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Abstract

Adipogenesis, the differentiation of fibroblast-like precursor cellsiinto mature adipocytes, is a complex
process governed by transcriptional networks and nutrient signaling. Among micronutrients, vitamin A and
its active metabolites, all-trans retinoic acid (atRA), have emerged as potent regulators of adipocyte
development, linking nutritional status to metabolic and physiological outcomes. atRA is generated from
retinol through sequential oxidation by retinol and aldehyde dehydrogenases and exerts transcriptional
control primarily via retinoic acid receptors (RARS) and retinoid X receptors (RXRs). It functions in
dynamic crosstalk with Wnt/b-catenin and other signaling pathways to influence the expression of key
adipogenic transcription factors, including PPARy and C/EBPa. In vitro evidence from 3T3-L1 and other
mammalian cell models demonstrates that low concentrations of atRA (0.01 to 100 nM) promote adipogenic
commitment and lipid accumulation, whereas higher concentrations (over 1 uM) inhibit differentiation and
stimulate apoptosis through mitochondrial pathways. Comparative in vitro studies across livestock species
reveal that atRA exerts species-specific effects which suppresses adipogenesis in porcine and bovine cells,
while promoting PPARy-mediated transdifferentiation of avian myoblasts into adipocytes. In vivo, atRA
modulates adipose tissue development in a developmental stage-dependent manner, enhancing
intramuscular fat deposition during fetal and neonatal stages but suppressing white adipose tissue expansion
in adults. Collectively, these finding highlight atRA as a critical integrator of micronutrient signaling, gene
regulation, and adipose tissue plasticity. Understanding the mechanisms of atRA-mediated adipogenesis
provides key insights into the prevention of metabolic disorders and offers practical strategies in improve

meat quality and feed efficiency in animal production system.
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INTRODUCTION

Adipogenesis, the biological process in which fibroblast-like precursor cells differentiate into fully
developed adipocytes, is a tightly controlled process primarily by transcription factors such as peroxisome
proliferator-activated receptor gamma (PPAR-y) and the CCAAT/enhancer-binding protein (C/EBP)
family members [1]. Beyond energy storage, adipocytes act as endocrine organs, regulating systemic
metabolism and inflammatory responses. Changes in adipose tissue mass occur through hypertrophy [2] or
hyperplasia [3], both closely linked with conditions such as obesity, cardiovascular diseases, and diabetes
[4] Therefore, understanding adipogenesis is fundamental for elucidating metabolic disorders and
therapeutic strategies. Its regulation is also crucial for livestock production, directly affecting meat quality,
flavor, and feed efficiency [5,6]. Ultimately, clarifying adipogenesis mechanisms benefits both human
health and advancements in animal agriculture.

Vitamin A (also known as retinol) of which active form is all-trans retinoic acid (atRA) is an essential
fat-soluble nutrient [7]. It plays essential roles in maintaining visual function [8], immune regulation [9],
reproduction, and epithelial tissue homeostasis [10,11]. Vitamin A is acquired through dietary sources,
either as preformed vitamin A from animal products or as provitamin A carotenoids derived from plant
foods, which are converted into active forms within the body [12]. Maintaining an optimal balance of
vitamin A is crucial; deficiency leads to severe health problems, such as night blindness [13,14], impaired
immune function [11], and growth retardation [15,16], while hypervitaminosis A can result in toxicity,
characterized by symptoms such as liver damage and teratogenicity [17,18]. In addition to its systemic
effects, the regulation of adipocyte differentiation by vitamin A metabolism highlights its broad
significance, impacting not only the prevention and management of metabolic diseases but also various
aspects of animal agriculture.

In this review, we discuss previously reported studies focusing on the functions of vitamin A in
adipogenesis both in vitro-and in vivo. In particular, we delve into the molecular mechanisms underlying
regulatory effects of vitamin A on adipocyte differentiation, encompassing both its pro-adipogenic and anti-

adipogenic actions, and their implications for metabolic health and animal agriculture.

BIOSYNTHESIS, METABOLISM, AND MECHANISM OF
ACTION

atRA Biosynthesis and Metabolic Pathways

atRA is a major bioactive form of retinol. It serves as a critical signaling molecule involved in various
cellular activities such as cell growth, lineage commitment [19], apoptosis [20], and metabolic regulation
[21]. The biosynthesis of atRA is tightly regulated within cells through a two-step oxidative process (Fig.
1a). In the first step, retinol is reversibly oxidized to retinaldehyde by retinol dehydrogenases (RDHS), is
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considered the rate-limiting step in the pathway, and its efficiency is influenced by the availability of
cofactors and binding proteins [22]. In the second, irreversible step, retinaldehyde is further oxidized to
atRA by aldehyde dehydrogenases (ALDHS), particularly those expressed selectively depending on the type
of tissue. This step represents a crucial regulatory point to produce active atRA biologically [22,23]. Unlike
other retinoic acid derivatives, atRA binds with high affinity to retinoic acid receptors (RARs), through
which it directly regulates the transcription of specific target genes via retinoic acid response elements
(RAREsS) [19].

