

ARTICLE INFORMATION		Fill in information in each box below
Article Type		Research article
Article Title (within 20 words without abbreviations)		Effects of dietary threonine and arginine on growth performance, stress indicators, and gut health in broiler chickens under multiple stress
Running Title (within 10 words)		Threonine and arginine on multiple-stressed broiler chickens
Author		Yeong Bin Kim, Ju Yeong Park, Ha Neul Lee, Gyu Lim Yeom, Geun Yong Park, Ji Won Shin, Jong Hyuk Kim* * Corresponding author
Affiliation		Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
ORCID (for more information, please visit https://orcid.org)		Yeong Bin Kim (https://orcid.org/0009-0007-9151-0135) Ju Yeong Park (https://orcid.org/0009-0008-1938-977X) Ha Neul Lee (https://orcid.org/0009-0007-8352-4182) Gyu Lim Yeom (https://orcid.org/0009-0006-1849-053X) Geun Yong Park (https://orcid.org/0009-0001-3453-6941) Ji Won Shin (https://orcid.org/0009-0000-7167-5425) Jong Hyuk Kim (https://orcid.org/0000-0003-0289-2949)
Competing interests		No potential conflict of interest relevant to this article was reported.
Funding sources State funding sources (grants, funding sources, equipment, and supplies). Include name and number of grant if available.		This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS-2023-00210634).
Acknowledgements		Not applicable.
Availability of data and material		Upon reasonable request, the datasets of this study can be available from the corresponding author.
Authors' contributions Please specify the authors' role using this form.		Conceptualization: Kim JH Data curation: Kim YB, Kim JH

	<p>Formal analysis: Kim YB, Park JY, Lee HN, Yeom GL, Park GY, Shin JW</p> <p>Methodology: Kim YB, Kim JH</p> <p>Validation: Kim JH</p> <p>Investigation: Kim YB, Park JY, Lee HN, Yeom GL, Park GY, Shin JW</p> <p>Writing - original draft: Kim YB, Kim JH</p> <p>Writing review & editing: Kim YB, Park JY, Lee HN, Yeom GL, Park GY, Shin JW, Kim JH</p>
Ethics approval and consent to participate	All experimental procedures were reviewed and approved by the Institutional Animal Care and Use Committee at Chungbuk National University (CBNUA-2267-24-01).

4

5 CORRESPONDING AUTHOR CONTACT INFORMATION

For the corresponding author (responsible for correspondence, proofreading, and reprints)	Fill in information in each box below
First name, middle initial, last name	Jong Hyuk Kim
Email address - this is where your proofs will be sent	jonghyuk@chungbuk.ac.kr
Secondary Email address	mrdgj7@naver.com
Address	Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
Cell phone number	82 - 10 - 4935 - 8583
Office phone number	82 - 43 - 261 - 2546
Fax number	82 - 43 - 273 - 2240

6

7

8 **Abstract**

9 This study evaluated the effects of dietary threonine (Thr) and arginine (Arg) concentrations on
10 growth performance, meat quality, stress indicators, antioxidant capacity, and gut health in
11 broiler chickens raised under multiple stress conditions. A total of 280 21-d-old broiler chickens
12 were randomly allotted to 4 treatments with 8 replicates. The positive control (PC) group was
13 raised under normal rearing conditions (thermoneutral temperature and low stocking density;
14 $22.6 \pm 0.6^{\circ}\text{C}$ for 24 h and 15.2 birds/m²), whereas the remaining groups were subjected to
15 multiple stress conditions (cyclic heat stress and high stocking density; $29.3 \pm 0.9^{\circ}\text{C}$ for 10 h,
16 $22.8 \pm 0.8^{\circ}\text{C}$ for 14 h, and 30.3 birds/m²). Both the PC and negative control (NC) groups
17 received a basal diet, while the other two groups were provided diets containing 1.3-fold higher
18 concentrations of digestible Thr or Arg compared to the basal diet. Experimental diets and water
19 were supplied ad libitum for 14 d. Results indicated that growth performance was decreased (p
20 < 0.05) in NC, Thr, and Arg groups compared to PC group. Birds in NC group had greater ($p <$
21 0.05) heterophil to lymphocyte ratio and feather corticosterone (CORT) concentrations than
22 those in PC group. Under multiple stress conditions, Thr and Arg groups showed less ($p < 0.05$)
23 feather CORT concentrations than NC group. In hepatic tissue, reactive oxygen species levels
24 were increased ($p < 0.05$) in NC and Arg groups compared to PC group. Jejunal nitric oxide
25 levels were increased ($p < 0.05$) in NC group compared to PC, Thr, and Arg groups. Under
26 multiple stress, Thr and Arg treatment groups exhibited greater ($p < 0.05$) transepithelial
27 electrical resistance values than NC group. The expression levels of *OCLN*, *ZO-1*, and *HSP70*
28 were greater ($p < 0.05$) in Thr and Arg groups than in NC group. In conclusion, increasing
29 dietary concentrations of Thr and Arg improves intestinal integrity and mitigates stress response
30 in broiler chickens exposed to multiple stress.

31

32 **Keywords:** Arginine, broiler chicken, heat stress, stocking density, threonine

33 **INTRODUCTION**

34

35 Stress is defined as an adverse environmental condition that leads to physiological and
36 behavioral disruptions in animals, thereby decreasing productivity [1]. Among the various
37 stressors, heat stress (HS) has become a significant concern in poultry production, particularly
38 in the context of rising global temperatures [2,3]. Broiler chickens are especially vulnerable to
39 HS due to their elevated metabolic heat generation, accelerated growth, and lack of sweat glands
40 [4,5]. As a result, HS negatively affects broiler growth performance, nutrient absorption, and
41 the integrity of the intestinal barrier [5,6]. Furthermore, HS impairs immune function and
42 increases physiological stress, thereby further compromising health and animal welfare [3,7].
43 While HS is recognized as a major environmental stressor, high stocking density (SD) is also a
44 prevalent stressor in broiler operations due to the birds' rapid growth and short production
45 cycles [8]. Elevated SD exacerbates environmental stress by limiting mobility, intensifying
46 competition for feed and water, and increasing temperatures within housing facilities [9]. These
47 challenges in turn result in decreased feed intake (FI) and performance, heightened welfare
48 issues, and a greater risk of hygiene-related problems [10]. In commercial poultry facilities, HS
49 and high SD frequently coexist, with their combined effects creating a more severe stress
50 environment than each stressor alone [11]. However, most research on nutritional strategies has
51 focused on either HS or high SD separately, and there is limited knowledge regarding effective
52 interventions under simultaneous stress conditions.

53 Among the essential amino acids, Thr is recognized the third limiting amino acid in
54 broiler diets and is vital for protein synthesis and the maintenance of mucosal health [12,13].
55 Moreover, Thr is fundamental for the production of mucin glycoproteins, which are integral to
56 forming the protective mucus layer covering the intestinal epithelium [14]. This mucus barrier
57 serves to shield epithelial cells from both mechanical and chemical injury while also reducing
58 the adherence and translocation of pathogenic bacteria [15,16]. Supplementing broiler diets

59 with Thr has been shown to improve intestinal barrier function and decrease inflammatory
60 responses when chickens are challenged by environmental or pathogenic stressors [17].

61 Arg is recognized as a conditionally essential amino acid in poultry because birds
62 possess an incomplete urea cycle and are unable to synthesize adequate endogenous quantities
63 [18]. Additionally, Arg acts as a precursor for several metabolites, including nitric oxide (NO),
64 polyamines, proline, creatine, and glutamate, which are involved in vascular regulation, cell
65 proliferation, and energy metabolism [18,19]. In particular, Arg-derived NO is essential for
66 vasodilation, oxygen transport, and modulation of immune responses, linking Arg metabolism
67 with circulatory and immune system [20,21]. Dietary Arg supplementation has been
68 demonstrated to mitigate intestinal inflammation in broiler chickens subjected to
69 lipopolysaccharide or *Clostridium perfringens* challenges [22,23]. Owing to these
70 physiological roles, it is hypothesized that dietary supplementation of Thr and Arg may alleviate
71 physiological stress and enhance health in broiler chickens exposed to HS and high SD.
72 Nevertheless, the effectiveness of these amino acids when both HS and high SD conditions are
73 concurrently present has not been widely studied.

74 Therefore, this study aimed to evaluate the effects of dietary Thr and Arg
75 supplementation on growth performance, meat quality, stress indicators, antioxidant capacity,
76 and gut health in broiler chickens raised under HS and high SD.

77

78 MATERIALS AND METHODS

79

80 Animal ethics statement

81 All experimental procedures were reviewed and approved by the Institutional Animal Care
82 and Use Committee at Chungbuk National University (CBNUA-2267-24-01).

83

84 Animals, diets, and experimental design

86 Prior to the experiment's commencement, all birds were reared in compliance with the Arbor
87 Acres broiler management guidelines [24], and were fed a grower basal diet formulated to meet
88 the nutrient requirements, which was provided uniformly to all birds until 21 days of age (Table
89 1). A total of two hundred eighty 21-d-old mixed-sex Arbor Acres broiler chicks were allotted
90 to cages ($52 \times 61 \times 42 \text{ cm} = \text{width} \times \text{length} \times \text{height}$) with a similar average body weight (BW;
91 $696 \pm 6.0 \text{ g}$) among cages. All birds were randomly allotted to 1 of 4 treatments with 8 replicates
92 in a completely randomized design. Birds were raised under normal conditions and multiple
93 stress conditions. Birds in normal conditions were raised under thermoneutral environment
94 (temperature: $22.6 \pm 0.6^\circ\text{C}$; humidity: $75.3 \pm 5.7\%$) with a low SD (SD: 15.2 birds/m^2 and 5
95 birds/cage), while those under multiple stress conditions were exposed to cyclic HS
96 (temperature: $29.3 \pm 0.9^\circ\text{C}$ for 10 h and $22.8 \pm 0.8^\circ\text{C}$ for 14 h; humidity: $80.6 \pm 8.5\%$ for 10 h
97 and $62.4 \pm 7.8\%$ for 14 h) and high SD (SD: 30.3 birds/m^2 and 10 birds/cage). Normal and
98 multiple stress conditions were established in two separate but identical rooms within the same
99 facility, which were physically isolated to prevent environmental interference. All cages and
100 husbandry equipment were identical between rooms to ensure experimental consistency. In
101 addition, sex ratio was intentionally controlled at cage allocation on day 21. Cages in the
102 positive control group contained 3 males and 2 females, whereas cages in the multiple stress
103 groups contained 5 males and 5 females. To ensure consistent SD throughout the study, any
104 birds that died were replaced with individuals of comparable BW. In the event of mortality,
105 replacement birds were selected from a reserve population reared under the same dietary and
106 environmental conditions. They were matched for sex and BW to maintain the original sex ratio
107 and stocking density within each cage. These replacement birds were marked with leg bands
108 and included only in body weight and feed intake calculations, while not included in any sample
109 collections to minimize potential confounding effects. A basal diet was formulated to meet or
110 exceed the energy and nutrient recommendations of the Arbor Acres broiler nutrition

