
while reducing white adipose tissue and inhibiting adipogenesis in adults [94]. In avian, in ovo atRA 382 
treatment increases adipocyte hypertrophy and pro-adipogenic gene expression, though these effects do not 383 
persist after hatching [56,107]. 384 

Collectively, these findings position atRA as a critical link between micronutrient status, gene regulation, 385 
and adipose tissue biology. However, the complexity of its effects—depending on dose, timing, species, 386 
and developmental context—underscores the need for further mechanistic and translational studies. A 387 
comprehensive understanding of atRA-mediated adipogenesis will not only deepen our insight into 388 
fundamental adipose biology but also provide novel opportunities for improving livestock production and 389 
developing targeted interventions for metabolic disorders. 390 
From an applied perspective, several strategies could advance the use of atRA in livestock production. 391 
Nutritional and developmental modulation involves optimizing dietary vitamin A or carotenoid intake and 392 
timing atRA or analog supplementation during key developmental stages to fine-tune fat deposition, 393 
enhance marbling, and improve feed efficiency. Selective RAR/RXR-targeted interventions use tissue-394 
specific agonists or regulators of retinoid metabolism to differentially modulate adipogenesis in muscle 395 
versus subcutaneous depots. Integrating these approaches with genomic and metabolomic monitoring 396 
could enable precision control of adiposity, productivity, and meat quality in livestock. 397 
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