In the storage pathway, lecithin: retinol acyltransferase (LRAT) facilitates the conversion of retinol to
retinyl esters through esterification, which are subsequently stored in lipid droplets [24]. This process
indirectly limits the availability of retinol for atRA synthesis. The activity of LRAT itself is tightly regulated,
being rapidly and markedly upregulated by atRA [25]. When the intracellular concentration of atRA
increases excessively, cytochrome P450 family 26 enzymes (CYP26) are upregulated and become actively
involved in the breakdown of atRA into hydroxylated inactive metabolites [26,27]. This serves as a key
negative feedback mechanism to regulate RA signaling tightly (Fig. 1b). Dysregulation of this feedback
may lead to retinoid toxicity or impaired differentiation processes, especially in tissues with high retinoid
turnover.

The regulation of the retinoid metabolic network is further refined by cellular retinol-binding proteins
(CRBPs) and cellular retinoic acid-binding proteins (CRABPS), which play essential roles in transporting
retinoids within the cell, facilitating their storage, transport, and targeted delivery to specific enzymes or
nuclear receptors. CRBPs primarily bind retinol, directing it either toward storage via esterification or
toward oxidation for atRA biosynthesis, depending on the cell's physiological needs. CRABPs, which are
structurally and immunologically distinct from CRBPs, bind retinoic acid [28] and determine its fate by
mediating its interaction with nuclear receptors like RARs [29] or targeting it for catabolism via CYP26
enzymes [30-32]. The distribution and levels of CRBPs and CRABPs vary across tissues and are subject
to independent regulation. The precise balance of retinoids, maintained by these binding proteins, is crucial.
If these binding proteins do not work properly, the balance of retinoids in the cell can be disturbed, which
may affect how cells grow, develop, and respond to the immune system. Together, these pathways and
binding proteins help control atRA levels in specific tissues [33,34] and keep retinoid balance stable,
making sure that RA signals are precisely regulated in different biological processes and stages of
development.

Recent multi-omics studies have revealed complex molecular signaling networks through which atRA
regulates adipocyte differentiation in livestock species. An integrated analysis of transcriptome and
metabolome in bovine preadipocytes identified 5,257 differentially expressed genes (DEGSs) and 328
differentially expressed metabolites (DEMSs) during adipogenic differentiation, highlighting key lipid
metabolic regulators such as FADS2, ACOT7, and ACOT?2, while revealing that distinct FADS2 isoforms

differentially influence unsaturated fatty acid biosynthesis and adipogenic regulation [35]. Meanwhile, in
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bovine skeletal muscle-derived cells, atRA treatment exhibited a development-phase specific effect on
adipogenic and myogenic gene expression, such as up-regulation of ZFP423 and PPAR v in the proliferative
phase, but suppression of adipogenic markers during differentiation [36]. These results illustrate that
retinoid signaling in livestock is not simply a linear regulation of RAR/RXR to target gene but rather
integrates with broader lipid and energy metabolic pathways, and its impact depends on the developmental
stage and cellular context. Moreover, such omics-driven insights pave the way identifying novel biomarkers
and species-specific retinoid-responsive modules that could optimize intramuscular fat deposition or

adipose tissue composition in production animals.

Nuclear Receptors and Signaling Pathways

atRA functions as an important signaling molecule involved in diverse cellular activities. Within the cell,
atRA binds with high affinity to RARa, B, and vy, as well as retinoid X receptors (RXR) a, B, and y. These
nuclear receptors form heterodimers that directly bind to RARES; enabling precise regulation of gene
expression. These complexes orchestrate diverse transcriptional programs tailored to the physiological
functions of specific tissues, including liver [37,38], adipose tissue [39], skin [40], and immune cells [41].
Moreover, their transcriptional activities are finely tuned through dynamic interactions with a variety of
coactivators, such as the NCoA family (SRC-1, TIF2/GRIP1, AIB1) and histone acetyltransferases like
CBP/p300, which promote chromatin remodeling and gene activation [42]. Conversely, in the absence of
ligand binding, RAR/RXR complexes recruit corepressors like NCoR and SMRT to induce chromatin
condensation and repress target gene expression [43]. These regulatory mechanisms enable context-
dependent and precise control of gene expression by retinoic acid signaling across different tissues and cell
types.