111 specifications. [24]. Birds raised under normal conditions served as the positive control (PC)
112 group and were only fed the basal diet (Table 2). Conversely, birds exposed to multiple stress
113 conditions were assigned to the negative control (NC) group and were also fed the basal diet.
114 Additionally, two treatment groups under multiple stress conditions received experimental diets
115 formulated to provide either a 1.3-fold increase in digestible Thr (0.94% digestible Thr in diets)
116 or Arg (1.52% digestible Arg in diets) compared to the basal diet (0.72% digestible Thr and
117 1.17% digestible Arg). Purified supplements of Thr (99%, CJ bio, Seoul, Republic of Korea)
118 and Arg (99%, CJ bio, Seoul, Republic of Korea) were used to achieve the targeted dietary
119 concentrations. All experimental diets were formulated to contain identical concentrations of
120 CP and essential amino acids. The concentrations of Thr and Arg in diets were determined using
121 an amino acid analyzer (L-8900, Hitachi High Tech, Tokyo, Japan). All experimental diets were
122 supplied in mash form, with continuous provision of feed and water ad libitum during the 14-d
123 period from 21 to 35 d of age. A 24-h continuous lighting schedule was applied throughout the
124 experimental period [9]. Mortality was recorded daily on a cage basis, and cumulative mortality
125 was calculated for the experimental period. The BW gain (BWG) and FI were recorded at the
126 conclusion of the experiment. Feed efficiency (FE) was calculated as BWG divided by FI.

127

128 **Sample collection**

129 At the conclusion of the experiment, two birds from each cage, exhibiting a BW close to the
130 mean BW of their respective cage, were euthanized using CO₂ asphyxiation. Tissue, organ,
131 and feather samples were collected from one bird for subsequent analyses. Blood samples
132 were taken immediately via cardiac puncture and placed into a 10 mL EDTA tube (Greiner
133 Bio-One, Kremsmünster, Austria) and a serum separator tube containing a clot activator
134 (Greiner Bio-One, Kremsmünster, Austria). The second bird was reserved for the assessment
135 of intestinal permeability. The internal organs, namely breast, liver, spleen, kidney, bursa of

136 Fabricius, and thymus, were dissected and weighed to determine relative organ weights,
137 expressed as percentages of BW.

138

139 **Breast meat quality**

140 For evaluation of meat quality, the breast muscle served as the primary sample. The pH was
141 measured at 1 h and 24 h postmortem using a pH meter (HANNA instruments, Woonsocket, RI,
142 USA). Color characteristics including lightness (L*), redness (a*), and yellowness (b*) were
143 quantified using a spectro colorimeter (Konica Minolta, Tokyo, Japan). The water holding
144 capacity (WHC) of the breast muscle was assessed 24 h postmortem, and thiobarbituric acid
145 reactive substances (TBARS) were evaluated at 7 d postmortem. The WHC determination
146 followed the method described by Lee et al. [25] with minor modifications. In short, 1.5 g of
147 meat was placed in a 50 mL tube with Whatman filter paper NO.3 (Whatman, Maidstone, UK)
148 and centrifuged at 3,000 rpm for 15 min at 4°C. The WHC was derived from the difference in
149 moisture concentration before and after centrifugation. TBARS values were measured
150 according to the method of Lee et al. [26] with slight modifications. In brief, 5 g of the breast
151 meat sample was transferred to a 50 mL test tube and homogenized with 15 mL of deionized
152 distilled water and 50 µL of butylated hydroxytoluene solution at 15,000 rpm for 20 s.
153 Thereafter, 1 mL of the homogenate was moved into a 15 mL tube, followed by the addition of
154 2 mL of a mixed solution of thiobarbituric acid and trichloroacetic acid. This mixture was
155 thoroughly vortexed and incubated at 90°C in a water bath for 15 min. The heated sample was
156 cooled on ice, then centrifuged at 3,000 rpm for 10 min. The absorbance of the resulting
157 supernatant was measured at 531 nm using a microplate reader (INNO Microplate
158 Spectrophotometer, LTEK Co., Ltd., Seongnam, Republic of Korea).

159

160 **Blood parameters**

161 Serum biochemical parameters, such as alanine aminotransferase (ALT), aspartate
162 aminotransferase (AST), and creatinine, were analyzed using a Cobas C720 (Roche Diagnostics,
163 Mannheim, Germany). Uric acid concentrations were determined with an automatic analyzer
164 (Labospect 008AS, Hitachi, Tokyo, Japan). Hematological variables, including red blood cell,
165 white blood cell, hemoglobin, hematocrit, segment, lymphocyte, monocyte, eosinophil, and
166 basophil, were measured by an automated blood cell analyzer (XE2100D, Sysmex, Kobe,
167 Japan).

168

169 **Stress indicators**

170 The heterophil to lymphocyte ratio (H:L ratio) was determined from blood samples collected in
171 EDTA tubes. Blood smears were prepared using Wright stain solution (Muto pure chemicals,
172 Tokyo, Japan) and Giemsa stain solution (Samchun chemicals, Pyeongtaek, Republic of Korea).
173 After air drying, the stained smears were analyzed microscopically (OS-370DVM, Osun
174 Hithech, Goyang, Republic of Korea). The H:L ratio was obtained by counting heterophils and
175 lymphocytes until a total of 200 cells per stained sample recorded, with independent assessment
176 by each observer [27,28]. Feather corticosterone (CORT) concentrations were determined
177 according to the protocol of Bortolotti et al. [29] with minor adjustments. Briefly, feathers were
178 separated into vane and rachis regions, and approximately 100 mg of vane was finely chopped
179 with scissors. The fragments were placed into 50 mL tubes containing 10 mL of methanol,
180 sonicated, and incubated at 50°C in a water bath for CORT extraction. Quantification of
181 extracted CORT was carried out using a Corticosterone ELISA kit (Enzo Life Sciences Inc.,
182 Farmingdale, NY, USA), following the manufacturer's instructions.

183

184 **Liver characteristics**

185 Liver color was assessed promptly after euthanasia with a Minolta Chromameter CR-400
186 (Konica Minolta, Tokyo, Japan), recording the values for L*, a*, and b*. After liver color

187 assessment, samples were photographed for subsequent evaluation of hemorrhagic and fatty
188 liver scores. The hemorrhagic liver score ranged from 0 to 5, where 0 represented a normal liver
189 and 5 denoted extensive and severe hemorrhage [30]. The fatty liver score was evaluated using
190 a scale of 1 to 5, where a score of 1 denoted a normal liver and 5 indicated a dark red to pale
191 yellowish-red discoloration [31]. Liver fat concentration was measured using the Soxhlet
192 method [32]. Liver sample was freeze-dried for 72 h and finely ground for fat extraction.

193

194 **Animal welfare**

195 At the end of the experiment, 3 birds raised under normal conditions and 6 birds exposed to
196 multiple stress conditions were randomly chosen, representing over 50% of the birds in each
197 cage [33]. All chosen birds were assessed using the Welfare Quality® Assessment protocol for
198 poultry [34]. Four welfare parameters were evaluated: gait score, footpad dermatitis, hock burn,
199 and plumage cleanliness. Each indicator was visually scored by five trained evaluators. Gait
200 score was measured on a 0 to 5 scale, with 0 reflecting normal ambulation and 5 representing
201 severe lameness with an inability to walk. The severity of footpad dermatitis was determined
202 on a scale of 0 to 4, where 0 signified a healthy and undamaged footpad and 4 denoted advanced
203 lesions. Hock burn was graded on a 0 to 4 scale based on the observed degree of dermatitis on
204 the caudal hock. A score of 0 signified no lesions, whereas a score of 4 indicated pronounced
205 dermatitis. Plumage cleanliness was evaluated on a 0 to 3 scale, where 0 represented very clean
206 plumage and 3 signified significant contamination with fecal material.

207

208 **Antioxidant capacity in the liver and jejunum**

209 Antioxidant capacity was evaluated in both liver and jejunal mucosa tissue. Levels of
210 malondialdehyde (MDA) and total antioxidant capacity (TAC) were measured using the EZ-
211 Lipid Peroxidation (TBARS) Assay Kit (DG-TBA200, DoGenBio Inc., Seoul, Republic of
212 Korea) and EZ-Total Antioxidant Capacity (TAC) Assay Kit (DG-TAC200, DoGenBio Inc.,

213 Seoul, Republic of Korea), respectively. To standardize MDA and TAC values, protein
214 concentration in liver and jejunal mucosa was quantified using the Pierce BCA Protein Assay
215 Kit (23225, Thermo Fisher Scientific, Waltham, MA, USA). Reactive oxygen species (ROS)
216 were quantified using the OxiSelectTM In Vitro ROS/RNS Assay Kit (STA-347, Cell Biolabs,
217 Inc., San Diego, CA, USA), and NO levels were determined using the Nitric Oxide (NO)
218 Colorimetric Assay Kit (E-BC-K035-M, Elabscience, Houston, TX, USA), respectively. All
219 assessments were performed following the respective manufacturer's instructions.

220

221 **Jejunal morphology and goblet cell count**

222 Segments of jejunum measuring approximately 3 cm in length were excised, flushed with saline,
223 and placed in 5 mL tubes containing 10% neutral-buffered formalin for fixation. The fixed
224 tissues were then cut into smaller pieces and embedded in paraffin to generate paraffin blocks.
225 Paraffin-embedded sections were prepared by cutting tissues at a thickness of 4 μ m and stained
226 with hematoxylin-eosin and periodic acid-Schiff using established protocols [35,36]. The
227 stained sections were observed using a microscope (OS-370DVM, Osun Hithech, Goyang,
228 Republic of Korea). Morphometric parameters including villus height (VH), villus width (VW),
229 crypt depth (CD), and the VH:CD ratio were determined, with the mean value from 10 separate
230 measurements used for subsequent analysis. Goblet cell counts were evaluated in 10 villi within
231 a 200 μ m central area of each villus [37].