At higher concentrations (>1 uM), atRA activates the Wnt/B-catenin signaling pathway, which is closely
associated with the inhibition of adipocyte differentiation [44]. Binding of Wnt ligands to their receptors
inhibits phosphorylation of B-catenin by CK1 and GSK3f, leading to its stabilization and nuclear
accumulation of B-catenin [45-47]. In the nucleus, B-catenin interacts with LEF/TCF transcription factors
to induce the expression of Wnt target genes, such as Axin2 [48]. In this context, atRA, acting through
RARYy, enhances Axin2 expression [49]. Axin2 suppresses the transcription of key adipogenic regulators,
including C/EBPa and PPARY, thereby reinforcing the anti-adipogenic effects [50]. Additionally, atRA
inhibits the expression of PPARy and C/EBPaq, delaying or blocking adipocyte differentiation [51,52]. This
functional crosstalk between atRA and Wnt signaling represents a critical regulatory mechanism in
adipocyte differentiation (Fig. 1a).

The functional interaction between atRA and Wnt signaling is mediated by the RAR/B-catenin/Axin2
axis, which plays a key role in cell fate determination. Wnt signaling is known to inhibit adipogenesis [53],
while atRA can antagonize or modulate this inhibitory effect. This regulatory interplay is closely connected

to the physiological development of adipocytes [54,55]. atRA also directly influences adipocyte fate by
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regulating the expression of crucial adipogenic transcription factors such as PPARy and C/EBPa through
the nuclear RAR/RXR heterodimer. The transcriptional effects of atRA depend on its concentration and
timing of exposure [44,56,57], which affects adipocyte maturation and function. Therefore, understanding
the crosstalk between atRA and Wnt signaling is fundamental to revealing the complex mechanisms

governing adipocyte differentiation.
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Fi‘g._l An lllustrative Overview of atRA Biosynthesis and Metabolic Regulation. A. atRA Action and
Crosstalk with Wnt Signaling. Retinol is enzymatically converted to atRA, which binds to RARs and
regulates gene transcription by interacting with DNA response elements. atRA inhibits the expression of
key adipogenic factors such as C/EBPa and PPARYy, while activating Wnt signaling pathways, thereby
playing a crucial role in controlling cell differentiation. B. atRA Biosynthesis and Metabolism. Retinol can
be stored as retinyl esters (RE) in lipid droplets (LD) via the enzyme LRAT. A crucial negative feedback

loop is shown, where excessive atRA is inactivated by CYP26 enzymes to maintain retinoid homeostasis.

IN VITRO STUDIES OF atRA

Effects on Cell Proliferation, Differentiation, and Apoptosis

Most in vitro studies investigating atRA’s role in adipogenesis have been conducted using mammalian
models [58-61], particularly a mouse-derived preadipocyte cell line, 3T3-L1 cells [44,62-64]. These
studies have revealed that atRA exerts opposing effects on adipocyte differentiation depending on the
treatment concentration and timing, promoting differentiation within certain concentration ranges while
inhibiting it at others [44,64] (Fig. 2). In 3T3-L1 adipocytes, atRA exerts cell type-specific effects through

a sequential process ranging from the uptake of extracellular retinol to the activation of nuclear receptors.
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High concentrations of atRA (>1 uM) suppress the expression of the key adipogenic transcription factors
PPARYy and C/EBPa [44] and activate the Wnt/B-catenin signaling pathway [65,66], thereby inhibiting the
differentiation of preadipocytes. High concentrations of atRA inhibit adipocyte differentiation during the
early stages by selectively activating RARy [67,68]. Activation of RARy promotes the maintenance of a
stem-like state [69,70]. Low concentrations of atRA (0.01-100 nM) promote lipid accumulation and
increase the expression of mature adipocyte marker genes such as FABP4 [44], adiponectin [71], and LPL
[72] (Fig. 2a).

The process of adipocyte differentiation can be broadly divided into three stages: the early transcriptional
phase, the mitotic clonal expansion (MCE) phase, and the late terminal differentiation phase [73]. Among
these, the MCE phase is characterized by cells re-entering the cell cycle and proliferating after the activation
of early transcription factors [73], thereby increasing cell number to establish a sufficient cellular pool
necessary for subsequent adipocyte differentiation. Multiple studies have demonstrated that MCE is an
essential prerequisite for adipogenesis, emphasizing that precise regulation of cell cycle entry and exit
critically influences differentiation efficiency [74-76]. Notably, atRA has been reported to exert a
significant regulatory effect on the MCE phase in the 3T3-L1 cell model [44]. Treatment with a low
concentration of atRA (1 nM) resulted in the highest proliferation rate and simultaneous G0/G1 cell cycle
arrest observed at day 2, suggesting a dual mechanism by which atRA coordinates cell division and growth
inhibition to secure an adequate cell number during MCE and activate the differentiation program.
Furthermore, atRA concentrations ranging from 0.01 to 100 nM progressively increased the expression of
S/G2 phase-related proteins such as Cdk1 and Cdk2, which are likely to promote DNA synthesis and entry
into cell division, thereby maximizing proliferative capacity in the early MCE stage. Conversely, high
concentrations of atRA (1 to 10 uM) led to dominant expression of GO/G1 phase marker proteins, including
Cdk4, a key regulator of the G1/S transition through its interaction with Cyclin D, when overexpressed, can
cause prolonged retention of cells in the G1 phase before S phase entry. Combined with changes in Cdk1
expression, this results in cells being arrested in G1 rather than progressing through S/G2/M phases,
ultimately inhibiting DNA synthesis and cell division and delaying or blocking the adipogenic
differentiation program (Fig. 2b).

Although direct reports on atRA-induced apoptosis in mature adipocytes are limited [77], studies on
adipose-derived stem cells (ADSCs) have shown that atRA treatment notably increases the expression of
pro-apoptotic proteins, such as BAX and BAK, and promotes caspase-3 expression. It also alters the
expression of anti-apoptotic proteins, such as BCL-2, and increases mitochondrial membrane permeability,
indicating apoptosis via the intrinsic mitochondrial pathway [78]. This trend is like mechanisms reported
in acute promyelocytic leukemia (APL) cells [78-80] and other cancer cell models [20,81,82], where atRA
induces upregulation of BAX, suppression of BCL-2 expression, triggers activation of the caspase signaling

cascade, and facilitates the release of cytochrome c. These findings suggest that atRA triggers apoptosis
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primarily through mitochondrial functional alterations and regulation of BCL-2 family proteins. These
findings suggest that atRA influences adipose tissue by regulating adipocyte numbers and remodeling
metabolism, yet the specific stages of adipogenesis and the signaling pathways involved remain to be fully

understood.

Inhibit expression of
transcription factors

Increase the expression of PPARY and C/EBPa.
mature adipocyte marker genes

Promote lipid accumulation

Inhibit Wnt/g-catenin
Signaling pathway.

&
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Fig. 2. Dual Regulation of Adipocyte Differentiation by atRA Concentration. A. At low atRA
concentrations (approximately 0.01-100 nM), atRA promotes adipocyte differentiation by enhancing lipid
accumulation and increasing the expression of mature adipocyte marker genes. Conversely, at high atRA
concentrations (approximately >100 nM), atRA inhibits adipocyte differentiation by suppressing the
expression of key transcription factors PPARy and C/EBPa, and by inhibiting the Wnt/B-catenin signaling
pathway. B. atRA modulates gene expression and cell cycle progression during adipocyte differentiation.
During the Early transcriptional phase, low atRA (blue) upregulates C/EBP family transcription factors,
while high atRA (red) suppresses. In the MCE phase, low atRA increases Cdkl and Cdk2 expression,
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facilitating G2/M phase entry. Conversely, high atRA reduces Cdk4 and Cdkl levels, resulting in a

pronounced G1 arrest.

Disease Modeling in Culture Systems

Using atRA in cell culture systems allows for precise explanation of molecular mechanisms related to
metabolic diseases. In the 3T3-L1 adipocyte culture model, atRA exhibits dual effects depending on
treatment concentration, timing, and the stage of cell differentiation. Low-dose or late-stage treatment
promotes adipocyte differentiation by increasing the expression of mature adipocyte markers such as
FABP4 and adiponectin, whereas high-dose treatment strongly inhibits lipid accumulation and
differentiation by suppressing the expression of PPARy and C/EBPa [44]. In the hepatocyte cell model
(HepG2 cells), atRA suppresses the expression of SREBP-1c and FASN genes involved in de novo
lipogenesis [83,84], increases the transcription factor C/EBPa. leading to inhibition of cell proliferation,
and reduces PLAU (involved in expansion and remodeling of adipose tissue) expression, thereby blocking
pro-growth signals and decreasing hepatic lipid accumulation [85]. These results highlight the promise of
atRA as a candidate treatment for non-alcoholic fatty liver disease (NAFLD). Additionally, in
cardiovascular disease models, atRA inhibits excessive proliferation of vascular smooth muscle cells
(VSMCs) and acts through activation of the AMPK signaling pathway to suppress mTOR signaling [86],
demonstrating its influence on atherosclerosis and related cardiovascular conditions. atRA promotes
myofiber formation and mitochondrial biogenesis in mouse myoblasts [87], and enhances insulin synthesis
and secretion in the pancreatic beta-cell model, contributing to glucose homeostasis [88]. Furthermore, in
inflammation-related disease models, atRA plays a key role in regulating macrophage M1/M2 polarization
[89]. Studies in murine macrophage cells have shown that atRA suppresses the NF-«B signaling pathway,
leading to decreased expression of pro-inflammatory cytokines IL-6 and TNF-a, thereby alleviating
metabolic inflammation [90]. Collectively, these results indicate that atRA exerts specific and context-
dependent regulatory effects across diverse cell types and pathological environments, highlighting its value
as a useful in vitro model for studying metabolic and inflammatory diseases as well as for potential
therapeutic development.