232

233 **Jejunal permeability**

234 Jejunal permeability was evaluated by determining transepithelial electrical resistance (TEER)
235 with a 2-channel Ussing chamber system (P2300, Physiologic Instruments Inc., Reno, NV,
236 USA). The mid-portion of the jejunum, positioned near Meckel's diverticulum and adjacent to
237 the duodenal loop, was excised and immediately immersed in Krebs-Henseleit buffer. Once the
238 luminal contents were removed, the intestinal segments were opened longitudinally to isolate

239 the mucosal layer. These mucosal samples were mounted on chamber inserts prior to placement
240 in the Ussing chamber. The chambers were filled with buffer solution maintained at 40°C via a
241 water bath, and continuously aerated with a 95% O₂ and 5% CO₂ mixture to sustain tissue
242 function. TEER measurements were derived from recordings of potential difference (PD),
243 short-circuit current, and electrical resistance, which were collected every 10 s over a 5 min
244 interval.

245

246 **Tight junction-related and stress-related gene expression**

247 The expression levels of genes involved in tight junction integrity and cellular stress response
248 in the jejunal mucosa were quantified using a QuantStudio™ 1 Real-Time PCR System
249 (Thermo Fisher Scientific, Waltham, MA, USA), as described by Shin et al. [38]. Total RNA
250 was isolated from the jejunal mucosa utilizing TRIzol™ Reagent (15596026, Thermo Fisher
251 Scientific, Waltham, MA, USA), following the manufacturer's instructions. For cDNA
252 synthesis, DNase I (RNase-free; EN0521, Thermo Fisher Scientific, Waltham, MA, USA)
253 treatment and the RevertAid First Strand cDNA Synthesis Kit (K1622, Thermo Fisher Scientific,
254 Waltham, MA, USA) were applied. The genes analyzed included *occludin* (*OCLN*), *claudin-1*
255 (*CLDN1*), *zonula occludens-1* (*ZO-1*), *junctional adhesion molecule B* (*JAM-2*), and *heat shock*
256 *protein 70* (*HSP70*). Primers for target gene amplification were designed using NCBI Primer-
257 BLAST based on published sequences (Table 3). The specificity of primer pairs was confirmed
258 by conventional PCR analysis [39]. Quantification of gene expression was calculated using the
259 $2^{-\Delta\Delta C_t}$ method with glyceraldehyde-3-phosphate dehydrogenase as the reference gene [40].

260

261 **Statistical analysis**

262 All statistical analyses were performed as a completely randomized design using the PROC
263 MIXED procedure of SAS (SAS Institute Inc., Cary, NC, USA). Each replicate served as an
264 experimental unit. All data were checked for normal distribution, and outliers were checked

265 with the UNIVARIATE procedure of SAS [41]. The LSMEANS procedure was conducted to
266 calculate treatment means and the PDIFF option was used to separate means if the difference
267 was significant. Statistical significance and tendency for statistical tests were set at $p < 0.05$ and
268 $0.05 \leq p < 0.10$, respectively.

269

270 **RESULTS**

271

272 **Growth performance**

273 Birds in NC, Thr, and Arg groups under multiple stress conditions had less ($p < 0.05$) BW, BWG,
274 FI, and FE than those in PC group under normal conditions (Table 4).

275

276 **Breast meat quality**

277 There was a trend for increased ($p = 0.083$) breast yield in Thr group compared to PC and NC
278 groups (Table 5). Moreover, NC group showed a tendency ($p = 0.098$) toward elevated pH at
279 24 h postmortem compared to PC group.

280

281 **Relative organ weight and blood parameters**

282 No significant differences in the relative weights of liver, spleen, kidney, bursa of Fabricius,
283 and thymus were observed among treatment groups (Table 6). Birds in NC and Arg groups had
284 greater ($p < 0.05$) ALT levels in the serum than those in PC group (Table 7). Levels of AST,
285 creatinine, uric acid, and blood hematological parameters did not differ significantly among
286 treatment groups (Table 8).

287

288 **Stress indicators**

289 Birds in NC, Thr, and Arg treatment groups had greater ($p < 0.05$) H:L ratio than those in PC
290 group (Table 9). Feather CORT concentrations were increased ($p < 0.05$) in NC group than in

291 PC group. Under multiple stress conditions, birds in Thr and Arg groups had less ($p < 0.05$)
292 feather CORT concentrations than those in NC group.

293

294 **Liver characteristics and animal welfare score**

295 There were no significant differences in liver color, hemorrhagic score, fatty liver score, and
296 liver fat concentration among treatment groups (Table 10). Similarly, gait score, footpad
297 dermatitis, hock burn, and feather cleanliness did not differ among treatment groups (Table 11).

298

299 **Antioxidant capacity in the liver and jejunum**

300 Birds in PC and Arg groups had less ($p < 0.05$) ROS levels in the liver than those in NC group
301 (Table 12). Furthermore, birds in Thr and Arg groups had less ($p < 0.05$) NO levels in the
302 jejunum than those in NC group. Notably, birds in Arg group showed the least ($p < 0.05$) NO
303 levels in the jejunum among all treatment groups under multiple stress conditions, approaching
304 the NO levels observed in PC group.

305

306 **Jejunal morphology**

307 Birds in PC group had greater ($p < 0.05$) VH than those in NC group (Table 13). Birds raised
308 under multiple stress conditions did not differ in VH among treatment groups. Moreover, birds
309 in PC group tended to display increased ($p = 0.096$) VW compared to those in Thr and Arg
310 groups. Birds in NC and Arg groups had less ($p < 0.05$) goblet cell counts than those in PC
311 group.

312

313 **Jejunal permeability**

314 Birds in PC group had greater ($p < 0.05$) PD and TEER values than those in NC group (Table
315 14). Birds in Thr and Arg groups had greater ($p < 0.05$) TEER values than those in NC group.

316

317 **Tight junction-related and stress-related gene expression**

318 Birds in NC group had less ($p < 0.05$) expression levels of *OCLN*, *CLDN1*, *ZO-1*, *JAM2*, and
319 *HSP70* than those in PC group (Table 15). However, expression levels of *OCLN*, *ZO-1*, and
320 *HSP70* were significantly increased ($p < 0.05$) in Thr and Arg groups compared to NC group.

321

322 **DISCUSSION**

323

324 In this study, broiler chickens subjected to multiple stress conditions exhibited decreased BW,
325 BWG, FI, and FE compared to those raised under normal conditions. Previous studies have
326 consistently shown that environmental stressors such as HS, increased relative humidity, and
327 high SD adversely affect poultry performance [42-44]. Furthermore, Goo et al. [9] reported that
328 HS or high SD reduced BW, BWG, FI, and FE in broiler chickens. These declines are frequently
329 ascribed to a reduction in FI, which restricts nutrient intake and subsequently lowers broiler
330 productivity [45]. In alignment with these findings, our results indicated that the drop in FI
331 observed in broiler chickens raised under multiple stress conditions may have been a key factor
332 contributing to diminished BW, BWG, and FE. Importantly, growth performance did not differ
333 significantly among treatment groups, signifying that dietary inclusion of 1.3-fold elevated
334 digestible Thr or Arg failed to restore growth performance impaired by HS and high SD. Khalid
335 et al. [46] found that a 1.5-fold increment in dietary digestible Thr had no effect on BWG and
336 FI in broiler chickens exposed to cyclic HS. Similarly, Brugaletta et al. [47] reported that
337 supplementation with 1.37% total Arg (Arg:Lys ratio = 1.20) did not enhance BW and FI in
338 broiler chickens raised under cyclic HS. Several explanations exist as to why Thr and Arg
339 supplementation did not ameliorate growth performance in broiler chickens raised under
340 multiple stress conditions. Broiler chickens under HS and high SD conditions typically
341 consume less FI [48,49], which may have resulted in insufficient intake of Thr and Arg to affect
342 growth performance. In addition, HS has been shown to suppress pancreatic digestive enzyme

343 activity and increase intestinal permeability [50-52], potentially limiting nutrient digestibility
344 and absorption ability. As a result, while Thr and Arg supplementation improved stress tolerance
345 and supported gut health, these benefits did not compensate for restricted nutrient intake and
346 utilization, resulting in no measurable improvements in growth performance under multiple
347 stress conditions. Importantly, the primary objective of dietary Thr and Arg supplementation in
348 the present study was not to directly stimulate FI or reduce dietary heat increment, but rather to
349 enhance physiological resilience and cellular stress adaptation under conditions of restricted
350 nutrient intake. Therefore, the lack of improvement in growth performance does not contradict
351 the observed benefits on stress biomarkers and gut health, but instead highlights the biological
352 limitation that performance recovery under HS is largely constrained by FI [5,44]. These
353 findings suggest that improvements in stress tolerance and metabolic homeostasis do not
354 necessarily translate into enhanced growth performance when nutrient intake remains
355 insufficient.

356 Our results indicated that birds in NC group tended to exhibit a greater 24 h postmortem
357 pH compared to those in PC group. The ultimate pH of meat serves as a fundamental quality
358 parameter, influencing WHC, tenderness, color, and shelf life [53]. It is well-established that
359 environmental stressors negatively impact meat quality by affecting muscle metabolism [52].
360 Typically, acute HS accelerates muscle glycolysis, triggering a rapid decline in meat pH and
361 resulting in pale, soft, and exudative meat [54]. Conversely, chronic stress, such as prolonged
362 HS exposure, elevates pH due to reduced muscle glycogen stores and subsequently diminished
363 lactic acid accumulation [55]. This response can be linked to the metabolic adaptations
364 associated with continuous HS and high SD throughout the 14 d period, which subsequently
365 led to the relatively greater 24 h postmortem pH observed in NC group compared to PC group.
366 Further supporting this, broiler chickens exposed to continuous HS from 35 to 41 d of age
367 exhibited a greater breast meat pH when compared to those maintained at thermoneutral
368 temperatures [55]. Additionally, broiler chickens reared under medium and high SD conditions

369 (17.5 and 22.5 birds/m²) showed greater breast meat pH compared to those reared at low SD
370 (12.5 birds/m²) [56]. Collectively, these findings suggest that chronic HS and high SD may
371 increase breast meat pH in broiler chickens, thereby influencing its physicochemical properties
372 and potentially compromising overall meat quality.

373 The present study indicated that Thr group exhibited a greater breast yield compared
374 to NC group under multiple stress, as well as PC group under thermoneutral conditions. The
375 elevation in breast yield observed in broiler chickens consuming diets supplemented with Thr
376 during multiple stress exposures may be attributed to several interrelated mechanisms. Dietary
377 Thr plays a direct role in muscle protein accretion by stimulating pathways associated with
378 cellular protein synthesis, notably the mTOR-4E-BP1/S6K and eIF signaling cascades [57-59].
379 Additionally, Thr acts as a critical precursor for mucins and upregulates the expression of tight
380 junction proteins, which enhances intestinal barrier integrity, decreases epithelial permeability
381 and nutrient leakage, and reduces inflammatory responses [15,60]. In alignment with these
382 findings, our study found that dietary Thr supplementation increased TEER values and tight
383 junction-related gene expression in broiler chickens exposed to multiple stress conditions.
384 Improved intestinal barrier function as a result of Thr administration likely limited the
385 unnecessary allocation of amino acids and energy to immune response and acute phase protein
386 synthesis, ensuring more nutrients remained available for growth [17,61]. Moreover, Thr
387 supplementation is capable of modulating inflammation and oxidative stress, thereby indirectly
388 dampening the overactivation of the hypothalamic-pituitary-adrenal axis and consequently
389 reducing CORT-induced muscle protein catabolism [62,63]. Taken together, these mechanisms
390 indicate that Thr supplementation not only conserves nutrient resources but also fosters a
391 metabolic state ideal for muscle accretion, which ultimately enhances the breast yield of broiler
392 chickens raised under multiple stress conditions.

393 Among stress biomarkers, the H:L ratio and feather CORT concentrations are widely
394 regarded as reliable indicators of stress in poultry [64]. Specifically, feather CORT is valuable

395 because it provides cumulative representation of hormonal responses to chronic HS [64]. In the
396 present study, birds in NC group exposed to multiple stress conditions exhibited increased H:L
397 ratios and feather CORT concentrations compared with those in PC group raised under normal
398 conditions. The experience of stress induces sustained activation of the hypothalamic-pituitary-
399 adrenal axis, leading to increased CORT concentrations both in blood and feathers [29,62].
400 Elevated systemic CORT facilitates the release of heterophils from the bone marrow, suppresses
401 lymphocyte migration, and triggers lymphocyte apoptosis, ultimately resulting in leukocyte
402 redistribution [62,65,66]. Hence, the increase in H:L ratio and feather CORT suggests that HS
403 and high SD provoke a heightened physiological stress response in broiler chickens.
404 Importantly, a 1.3-fold increase in digestible Thr and Arg mitigated feather CORT
405 concentrations in broiler chickens raised under multiple stress conditions. Thr reduces intestinal
406 permeability by promoting mucin synthesis and regulates the release of pro-inflammatory
407 cytokines, helping to ameliorate the inflammatory response [60]. Arg enhances oxygen
408 transport through NO synthesis and modulates the production of inflammatory cytokines, which
409 supports the reduction of inflammation [21]. These mechanisms may help counteract stress in
410 broiler chickens by modulating overactivation of the hypothalamic-pituitary-adrenal axis,
411 subsequently decreasing CORT secretion [67,62]. Thus, dietary supplementation with
412 additional Thr and Arg has the potential to alleviate physiological stress in broiler chickens
413 subjected to stressful environments. In this experiment, we evaluated feather CORT
414 concentrations as a biomarker of stress. Feather CORT is considered a reliable indicator in
415 poultry because it reflects the cumulative incorporation of circulating CORT during feather
416 development [29]. Conventional assessments of stress responses in poultry typically measure
417 the H:L ratio and blood CORT concentrations [65,68]. Nonetheless, blood-derived stress
418 indicators can be influenced by handling during sampling, pathogenic exposures, and
419 fluctuations in the severity or duration of stress, consequently indicating only short-term
420 physiological states [69,70]. Therefore, these measures may not comprehensively represent the

421 long-term stress burden experienced by the birds. In contrast, CORT becomes integrated into
422 feather keratin through diffusion from the bloodstream as feather grow, creating a retrospective
423 record of hormonal exposure over an extended duration [71]. Consequently, quantifying CORT
424 concentrations in feathers serves as a reliable and non-invasive method for assessing long-term
425 physiological stress responses in poultry [70].

426 Animal welfare scores, including gait score, footpad dermatitis, hock burn, and feather
427 cleanliness, are utilized to evaluate the physical comfort, mobility, and hygiene status of poultry
428 [72]. These welfare indicators are reported to be affected by factors such as temperature, SD,
429 litter quality, and housing system [72-74]. Our findings for animal welfare scores indicated that
430 multiple stress conditions did not significantly influence the welfare parameters of broiler
431 chickens housed in cages. Previous studies have demonstrated that HS and high SD can increase
432 litter moisture and worsen litter quality, leading to adverse effects on gait score and footpad
433 dermatitis in broiler chickens reared in floor pens [75,76]. Nevertheless, there is a lack of studies
434 examining the impact of environmental stress on animal welfare scores in cage-reared broiler
435 chickens. Since the cage rearing system eliminates the need for litter, welfare parameters in
436 cage-reared birds may be less affected by the deterioration of litter quality, possibly contributing
437 to the absence of significant differences observed in our study. Notably, welfare assessments
438 such as gait score and footpad dermatitis primarily reflect chronic, litter-mediated physical
439 damage rather than acute or subclinical physiological stress responses [77]. Because the cage
440 rearing system eliminates litter-related challenges and the experimental period was relatively
441 short, the applied multiple stress conditions may have been sufficient to induce physiological
442 stress responses without causing overt physical welfare impairments. These findings suggest
443 that the absence of changes in welfare scores does not necessarily indicate a lack of SD stress,
444 but rather reflects differences in the housing system and the nature of the stress response.

445 Oxidative stress arises when there is an imbalance favoring the production of ROS and
446 reactive nitrogen species (RNS) over the antioxidant defense system, ultimately leading to

447 cellular injury [78]. Environmental stressors, such as HS and high SD, have been documented
448 to cause oxidative stress in poultry by impairing mitochondrial function, elevating metabolic
449 activity, and increasing the generation of ROS and RNS [79-81]. Significantly, excessive NO
450 formed during stress responses can interact with superoxide, a form of ROS, to produce
451 peroxynitrite, which is a highly reactive oxidant and nitrating species that induces extensive
452 cellular and tissue damage through mechanisms such as cell death [82]. Therefore, the
453 modulation of ROS and RNS under stress is essential for maintaining the physiological
454 functions of broiler chickens. In our study, broiler chickens exposed to multiple stress
455 conditions exhibited elevated hepatic ROS levels, whereas dietary supplementation with 1.3-
456 fold higher digestible Arg significantly decreased liver ROS levels. The positive effects of Arg
457 on hepatic redox homeostasis may be due to its ability to enhance the activities of antioxidant
458 enzymes and support mitochondrial integrity through its metabolites, such as polyamines and
459 creatine [18]. Thus, Arg supplementation exceeding standard recommendations may strengthen
460 hepatic antioxidant capacity in broiler chickens subjected to multiple stress conditions.

461 Meanwhile, exposure to multiple stress conditions led to elevated jejunal NO levels,
462 which were mitigated by supplementing the diet with additional Thr and Arg. As a critical
463 precursor in the synthesis of mucin glycoproteins, Thr is essential for maintaining a protective
464 barrier on the intestinal epithelium, thus minimizing epithelial injury and reducing the risk of
465 pathogen invasion [14]. The role of Thr in mucin biosynthesis may also suppress the expression
466 of pro-inflammatory cytokines, thereby diminishing intestinal inflammation under stress [83]
467 and consequently decreasing iNOS-driven NO synthesis in the jejunum. Additionally, Arg plays
468 a regulatory role in immune responses by influencing pro-inflammatory cytokine synthesis and
469 downregulating iNOS expression [23], which may help alleviate intestinal inflammation and
470 reduce excess jejunal NO levels. Collectively, these findings imply that dietary supplementation
471 with 1.3-fold increased Thr and Arg effectively limits jejunal NO overproduction in broiler
472 chickens exposed to multiple stress, thereby preserving intestinal barrier function.

473 Jejunal morphology serves as a crucial indicator of intestinal integrity and nutrient
474 assimilation in poultry [84]. Exposure to various stressors can lead to oxidative stress within
475 the intestine, resulting in damage to epithelial cells and disruption of tight junction structures
476 [85]. In this study, broiler chickens raised under multiple stress conditions showed less VH than
477 those raised under normal conditions, demonstrating that HS and high SD can compromise
478 intestinal architecture. Consistent with our results, previous studies reported reduced jejunal
479 VH in broiler chickens exposed to HS and high SD compared to controls maintained under
480 conditions [86,87]. Therefore, these observations underscore that environmental stressors, such
481 as HS and high SD, have deleterious impacts on the jejunal structure of broiler chickens.

482 The intestinal mucus layer protects the intestinal epithelium by serving as both a
483 physical and chemical barrier [16]. Goblet cells are critical for sustaining intestinal health; they
484 secrete mucins that entrap pathogens and help regulate immune responses [88,89].
485 Consequently, the quantification of goblet cells functions as a histological indicator for
486 assessing the structural integrity of the intestinal barrier in poultry [15]. Due to the substantial
487 secretory activity required for mucin glycoproteins, goblet cells are highly susceptible to
488 induction of endoplasmic reticulum (ER) stress [90]. During stress, ER stress can overwhelm
489 the unfolded protein response, which in turn disrupts mucin synthesis and results in goblet cell
490 malfunction [91,92]. In the present study, goblet cell numbers were also diminished in groups
491 exposed to multiple stress conditions in comparison to the normal condition group, aligning
492 with previous studies under HS and high SD [86,93]. Thus, these results suggest that multiple
493 stress conditions impair intestinal health in broiler chickens by decreasing goblet cell
494 populations.

495 Birds in NC group exposed to multiple stress conditions exhibited decreased expression
496 of *OCLN*, *CLDN1*, *ZO-1*, and *JAM2* compared to those in PC group. These results indicate that
497 multiple stress conditions disrupt the integrity of tight junctions in broiler chickens. These
498 findings accord with previous studies demonstrating that exposure to multiple stress suppresses

499 tight junction-related gene expression and enhances intestinal permeability [11,48,52].
500 Nevertheless, supplementing the basal diet with a 1.3-fold increase in digestible Thr and Arg
501 concentrations elevated the expression of *OCLN* and *ZO-1* in broiler chickens under multiple
502 stress. Thr facilitates enhanced mucin synthesis and supports the mucus layer that shields the
503 epithelial surface [14]. An improved mucus barrier limits luminal pathogen access to epithelial
504 cells and suppresses mucosal inflammation, which helps maintain intestinal barrier function
505 [94]. By downregulating inflammatory signaling, the production and arrangement of tight
506 junction proteins and related genes are restored, thus reducing intestinal permeability [95].
507 Polyamines and NO, produced from Arg metabolism, help sustain epithelial integrity and
508 inhibit pro-inflammatory cytokine expression through immunomodulatory pathways [18,96].
509 Collectively, these mechanisms enable Arg to limit oxidative stress and inflammation-related
510 impairment of tight junctions, counteracting transcriptional reductions under stress and
511 reducing stress-induced damage to the intestinal barrier.