To date, researches on disease modeling related to atRA have primarily focused on human and rodent
cell lines; however, expanding studies to livestock species such as pigs, cattle, sheep, and chickens is
critically important. Livestock play a vital role as food sources and provide more realistic models for
studying metabolic and inflammatory diseases due to their distinct physiological characteristics and
environmental exposures compared to humans. For example, atRA strongly inhibits differentiation of
porcine preadipocytes by reducing the mRNA expression of PPARy, RXRa, SREBP-1c, and FABP4
through activation of retinoic acid receptors [61]. Additionally, atRA induces muscle fiber type switching

in cultured bovine satellite cells (BSCs), increasing expression of oxidative metabolism-related MHC | and
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decreasing MHC IIX via the PPARS pathway [91]. In ovine myoblasts, atRA suppresses cell proliferation
while increasing expression of myogenin and myosin heavy chain proteins; this process involves elevated
H3K4me3 and reduced H3K27me3, modulating transcriptional activation, and further activates GLUT4
expression and mTOR signaling pathways to influence muscle metabolism and growth [92].

Studies on primary cultured preadipocytes from Holstein cattle showed that atRA inhibits proliferation
and induces apoptosis in pre-confluent preadipocytes. In post-confluent preadipocytes, atRA suppressed
differentiation by reducing PPARy and C/EBPa protein expression. In mature adipocytes, atRA (conc.: 0.2,
2, and 20 nM) stimulated basal lipolysis but did not affect epinephrine-stimulated lipolysis[59]. These
results suggest that atRA regulates lipid accumulation and breakdown in bovine adipocytes, potentially
playing a role in modulating lipid metabolism and preventing metabolic diseases in over-conditioned dry
cows [59]. In avian myoblasts, atRA treatment increased intracellular lipid accumulation and adipogenic
gene expression, notably by directly inducing PPARy expression[93]. The extent of transdifferentiation was
dependent on PPARy activation, and treatment with PPARy agonists alone was insufficient to trigger
adipocyte transdifferentiation in the absence of atRA[93]. These findings indicate that atRA-driven PPARy
expression is critical for the conversion of myaoblasts into adipocytes and highlight atRA as a potential novel
regulator to improve marbling in poultry production [93].Collectively, these findings suggest that atRA
exerts species-specific yet consist of regulatory functions on lipid metabolism and muscle development in
livestock cells. For instance, atRA-mediated .induction of PPARYy is essential for transdifferentiation of
myoblast into adipocyte in avian systems [93], while in porcine and bovine cells, atRA predominantly
suppresses adipogenesis and modulates muscle fiber characteristics through nuclear receptor pathways [91].
Such comparative evidence highlights atRA as a central molecular determinant orchestrating the balance
between myogenesis and adipogenesis across livestock species, linking its relevance not only to human
metabolic disorders but also to meat quality traits in animal production.

Such livestock-based in vitro-models are invaluable for specifically understanding the molecular
mechanisms regulated by atRA in agriculturally important species. Research on atRA-related signaling and
gene expression regulation in livestock cells contributes not only to improving animal health, productivity,
meat quality, and resistance to metabolic diseases but also enhances comparative biological insights into
atRA biology across mammals. Furthermore, these livestock models hold promise as platforms applicable
to both human and animal studies for exploring nutritional or pharmacological interventions aimed at

preventing or treating metabolic disorders.