512 Heat shock proteins (HSPs) are stress-induced proteins that play a crucial role in
513 maintaining cellular homeostasis during exposure to stress conditions in animals [97]. They are
514 involved in processes such as protein secretion, folding, transport, degradation, and the
515 regulation of transcription factors, which helps prevent apoptosis [98]. Generally, HSPs serve
516 as a major protective mechanism against stress, becoming overexpressed to enhance cellular
517 tolerance and provide cytoprotection under stressful conditions [99]. Among these, HSP70 is
518 regarded as the most temperature-responsive isoform [100]. While HSP70 is normally
519 upregulated in response to stress, there are reports indicating that its expression might not
520 always increase during extended stress exposure [95]. The reduced expression of *HSP70*
521 observed in this study after two weeks of exposure to multiple stress may result from sustained
522 CORT secretion. Continuous elevation of CORT levels is capable of activating glucocorticoid
523 receptors (GRs), which can exert repressive effects on transcription through several pathways
524 [101]. In particular, GRs may directly associate with negative glucocorticoid response elements,

525 thus hindering the recruitment of RNA polymerase II and decreasing transcriptional initiation
526 [101]. Additionally, GRs are able to transrepress other transcription factors, including nuclear
527 factor kappa-light-chain-enhancer of activated B cells and activator protein-1 or recruit co-
528 repressors that modify chromatin structure, leading to further suppression of gene transcription
529 [101]. These mechanisms may account for the reduction in *HSP70* expression following two
530 weeks of multifaceted stress in broiler chickens. Furthermore, high SD was persistently
531 maintained throughout the experiment, even after the daily 8 h period of HS concluded. As a
532 result, these conditions likely imposed ongoing stress on broiler chickens, contributing to lower
533 *HSP70* expression in this investigation compared to previous study [97]. Under the imposed
534 multiple stress conditions, increasing concentrations of Thr and Arg in diets promoted recovery
535 of *HSP70* expression in broiler chickens. This effect may be linked to the observed reductions
536 in CORT concentrations in Thr and Arg supplemented groups. Collectively, these results
537 indicate that long-term exposure to multiple stress may inhibit tight junction-related gene
538 expression and *HSP70* levels in broiler chickens. Increasing concentrations of Thr and Arg in
539 diets may alleviate this inhibition, supporting improved intestinal integrity and greater cellular
540 resilience to stress.

541 The resistance measured by passing an electrical current across the epithelium reflects
542 paracellular resistance arising from tight junctions and the lateral intercellular space, a
543 parameter referred to as TEER [102]. TEER serves as a sensitive marker for assessing epithelial
544 barrier integrity [103]. Reduced TEER indicates tight junction disruption and increased passage
545 of luminal antigens or endotoxins into systemic circulation, a process implicated in immune
546 compromise and inflammation [102]. In our investigation, exposure to multiple stress markedly
547 decreased TEER values, corroborating previous findings that report both HS and high SD
548 impair intestinal barrier function [9,11,48]. Notably, supplementation of the basal diet with 1.3-
549 fold greater concentrations of Thr and Arg enhanced TEER in broiler chickens under these
550 stress conditions, indicating that these amino acids help to preserve intestinal barrier integrity

551 when birds are exposed to multiple stress. These results agree with our gene expression analysis,
552 where elevated dietary Thr and Arg increased the expression of *OCLN* and *ZO-1*, further
553 reinforcing the paracellular barrier. Additionally, Thr and Arg reduced jejunal NO levels, which
554 may signal mitigated intestinal inflammation, since excessive NO generation is associated with
555 epithelial injury and barrier dysfunction [23]. These findings indicate that enhanced dietary Thr
556 and Arg contribute to protection of intestinal barrier integrity under multiple stress conditions
557 by supporting TEER recovery.

558 In conclusion, exposure to multiple stress conditions combined with HS and high SD
559 impairs growth performance, stress resilience, hepatic antioxidant capacity, and intestinal
560 barrier health in broiler chickens. Under multiple stress conditions, dietary concentrations of
561 1.3-fold higher digestible Thr and Arg reduce feather CORT concentrations, indicative of
562 reduced physiological stress in broiler chickens. Moreover, increasing concentrations of Thr
563 and Arg in diets enhance intestinal barrier functions and cellular stress adaptation, as reflected
564 by decreased jejunal NO production, restoration of TEER, and upregulation of tight junction
565 and stress-related gene expression in broiler chickens subjected to multiple stress conditions.
566 Nevertheless, supplementation with 1.3-fold higher digestible Thr and Arg does not fully restore
567 growth performance in broiler chickens exposed to multiple stress conditions, which may be
568 attributable to reduced FI and impaired nutrient assimilation.

569

570 **ACKNOWLEDGEMENTS**

571

572 This work was supported by the National Research Foundation of Korea (NRF) grant funded
573 by the Korea government (MSIT) (RS-2023-00210634).

574 **REFERENCES**

575 1. Stott GH. What is animal stress and how is it measured?. *J Anim Sci.* 1981;52:150-3.
576 <https://doi.org/10.2527/jas1981.521150x>

577 2. Lim C, Yoo S, Choi Y, Jeon S, Son Y, Lee W. Assessing climate change impact on forest
578 habitat suitability and diversity in the Korean Peninsula. *Forests.* 2018;9:259.
579 <http://dx.doi.org/10.3390/f9050259>

580 3. Brugaletta G, Teyssier J, Rochell SJ, Dridi S, Sirri F. A review of heat stress in chickens.
581 Part I: Insights into physiology and gut health. *Front Physiol.* 2022;13:934381.
582 <https://doi.org/10.3389/fphys.2022.934381>

583 4. Ensminger ME, Oldfield JE, Heinemann WW. *Feeds and Nutrition: Formerly Feeds and
584 Nutrition, Complete.* Ensminger Publish; 1990

585 5. Lara LJ, Rostagno MH. Impact of heat stress on poultry production. *Animals.* 2013;3:356-
586 69. <https://doi.org/10.3390/ani3020356>

587 6. Quinteiro-Filho WM, Ribeiro A, Ferraz-de-Paula V, Pinheiro ML, Sakai M, Sá LRM, et al.
588 Heat stress impairs performance parameters, induces intestinal injury, and decreases
589 macrophage activity in broiler chickens. *Poult Sci.* 2010;89:1905-14.
590 <https://doi.org/10.3382/ps.2010-00812>

591 7. Kim YB, Yeom GL, Park JY, Lee HN, Park GY, Shin JW, et al. Nutritional strategies to
592 alleviate heat stress in broiler chickens and laying hens: Role of functional nutrients. *J Anim
593 Sci Technol.* 2025;67:949-81. <https://doi.org/10.5187/jast.2500205>

594 8. Hall AL. The effect of stocking density on the welfare and behaviour of broiler chickens
595 reared commercially. *Anim Welf.* 2001;10:23-40.
596 <https://doi.org/10.1017/S096272860002323X>

597 9. Goo D, Kim JH, Park GH, Reyes JBD, Kil DY. Effect of heat stress and stocking density
598 on growth performance, breast meat quality, and intestinal barrier function in broiler
599 chickens. *Animals.* 2019b;9:107. <http://dx.doi.org/10.3390/ani9030107>

600 10. Shynkaruk T, Long K, LeBlanc C, Schwean-Lardner K. Impact of stocking density on the
601 welfare and productivity of broiler chickens reared to 34 d of age. *J Appl Poult Res.*
602 2023;32:100344. <https://doi.org/10.1016/j.japr.2023.100344>

603 11. Kim HW, Kil DY, Kim JH. Effects of dietary concentration of threonine on growth
604 performance, meat quality, antioxidant capacity, stress biomarker, and intestinal barrier
605 function in broiler chickens raised under multiple stress conditions. *Anim Feed Sci Technol.*
606 2025;323:116303. <https://doi.org/10.1016/j.anifeedsci.2025.116303>

607 12. Kidd MT, Kerr BJ. Limiting amino acid responses in commercial broilers. *J Appl Poult Res.*
608 2000;9:223-33. <https://doi.org/10.1093/japr/9.2.223>

609 13. Qaisrani SN, Ahmed I, Azam F, Bibi F, Saima, Pasha TN, et al. Threonine in broiler diets:
610 an updated review. *Ann Anim Sci.* 2018;18:659-74. <https://doi.org/10.2478/aoas-2018-0020>

611 14. Mao X, Zeng X, Qiao S, Wu G, Li D. Specific roles of threonine in intestinal mucosal
612 integrity and barrier function. *Front Biosci.* 2011;3:1192-200. <https://doi.org/10.2741/e322>

613 15. Smirnov A, Sklan D, Uni Z. Mucin dynamics in the chick small intestine are altered by
614 starvation. *J Nutr.* 2004;134:736-42. <https://doi.org/10.1093/jn/134.4.736>

615 16. Kim YS, Ho SB. Intestinal goblet cells and mucins in health and disease: Recent insights
616 and progress. *Curr Gastroenterol Rep.* 2010;12:319-30. <https://doi.org/10.1007/s11894-010-0131-2>

618 17. Bortoluzzi C, Rochell SJ, Applegate TJ. Threonine, arginine, and glutamine: Influences on
619 intestinal physiology, immunology, and microbiology in broilers. *Poult Sci.* 2018;97:937-
620 45. <http://dx.doi.org/10.3382/ps/pex394>

621 18. Wu G, Bazer FW, Davis TA, Kim SW, Li P, Rhoads JM, et al. Arginine metabolism and
622 nutrition in growth, health and disease. *Amino acids.* 2009;37:153-68.
623 <https://doi.org/10.1007/s00726-008-0210-y>

624 19. Stöckler S, Holzbach U, Hanefeld F, Marquardt I, Helms G, Requart M, et al. Creatine
625 deficiency in the brain: a new, treatable inborn error of metabolism. *Pediatr Res.*
626 1994;36:409-13. <https://doi.org/10.1203/00006450-199409000-00023>