THE EFFECT OF RETINOIC ACID ON ADIPOSE TISSUE OF
ANIMAL

To extend cellular observations to physiological contexts, subsequent studies have investigated the

effects of retinoic acid in animal models. In rodent studies, daily subcutaneous injection of atRA in adult
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mice reduces adipocyte size and decreases white adipose tissue (WAT) mass in epididymal, inguinal, and
retroperitoneal fat [94]. This morphological change is accompanied by upregulation of central regulators
of fatty acid oxidation, including PGC-1a, PPARa, and CPT1, suggesting an enhanced capacity for lipid
catabolism. Similarly, atRA treatment to adult obese mice promotes weight loss, reduces WAT mass, and
alleviates hepatic lipid accumulation [95]. Moreover, atRA administration partially reverses the adiposity
of mice induced by a vitamin A-deficient diet and downregulates PPARY2 expression level in WAT, a key
marker of lipogenesis and adipogenesis [96]. Collectively, these findings indicate that retinoic acid
functions as an inhibitor of adipogenesis in mature mice.

In livestock, manipulating vitamin A status — through dietary supplementation, restriction, or
intramuscular injection of retinoic acid — has emerged as a strategy to modulate intramuscular fat (marbling),
a critical determinant of beef flavor and tenderness. In pregnant beef cattle, vitamin A supplementation
from day 180 of gestation until parturition increases intramuscular fat deposition in the offspring throughout
postnatal life, with elevated expression of the preadipocyte marker DLK1, and-the adipogenic marker
PPARYy in neonatal skeletal muscle [97]. Likewise, intramuscular injection of vitamin A at birth and at 1
month of age in Black Angus steers enhances PDGFRa* adipose progenitors and improves marbling scores
[98,99]. By contrast, in later life stages, vitamin A restriction is required to enhance marbling: mature steers
fed low- or no-vitamin A diets exhibit greater intramuscular fat deposition largely through adipocyte
hyperplasia [100-103]. Comparable effects have been reported in pigs and sheep. Lambs receiving vitamin
A supplementation or intramuscular injections during early postnatal development show increased numbers
of preadipocytes and intramuscular adipocytes, alongside upregulation of adipogenic markers such as
CEBPa and CEBP in the longissimus dorsi muscle [104,105]. In female pigs, restricting vitamin A intake
during the grower and finisher phase enhances intramuscular fat levels in the longissimus muscle [106].

In avian species, vitamin A has long been implicated in adipogenesis, the direct effects of embryonic
atRA exposure on adipose development have only recently been investigated. In quail embryos, in ovo
administration of atRA at embryonic day (E) 7 led to increased inguinal fat mass and enlarged adipocytes
by E14, accompanied by upregulation of pro-adipogenic genes (PPARy, Fabp4) and downregulation of the
preadipocyte marker DIk1 [56]. Similarly, in broiler chickens, in ovo injection of 500 nM atRA at E10
enhanced adipose tissue accumulation and adipocyte hypertrophy during embryogenesis, although these
effects did not persist after hatching [107]. Beyond its roles in proliferation and apoptosis, atRA exerts
distinct metabolic and transcriptional effects on white, beige, and brown adipocytes across both rodent and
livestock species. In white adipocytes, high concentrations of atRA (>1 puM) generally suppress
differentiation by downregulating PPARy and C/EBPa, thereby maintaining cells in a preadipocyte-like
state [94]. Conversely, brown and beige adipocytes exhibit enhanced thermogenic activity in response to
atRA exposure, characterized by the upregulation of UCP1, CIDEA and mitochondrial biogenesis genes
[108]. Recent findings in bovine [109] and porcine [110] adipose tissues demonstrate that dietary vitamin

A restriction or pharmacological modulation of retinoid signaling alters the mMRNA expression levels of
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UCP1, PGC-1a, and ZFP423, suggesting that RA metabolism contributes to the recruitment of beige-like
adipocytes even in livestock species [55,109]. Furthermore, chronic atRA treatment promotes oxidative
metabolism, as evidenced by increased TCA cycle intermediates and glucose oxidation, coupled with the
downregulation of glycolytic enzymes such as PFKP and G6PDH. This metabolic shift implies enhanced
mitochondrial activation and fatty acid oxidation, particularly in metabolically active depots [55,111].
Retinoid signaling via RARa and its metabolic enzyme RDH1 is essential for maintaining BAT atRA
levels, mitochondrial integrity, and systemic glucose homeostasis [112]. Disruption of this regulatory axis,
through RARa inhibition or RDH1 deficiency[112,113], reduces UCP1 expression[108]. However, the
mechanistic basis linking atRA to adipogenic fate determination (white vs. beige vs. brown) remains poorly
defined in livestock. Species-specific differences in RAR/RXR sensitivity, local retinoid metabolism, and
adipose depot—dependent signaling likely underlie the divergent adipogenic and metabolic outcomes
observed among ruminants, pigs, and rodents. Thus, comparative in vitro'and in vivo analyses are required
to elucidate how atRA coordinates cellular differentiation, mitochondrial remodeling, and lipid metabolism
across species knowledge that could ultimately inform nutritional or pharmacological strategies to modulate
adipose plasticity in livestock.
In summary, these findings collectively indicate that the influence of retinoic acid on adipose development
is both stage and species dependent. atRA promotes adipogenesis during early developmental stages
particularly in embryos and neonates while in later life it generally suppresses adipogenesis. In avian

embryos, however, their adipogenic effects appear largely restricted to the prenatal period.
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Table 1. Summary of the effect of retinoic acid on adipose tissue of mammals.

Species Age Administration VitA dose or Main effects Overall adipogenic Reference
concentration outcome
12-week- | atRA s.c., once dail IWAT, eWAT, -WAT mass|
NMRI male mice | - for 4 dave Y 110,50,100mg/kg | WAT UCP1/2, PGC-1a, PPARa Inhibit [94]
Y and CPT1 mRNA?T
subcutaneous eWAT and aWAT mass|,
CS7BL/6Ntac | >16-week- | ;o hjontation of RA | NA Adipocyte size| Inhibit [95]
mice old . . .
pellet, 5 weeks Liver lipid accumulation |,
VitA-deficient diet: IWAT and
eWAT mass?, adiposity indext,
VitA-deficientdiet |, | CWAT PPARy2 ADDLSREBPLC | \in deficient diet:
VitA-deficient diet: | and C/EBPo. mRNA1
. 3-week- for 10 weeks followed L . Promote
NMRI male mice old by atRA s.c. (once <0.38 1U/kcal atRA sc injection: body weight], atRA sc iniection: [96]
dZ” for 4 daye) atRA 5.c. 100 mg/kg | SWAT mass], iWAT and eWAT | [0 Jection.
y y PPARy2 mRNA|, e WAT
ADD1/SREBP1c and C/EBPa
mRNA |
Pregnant Angus- . .
Simmental cross Day 180 of B?‘SE"' diet er.mChed. 12200 1U VitA/kg in | Offspring calves: IMF%1, skeletal
. . with pure VitA until Promote [97]
bred multiparous | gestation L feed muscle DLK1, PPARy?t
parturition
COWs
IMF%?*, marbling score?,
oo . subcutaneous adipocyte
?;;33; steer Newborn X'r;'?)r:'t?_'oall;b'rth Je 150000 1U diameter |, Biceps femoris muscle Promote [99]
PDGFRa, PPARY, and ZFP423
mRNA1T
- . IMF%?1, marbling score?, Biceps
pngus steer Newborn | Y4 r']'t’;]"_'oel‘fjb”th and | 150000 or 300000 1U | femoris muscle PPARy and Promote [114]
ZFP423 mRNA1T
12-month- Standard commercial
Angus steers old feedlot ratios without | NA IMF%? Promote [115]

VitA over 300 days
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340
341
342

Holstein steers

NA

VitA-restricted diet

~950 IU of VitA
equivalents/kg of

VitA-restricted diet for 243 days:

Promote

[100]

for 131 or 243 days DM IMF%?1
No VitA High-moisture corn:
Angus-cross supplementation in 1300 1U/kg VitA .
steers NA high-moisture or dry | Dry corn: 1100 Marbling score? Promote [101]
corn for 145 days IU/kg VitA
Non VitA- o .
Angus steers 12-month- supplemented diet for | NA IME%1, marbling scoret, cell Promote [103]
old number per IMF fleckt
10 months
VitA i.m.: intramuscular SVF
VitAor RAi.m. at1l, VitA im.: 7500 [U cells formed adipocytes?,
Hu sheep lambs Newborn | 7, 14, and 21 days of S adipocyte numbers of LD and ST Promote [104]
RAi.m.: 7500 1U
age muscle?, LD C/EBPa and
C/EBPB mRNA?
VitA supplementation
Rasa Aragonesa by capsule, twice a IMF mass?t, the number of
lambs Newborn week until 58 days of 500000 1U adipocytes in the perirenal depot? Promote [105]
age
Non VitA-
Crossbred (Large supplemented diet
White x Landrace | NA during grower (68- NA LD IMF%? Promote [106]

x Duroc) pigs

124 days) and finisher
(124-159 days) phase

s.C., subcutaneous injection; i.m., intramuscular injection; WAT, white adipose tissue; eWAT, epididymal WAT; iIWAT, inguinal WAT; rWAT, retroperitoneal WAT;

aWAT, abdominal WAT; RA, retinoic acid; atRA, all-trans retinoic acid; VitA, vitamin A; IMF, intramuscular fat; LD, Longissimus dorsi; ST, semitendinosus; SVF,

stromal vascular fraction; NA, not available.
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CONCLUSION