627 20. Ignarro LJ, Buga GM, Wei LH, Bauer PM, Wu G, del Soldato P. Role of the arginine-nitric
628 oxide pathway in the regulation of vascular smooth muscle cell proliferation. *Proc Natl
629 Acad Sci USA.* 2001;98:4202-8. <https://doi.org/10.1073/pnas.071054698>

630 21. Liu G, Kim WK. The functional roles of methionine and arginine in intestinal and bone
631 health of poultry: review. *Animals.* 2023;13:2949. <https://doi.org/10.3390/ani13182949>

632 22. Tan J, Liu S, Guo Y, Applegate TJ, Eicher SD. Dietary L-arginine supplementation
633 attenuates lipopolysaccharide-induced inflammatory response in broiler chickens. *Br J Nutr.*
634 2014;111:1394-404. <https://doi.org/10.1017/S0007114513003863>

635 23. Zhang B, Gan L, Shahid MS, Lv Z, Fan H, Liu D, et al.. In vivo and in vitro protective
636 effect of arginine against intestinal inflammatory response induced by *Clostridium*
637 *perfringens* in broiler chickens. *J Anim Sci Biotechnol.* 2019;10:73.
638 <https://doi.org/10.1186/s40104-019-0371-4>

639 24. Aviagen. Ross Boiler: Nutrition specifications. [Internet]. Aviagen. Inc.; 2022 [cited 2025
640 Jul 16].
641 https://aviagen.com/assets/Tech_Center/Ross_Broiler/RossBroilerNutritionSpecifications2022-EN.pdf

643 25. Lee SJ, Lee SY, Kim GD, Kim GB, Jin SK, Hur SJ. Effects of self-carbon dioxide-
644 generation material for active packaging on pH, water-holding capacity, meat color, lipid
645 oxidation and microbial growth in beef during cold storage. *J Sci Food Agric.*
646 2017;97:3642-8. <https://doi.org/10.1002/jsfa.8223>

647 26. Lee HJ, Yim DG, Jo C. Effect of plasma-activated organic acids against *Salmonella*
648 *Typhimurium* and *Escherichia coli* O157: H7 inoculated on pork loin and its quality

649 characteristics. Innov Food Sci Emerg. 2023;88:103455.
650 <https://doi.org/10.1016/j.ifset.2023.103455>

651 27. Cengiz Ö, Köksal BH, Tatlı O, Sevim Ö, Ahsan U, Üner AG, et al. Effect of dietary probiotic
652 and high stocking density on the performance, carcass yield, gut microflora, and stress
653 indicators of broilers. *Poult Sci*. 2015;94:2395-403. <https://doi.org/10.3382/ps/pev194>

654 28. Yu DG, Namgung N, Kim JH, Won SY, Choi WJ, Kil DY. Effects of stocking density and
655 dietary vitamin C on performance, meat quality, intestinal permeability, and stress indicators
656 in broiler chickens. *J Anim Sci Technol*. 2021;63:815-26.
657 <https://doi.org/10.5187/jast.2021.e77>

658 29. Bortolotti GR, Marchant TA, Blas J, German T. Corticosterone in feathers is a long-term,
659 integrated measure of avian stress physiology. *Funct Ecol*. 2008;22:494-500.
660 <https://doi.org/10.1111/j.1365-2435.2008.01387.x>

661 30. Diaz GJ, Squires EJ, Julian RJ. The use of selected plasma enzyme activities for the
662 diagnosis of fatty liver-hemorrhagic syndrome in laying hens. *Avian Dis*. 1999;43:768-73.
663 <https://doi.org/10.2307/1592746>

664 31. Choi YI, Ahn HJ, Lee BK, Oh ST, An BK, Kang CW. Nutritional and hormonal induction
665 of fatty liver syndrome and effects of dietary lipotropic factors in egg-type male
666 chicks. *Asian-Australas J Anim Sci*. 2012;25:1145-52.
667 <https://doi.org/10.5713/ajas.2011.11418>

668 32. Association of Official Analytical Chemists (AOAC). *Official Methods of Analysis*. 18th
669 ed. AOAC; 2007.

670 33. Weimer SL, Mauromoustakos A, Karcher DM, Erasmus MA. Differences in performance,
671 body conformation, and welfare of conventional and slow-growing broiler chickens raised
672 at 2 stocking densities. *Poult Sci*. 2020;99:4398-407.
673 <https://doi.org/10.1016/j.psj.2020.06.009>

674 34. Welfare Quality. Welfare Quality® Assessment protocol for poultry. 1st ed. Welfare
675 Quality® Consortium; 2009.

676 35. Luna LG. Manual of Histologic Staining Methods of the Armed Forces Institute of
677 Pathology. 3rd ed. McGraw Hill; 1968.

678 36. Tarachai P, Yamauchi K. Effects of luminal nutrient absorption, intraluminal physical
679 stimulation, and intravenous parenteral alimentation on the recovery responses of duodenal
680 villus morphology following feed withdrawal in chickens. Poult Sci. 2000;79:1578-85.
681 <https://doi.org/10.1093/ps/79.11.1578>

682 37. Santos RR, Awati A, Roubos-van den Hil PJ, Tersteeg-Zijderveld MHG, Koolmees PA,
683 Fink-Gremmels J. Quantitative histo-morphometric analysis of heat-stress-related damage
684 in the small intestines of broiler chickens. Avian Pathol. 2015;44:19-22.
685 <https://doi.org/10.1080/03079457.2014.988122>

686 38. Shin JE, Kim JH, Goo D, Han GP, Pitargue FM, Kang HK, et al. Effect of dietary
687 supplementation of betaine on productive performance, egg quality and jejunal tight
688 junction-related gene expression in laying hens raised under hot environmental conditions.
689 Livest Sci. 2018;214:79-82. <https://doi.org/10.1016/j.livsci.2018.05.013>

690 39. Aznar R, Alarcón B. On the specificity of PCR detection of listeria monocytogenes in food:
691 a comparison of published primers. Syst Appl Microbiol. 2002;25:109-19.
692 <https://doi.org/10.1078/0723-2020-00079>

693 40. Thomsen R, Sølvsten CAE, Linnet TE, Blechingberg J, Nielsen AL. Analysis of qPCR data
694 by converting exponentially related Ct values into linearly related X0 values. J Bioinf
695 Comput Biol. 2010;8:885-900. <https://doi.org/10.1142/S0219720010004963>

696 41. Steel RGD, Torrie JH, Dickey DA. Principles and procedures of statistics, a biometrical
697 approach. 3rd ed. McGraw Hill; 1997.

698 42. Cheng TK, Coon CN, Hamre ML. Effect of environmental stress on the ascorbic acid
699 requirement of laying hens. Poult Sci. 1990;69:774-80. <https://doi.org/10.3382/ps.0690774>

700 43. Najafi P, Zulkifli I, Jajuli NA, Farjam AS, Ramiah SK, Amir AA, et al. Environmental
701 temperature and stocking density effects on acute phase proteins, heat shock protein 70,
702 circulating corticosterone and performance in broiler chickens. *Int J Biometeorol.*
703 2015;59:1577-83. <https://doi.org/10.1007/s00484-015-0964-3>

704 44. Kim HW, Lee SY, Kim YB, Kim JH. Influence of functional nutrients on poultry
705 performance and health by reducing stress response under environmental stress. *Worlds*
706 *Poult Sci J.* 2025;81:879-915. <https://doi.org/10.1080/00439339.2025.2506399>

707 45. Olgun O, Abdulqader AF, Karabacak A. The importance of nutrition in preventing heat
708 stress at poultry. *Worlds Poult Sci J.* 2021;77:661-78.
709 <https://doi.org/10.1080/00439339.2021.1938340>

710 46. Khalid A, Bashir S, Kalsoom A, Rehman HFU, Rashid MA, Sandhu MA, et al. Effects of
711 high dietary threonine supplementation on growth performance, health biomarkers, and
712 intestinal histology in cyclic heat-stressed broilers. *Vet World.* 2025;18:646-57.
713 <https://doi.org/10.14202/vetworld.2025.646-657>

714 47. Brugaletta G, Laghi L, Zampiga M, Oliveri C, Indio V, Piscitelli R, et al. Metabolic and
715 microbiota response to arginine supplementation and cyclic heat stress in broiler chickens.
716 *Front Physiol.* 2023;14:1155324. <https://doi.org/10.3389/fphys.2023.1155324>

717 48. Goo D, Kim JH, Choi HS, Park GH, Han GP, Kil DY. Effect of stocking density and sex on
718 growth performance, meat quality, and intestinal barrier function in broiler chickens. *Poult*
719 *Sci.* 2019;98:1153-60. <http://dx.doi.org/10.3382/ps/pey491>

720 49. Andretta I, Kipper M, Schirrmann GD, Franceschina CS, Ribeiro AML. Modeling the
721 performance of broilers under heat stress. *Poult Sci.* 2021;100:101338.
722 <https://doi.org/10.1016/j.psj.2021.101338>

723 50. Routman KS, Yoshida L, Frizzas de Lima AC, Macari M, Pizauro Jr JM. Intestinal and
724 pancreas enzyme activity of broilers exposed to thermal stress. *Braz J Poult Sci.* 2003;5:23-
725 7. <https://doi.org/10.1590/S1516-635X2003000100003>

726 51. Al-Zghoul MB, Alliftawi ARS, Saleh KMM, Jaradat ZW. Expression of digestive enzyme
727 and intestinal transporter genes during chronic heat stress in the thermally manipulated
728 broiler chicken. *Poult Sci.* 2019;98:4113-22. <http://dx.doi.org/10.3382/ps/pez249>

729 52. Kim HW, Kim JH, Han GP, Kil DY. Increasing concentrations of dietary threonine,
730 tryptophan, and glycine improve growth performance and intestinal health with decreasing
731 stress responses in broiler chickens raised under multiple stress conditions. *Anim Nutr.*
732 2024;18:145-53. <https://doi.org/10.1016/j.aninu.2024.03.018>

733 53. Petracci M, Mudalal S, Soglia F, Cavani C. Meat quality in fast-growing broiler chickens.
734 *Worlds Poult Sci J.* 2015;71:363-74. <https://doi.org/10.1017/S0043933915000367>

735 54. Zaboil G, Huang X, Feng X, Ahn DU. How can heat stress affect chicken meat quality? - a
736 review. *Poult Sci.* 2019;98:1551-6. <http://dx.doi.org/10.3382/ps/pey399>

737 55. Mancinelli AC, Baldi G, Soglia F, Mattioli S, Sirri F, Petracci M, et al. Impact of chronic
738 heat stress on behavior, oxidative status and meat quality traits of fast-growing broiler
739 chickens. *Front Physiol.* 2023;14:1242094. <https://doi.org/10.3389/fphys.2023.1242094>

740 56. Tong HB, Lu J, Zou JM, Wang Q, Shi SR. Effects of stocking density on growth
741 performance, carcass yield, and immune status of a local chicken breed. *Poult Sci.*
742 2012;91:667-73. <https://doi.org/10.3382/ps.2011-01597>

743 57. Kimball SR, Jefferson LS. Signaling pathways and molecular mechanisms through which
744 branched-chain amino acids mediate translational control of protein synthesis. *J Nutr.*
745 2006;136:227S-31S. <https://doi.org/10.1093/jn/136.1.227S>

746 58. Tesseraud S, Abbas M, Duchene S, Bigot K, Vaudin P, Dupont J. Mechanisms involved in
747 the nutritional regulation of mRNA translation: features of the avian model. *Nutr Res Rev.*
748 2006;19:104-16. <https://doi.org/10.1079/NRR2006120>

749 59. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. *Cell.*
750 2012;149:274-93. <https://doi.org/10.1016/j.cell.2012.03.017>

751 60. Tang Q, Tan P, Ma N, Ma X. Physiological functions of threonine in animals: beyond
752 nutrition metabolism. *Nutrients*. 2021;13:2592. <https://doi.org/10.3390/nu13082592>

753 61. Chen Y, Zhang H, Cheng Y, Li Y, Wen C, Zhou Y. Dietary L-threonine supplementation
754 attenuates lipopolysaccharide-induced inflammatory responses and intestinal barrier
755 damage of broiler chickens at an early age. *Br J Nutr*. 2018;119:1254-62.
756 <https://doi.org/10.1017/S0007114518000740>

757 62. Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses?
758 Integrating permissive, suppressive, stimulatory, and preparative actions. *Endocr Rev*.
759 2000;21:55-89. <https://doi.org/10.1210/edrv.21.1.0389>

760 63. Dong H, Lin H, Jiao HC, Song ZG, Zhao JP, Jiang KJ. Altered development and protein
761 metabolism in skeletal muscles of broiler chickens (*Gallus gallus domesticus*) by
762 corticosterone. *Comp Biochem Physiol A Mol Integr Physiol*. 2007;147:189-95.
763 <http://dx.doi.org/10.1016/j.cbpa.2006.12.034>

764 64. Ataallahi M, Nejad JG, Song J, Kim J, Park K. Effects of feather processing methods on
765 quantity of extracted corticosterone in broiler chickens. *J Anim Sci Technol*. 2020;62:884-
766 92. <https://doi.org/10.5187/jast.2020.62.6.884>

767 65. Gross WB, Siegel HS. Evaluation of the heterophil/lymphocyte ratio as a measure of stress
768 in chickens. *Avian Dis*. 1983;27:972-9. <https://doi.org/10.2307/1590198>

769 66. Davis AK, Maney DL, Maerz JC. The use of leukocyte profiles to measure stress in
770 vertebrates: a review for ecologists. *Funct Ecol*. 2008;22:760-72.
771 <https://doi.org/10.1111/j.1365-2435.2008.01467.x>

772 67. Abo-Al-Ela HG, El-Kassas S, El-Naggar K, Abdo SE, Jahejo AR, Al Wakeel RA. Stress
773 and immunity in poultry: light management and nanotechnology as effective immune
774 enhancers to fight stress. *Cell Stress Chaperones*. 2021;26:457-72.
775 <https://doi.org/10.1007/s12192-021-01204-6>

776 68. Post J, Rebel JMJ, ter Huurne AAHM. Physiological effects of elevated plasma
777 corticosterone concentrations in broiler chickens. An alternative means by which to assess
778 the physiological effects of stress. *Poult Sci.* 2003;82:1313-8.
779 <https://doi.org/10.1093/ps/82.8.1313>

780 69. Romero LM, Fairhurst GD. Measuring corticosterone in feathers: Strengths, limitations,
781 and suggestions for the future. *Comp Biochem Physiol A Mol Integr Physiol.* 2016;202:112-
782 22. <https://doi.org/10.1016/j.cbpa.2016.05.002>

783 70. Lee C, Kim JH, Kil DY. Comparison of stress biomarkers in laying hens raised under a
784 long-term multiple stress condition. *Poult Sci.* 2022;101:101868.
785 <https://doi.org/10.1016/j.psj.2022.101868>

786 71. Fairhurst GD, Marchant TA, Soos C, Machin KL, Clark RG. Experimental relationships
787 between levels of corticosterone in plasma and feathers in a free-living bird. *J Exp Biol.*
788 2013;216:4071-81. <https://doi.org/10.1242/jeb.091280>

789 72. Kwon B, Park J, Kim D, Lee K. Assessment of welfare problems in broilers: focus on
790 musculoskeletal problems associated with their rapid growth. *Animals.* 2024;12:1116.
791 <https://doi.org/10.3390/ani14071116>

792 73. Taira K, Nagai T, Obi T, Takase K. Effect of litter moisture on the development of footpad
793 dermatitis in broiler chickens. *J Vet Med Sci.* 2014;76:583-6.
794 <https://doi.org/10.1292/jvms.13-0321>

795 74. Dikmen BY, Gündüz M. Comparison of cage versus floor rearing systems on broiler
796 performance, welfare and behavioral parameters. *J Hell Vet Med Soc.* 2025;76:8563-74.
797 <https://doi.org/10.12681/jhvms.35239>

798 75. Tahamtani FM, Pedersen IJ, Riber AB. Effects of environmental complexity on welfare
799 indicators of fast-growing broiler chickens. *Poult Sci.* 2020;99:21-9.
800 <https://doi.org/10.3382/ps/pez510>

801 76. Kuter E, Cengiz Ö, Köksal BK, Sevim Ö, Tatlı O, Ahsan U, et al. Litter quality and
802 incidence and severity of footpad dermatitis in heat stressed broiler chickens fed
803 supplemental zinc. *Livest Sci.* 2023;267:105145.
804 <https://doi.org/10.1016/j.livsci.2022.105145>

805 77. de Jong IC, Gunnink H, van Harn J. Wet litter not only induces footpad dermatitis but also
806 reduces overall welfare, technical performance, and carcass yield in broiler chickens.
807 2014;23:51-8. <https://doi.org/10.3382/japr.2013-00803>

808 78. Surai PF, Kochish II, Fisinin VI, Kidd MT. Antioxidant defence systems and oxidative stress
809 in poultry biology: an update. *Antioxidants.* 2019;8:235.
810 <https://doi.org/10.3390/antiox8070235>

811 79. Akbarian A, Michiels J, Degroote J, Majdeddin M, Golian A, De Smet S. Association
812 between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary
813 interventions with phytochemicals. *J Anim Sci Biotechnol.* 2016;7:37.
814 <https://doi.org/10.1186/s40104-016-0097-5>

815 80. Oke OE, Akosile OA, Oni AI, Opowoye IO, Ishola CA, Adebiyi JO, et al. Oxidative stress
816 in poultry production. *Poult Sci.* 2024;103:104003.
817 <https://doi.org/10.1016/j.psj.2024.104003>

818 81. Aryal B, Kwakye J, Ariyo OW, Ghareed AFA, Milfort MC, Fuller AL, et al. Major oxidative
819 and antioxidant mechanisms during heat stress-induced oxidative stress in chickens.
820 *Antioxidants.* 2025;14:471. <https://doi.org/10.3390/antiox14040471>

821 82. Radi R. Peroxynitrite, a stealthy biological oxidant. *J Biol Chem.* 2013;228:26464-72.
822 <https://doi.org/10.1074/jbc.R113.472936>

823 83. He F, Wu C, Li P, Li N, Zhang D, Zhu Q, et al. Functions and signaling pathways of amino
824 acids in intestinal inflammation. *Biomed Res Int.* 2018;2018:9171905.
825 <https://doi.org/10.1155/2018/9171905>

826 84. Liu K, Jia M, Wong EA. Delayed access to feed affects broiler small intestinal morphology
827 and goblet cell ontogeny. Poult Sci. 2020;99:5275-85.
828 <https://doi.org/10.1016/j.psj.2020.07.040>

829 85. Mishra B, Jha R. Oxidative stress in the poultry gut: potential challenges and interventions.
830 Front Vet Sci. 2019;6:60. <https://doi.org/10.3389/fvets.2019.00060>

831 86. Kridtayopas C, Rakangtong C, Bunchasak C, Loongyai W. Effect of prebiotic and symbiotic
832 supplementation in diet on growth performance, small intestinal morphology, stress, and
833 bacterial population under high stocking density condition of broiler chickens. Poult Sci.
834 2019;98:4595-605. <http://dx.doi.org/10.3382/ps/pez152>

835 87. Mazzoni M, Zampiga M, Clavenzani P, Lattanzio G, Tagliavia C, Sirri F. Effect of chronic
836 heat stress on gastrointestinal histology and expression of feed intake-regulatory hormones
837 in broiler chickens. Animal. 2022;16:100600.
838 <https://doi.org/10.1016/j.animal.2022.100600>

839 88. Moal VL, Servin AL. The front line of enteric host defense against unwelcome intrusion of
840 harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin Microbiol
841 Rev. 2006;19:315-37. <https://doi.org/10.1128/cmr.19.2.315-337.2006>

842 89. Dharmani P, Srivastava V, Kissoon-Singh V, Chadee K. Role of intestinal mucins in innate
843 host defense mechanisms against pathogens. J Innate Immun. 2009;1:123-35.
844 <https://doi.org/10.1159/000163037>

845 90. Johansson MEV, Hansson GC. Goblet cells need some stress. J Clin Invest.
846 2022;132:e162030. <https://doi.org/10.1172/JCI162030>

847 91. Luo K, Cao SS. Endoplasmic reticulum stress in intestinal epithelial cell function and
848 inflammatory bowel disease. Gastroenterol. Res Pract. 2015;2015:328791.
849 <http://dx.doi.org/10.1155/2015/328791>

850 92. Ma X, Dai Z, Sun K, Zhang Y, Chen J, Yang Y, et al. Intestinal epithelial cell endoplasmic
851 reticulum stress and inflammatory bowel disease pathogenesis: an update review. *Front*
852 *Immunol.* 2017;8:1271. <https://doi.org/10.3389/fimmu.2017.01271>