Significant progress has been made in understanding the effects of atRA on adipogenesis, yet several
critical knowledge gaps remain. Current knowledge is largely derived from murine cell lines, particularly
3T3-L1 preadipocytes, which cannot fully recapitulate the complexity of adipose biology across different
species [44,63,116-119]. The different responses to atRA in rodents, ruminants, and poultry emphasize the
importance of studying multiple species to identify which mechanisms are universal and which are specific
to each species. Another major challenge lies in resolving the temporal and concentration-dependent effects
of atRA. Evidence suggests that the stage of adipocyte differentiation and the local microenvironment
strongly influence atRA signaling outcomes, yet systematic analyses across developmental stages and tissue
contexts remain limited.

Moreover, while atRA has been shown to interact with nuclear receptors (RAR/RXR) [120,121] and
signaling cascades such as Wnt/B-catenin [122,123], MAPK [124], and PI3K/AKT [125], the context-
dependent hierarchy and cross-regulation of these pathways are poorly understood. Advances in single-cell
multi-omics, spatial transcriptomics, and metabolomics are likely to provide powerful tools to address these
guestions.

Understanding the regulatory role of atRA also holds important applied value. In livestock, targeted
modulation of retinoid signaling can improve feed efficiency [6,56], meat quality [58], and metabolic
regulation. In human medicine, selective manipulation of retinoid pathways may offer novel therapeutic
strategies for obesity [21], diabetes [126], and nonalcoholic fatty liver disease [127]. Accordingly, the
development of tissue-selective RAR/RXR agonists and antagonists, alongside nutritional interventions
aimed at modulating endogenous retinoid metabolism, represents a promising frontier for future research.

However, practical applications of vitamin A modulation in livestock must carefully balance efficacy
with safety. Excessive or prolonged supplementation can lead to hepatic toxicity, impaired growth, or
reproductive disorders, while insufficient levels may compromise immune and metabolic function. For
instance, in broiler breeders, dietary supplementation exceeding 45,000-135,000 1U vitamin A/kg feed
induced liver dysfunction could reduce fertility and alter immune responses [128]. Excessive vitamin A
intake in cattle has been associated with decreased feed intake, hepatic dysfunction, and abnormal bone
growth, particularly when intake levels greatly exceed recommended dietary requirement [129]. These
findings highlight the narrow physiological window required for optimal vitamin A status in livestock.
Therefore, precise dose optimization, adherence to regulatory limits, and long-term safety evaluations are
essential for translating retinoid signaling research into sustainable livestock production strategies.

Adipogenesis is a complex, tightly regulated process that integrates endocrine, nutritional, and molecular
cues to maintain energy homeostasis and influence metabolic health. Among these regulatory factors, atRA
emerges as a broadly acting and condition-dependent regulator. In vitro evidence suggests that low

concentrations (approximately 0.01-100 nM) of atRA may facilitate early adipogenic commitment, whereas
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higher concentrations (approximately >1 uM) generally suppress differentiation through nuclear receptor—
mediated transcriptional repression and activation of inhibitory signaling cascades [44]. atRA modulates
fat accumulation in a stage- and timing-dependent manner in vivo, enhancing intramuscular fat and
adipogenic marker expression (DLK1, PPARy, PDGFRa) during fetal and early postnatal stages [98,114],
while reducing white adipose tissue and inhibiting adipogenesis in adults [94]. In avian, in ovo atRA
treatment increases adipocyte hypertrophy and pro-adipogenic gene expression, though these effects do not
persist after hatching [56,107].

Collectively, these findings position atRA as a critical link between micronutrient status, gene regulation,
and adipose tissue biology. However, the complexity of its effects—depending on dose, timing, species,
and developmental context—underscores the need for further mechanistic and translational studies. A
comprehensive understanding of atRA-mediated adipogenesis will not only deepen our insight into
fundamental adipose biology but also provide novel opportunities for improving livestock production and
developing targeted interventions for metabolic disorders.

From an applied perspective, several strategies could advance the use of atRA in livestock production.
Nutritional and developmental modulation involves optimizing dietary vitamin A or carotenoid intake and
timing atRA or analog supplementation during key developmental stages to fine-tune fat deposition,
enhance marbling, and improve feed efficiency. Selective RAR/RXR-targeted interventions use tissue-
specific agonists or regulators of retinoid metabolism to differentially modulate adipogenesis in muscle
versus subcutaneous depots. Integrating these approaches with genomic and metabolomic monitoring

could enable precision control of adiposity, productivity, and meat quality in livestock.
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