853 93. Zhang C, Zhao XH, Yang L, Chen XY, Jiang RS, Jin SH, et al. Resveratrol alleviates heat
854 stress-induced impairment of intestinal morphology, microflora, and barrier integrity in
855 broilers. *Poult Sci.* 2017;96:4325-32. <http://dx.doi.org/10.3382/ps/pex266>

856 94. Duangnumsaeng Y, Zentek J, Boroojeni FG. Development and functional properties of
857 intestinal mucus layer in poultry. *Front Immunol.* 2021;12:745849.
858 <https://doi.org/10.3389/fimmu.2021.745849>

859 95. Al-Sadi R, Boivin M, Ma T. Mechanism of cytokine modulation of epithelial tight junction
860 barrier. *Front Biosci.* 2009;14:2765-78. <https://doi.org/10.2741/3413>

861 96. Fathima S, Al Hakeem WG, Selvaraj RK, Shanmugasundaram R. Beyond protein synthesis:
862 the emerging role of arginine in poultry nutrition and host-microbe interactions. *Front*
863 *Physiol.* 2024;14:1326809. <https://doi.org/10.3389/fphys.2023.1326809>

864 97. Balakrishnan KN, Ramiah SK, Zulkifli I. Heat shock protein response to stress in poultry:
865 A review. *Animals.* 2023;13:317. <https://doi.org/10.3390/ani13020317>

866 98. Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, et al. Guidelines
867 for the nomenclature of the human heat shock proteins. *Cell Stress Chaperones.*
868 2009;14:105-11. <https://doi.org/10.1007/s12192-008-0068-7>

869 99. Madkour M, Salman FM, El-Wardany I, Abdel-Fattah SA, Alagawany M, Hashem NM, et
870 al. Mitigating the detrimental effects of heat stress in poultry through thermal conditioning
871 and nutritional manipulation. *J Therm Biol.* 2022;103:103169.
872 <https://doi.org/10.1016/j.jtherbio.2021.103169>

873 100. Kregel KC. Invited review: heat shock proteins: modifying factors in physiological stress
874 responses and acquired thermotolerance. *J Appl Physiol.* 2002;92:2177-86.
875 <https://doi.org/10.1152/japplphysiol.01267.2001>

876 101. Oakley RH, Cidlowski JA. The biology of the glucocorticoid receptor: New signaling
877 mechanisms in health and disease. *J Allergy Clin Immunol.* 2013;132:1033-44.
878 <https://doi.org/10.1016/j.jaci.2013.09.007>

879 102. Farré R, Fiorani M, Rahiman SA, Matteoli G. Intestinal permeability, inflammation and
880 the role of nutrients. *Nutrients.* 2020;12:1185. <http://dx.doi.org/10.3390/nu12041185>

881 103. Buzzia MS, Netzel-Arnett S, Shea-Donohue T, Zhao A, Lin C, List K, et al. Membrane-
882 anchored serine protease matriptase regulates epithelial barrier formation and permeability
883 in the intestine. *Proc Natl Acad Sci USA.* 2010;107:4200-5.
884 <https://doi.org/10.1073/pnas.0903923107>

ACCEPTED

885 **Table 1.** Composition and nutrient levels of basal diet fed to broiler chickens from 1 to 21 d of
 886 age (as-fed basis)

Items	Basal diet
Ingredient, %	
Corn	56.67
Soybean meal, 46% CP	30.22
Corn gluten meal	6.39
Soybean oil	2.19
MCP	1.75
Limestone	1.14
Salt	0.30
98.5% DL-Met	0.29
55% L-Lys-H ₂ SO ₄	0.44
98.5% L-Thr	0.02
99% L-Arg	0.04
50% Choline	0.10
NaHCO ₃	0.15
Vitamin premix ¹⁾	0.15
Mineral premix ²⁾	0.15
Total	100.00
Calculated energy and nutrient content	
AME _n , kcal/kg	3,013
CP, %	22.25
Digestible Lys, %	1.25
Digestible Met + Cys, %	0.96
Digestible Trp, %	0.21

Digestible Thr, %	0.84
Digestible Arg, %	1.34
Total calcium, %	0.85
Available phosphorus, %	0.46

887 ¹⁾Provided per kilogram of the complete diet: vitamin A (from vitamin A acetate), 12,000 IU;
888 vitamin D₃, 4,000 IU; vitamin E (from DL- α -tocopheryl acetate), 80 mg; vitamin K₃, 4 mg;
889 vitamin B₁, 4 mg; vitamin B₂, 10 mg; vitamin B₆, 6 mg; vitamin B₁₂, 20 μ g; calcium
890 pantothenate, 20 mg; folic acid, 2 mg; biotin, 200 μ g; niacin, 60 mg.

891 ²⁾Provided per kilogram of the complete diet: iron, 57.14 mg; copper, 16 mg; zinc, 64.29 mg;
892 manganese, 85.71 mg; cobalt, 170 μ g; selenium, 200 μ g; iodine, 570 μ g.

ACCEPTED

893 **Table 2.** Composition and nutrient levels of experimental diets fed to broiler chickens from 21
 894 to 35 d of age (as-fed basis)

Items	Dietary treatments ¹⁾		
	Basal diet	Thr	Arg
Ingredient, %			
Corn	65.23	65.23	66.10
Soybean meal, 46% CP	22.89	22.94	22.84
Corn gluten meal	6.28	5.94	5.00
Soybean oil	1.74	1.79	1.77
MCP	1.32	1.32	1.32
Limestone	0.86	0.86	0.86
Salt	0.30	0.30	0.30
98.5% DL-Met	0.26	0.26	0.28
55% L-Lys-H ₂ SO ₄	0.49	0.49	0.50
98.5% L-Thr	0.00	0.23	0.02
99% L-Arg	0.08	0.09	0.46
50% Choline	0.10	0.10	0.10
NaHCO ₃	0.15	0.15	0.15
Vitamin premix ²⁾	0.15	0.15	0.15
Mineral premix ³⁾	0.15	0.15	0.15
Total	100.00	100.00	100.00
Calculated energy and nutrient content			
AME _n , kcal/kg	3,100	3,100	3,100
CP, %	19.50	19.50	19.50
Digestible Lys, %	1.08	1.08	1.08
Digestible Met + Cys, %	0.86	0.86	0.86

Digestible Trp, %	0.18	0.18	0.18
Digestible Thr, %	0.72	0.94	0.72
Digestible Arg, %	1.17	1.17	1.52
Total calcium, %	0.65	0.65	0.65
Available phosphorus, %	0.36	0.36	0.36
Analyzed nutrient content			
Total Thr, %	0.74	0.96	0.78
Total Arg, %	1.16	1.13	1.48

895 ¹⁾Thr, multiple stress conditions and basal diet supplemented with 1.3-fold higher digestible
 896 threonine; Arg, multiple stress conditions and basal diet supplemented with 1.3-fold higher
 897 digestible arginine.

898 ²⁾Provided per kilogram of the complete diet: vitamin A (from vitamin A acetate), 12,000 IU;
 899 vitamin D₃, 4,000 IU; vitamin E (from DL- α -tocopheryl acetate), 80 mg; vitamin K₃, 4 mg;
 900 vitamin B₁, 4 mg; vitamin B₂, 10 mg; vitamin B₆, 6 mg; vitamin B₁₂, 20 μ g; calcium
 901 pantothenate, 20 mg; folic acid, 2 mg; biotin, 200 μ g; niacin, 60 mg.

902 ³⁾Provided per kilogram of the complete diet: iron, 57.14 mg; copper, 16 mg; zinc, 64.29 mg;
 903 manganese, 85.71 mg; cobalt, 170 μ g; selenium, 200 μ g; iodine, 570 μ g.

Table 3. The sequence of the primers used in quantitative real-time PCR

RNA target	Primer sequence	Size for PCR product, bp	Accession no.
<i>GAPDH</i>	F: 5'-ATGGCATCCAAGGAGTGAGC-3'	130	NM_204305.2
	R: 5'-GGGAACAGAACTGGCCTCTC-3'		
<i>OCLN</i>	F: 5'-GTGGAGTCCAGTGATGAGCG-3'	142	NM_205128.1
	R: 5'-TGTCCATCTCAGCACAGAGC-3'		
<i>CLDN1</i>	F: 5'-GCTGACCTGTACTTGAGCTG-3'	171	NM_001013611.2
	R: 5'-TGGCACAGGGTTAATGCAAA-3'		
<i>ZO-1</i>	F: 5'-AGGTGAAGTGTTCGGGTTG-3'	188	XM_015278975.1
	R: 5'-AGAAATCCGCTCGATCTCCT-3'		
<i>JAM2</i>	F: 5'-GTGAATTACAGTTCCCTCCC-3'	187	NM_001006257.2
	R: 5'-GTTATGTTGGCTGTTCTAGC-3'		
<i>HSP70</i>	F: 5'-CCGTGGAGTTCCCTCAGATCG-3'	361	NM_001006685.2
	R: 5'-CTCTGCCATCTGGTTCCGGT-3'		

905 *GAPDH*, glyceraldehyde-3-phosphate dehydrogenase; *OCLN*, occludin; *CLDN1*, claudin-1; *ZO-1*, zonula occludens-1; *JAM2*, junctional adhesion
 906 molecule B; *HSP70*, heat shock protein 70.

Table 4. Effects of dietary threonine and arginine on growth performance of broiler chickens raised under multiple stress conditions¹⁾

Items	Treatments ²⁾				SEM	<i>p</i> -value
	PC	NC	Thr	Arg		
BW, g	1,808 ^a	1,471 ^b	1,461 ^b	1,477 ^b	24.0	<0.001
BWG, g	1,112 ^a	776 ^b	765 ^b	781 ^b	24.0	<0.001
FI, g	1,553 ^a	1,209 ^b	1,173 ^b	1,245 ^b	27.0	<0.001
FE, g/kg	715 ^a	642 ^b	652 ^b	627 ^b	10.9	<0.001
Mortality, %	2.5	1.3	0.0	1.3	1.53	0.723

908 ^{a,b}Means within a variable with no common superscript differ significantly (*p* < 0.05).

909 ¹⁾Data are least squares means of 8 observations per treatment.

910 ²⁾PC, positive control (thermoneutral conditions and basal diet); NC, negative control (multiple stress conditions and basal diet); Thr, multiple stress
911 conditions and basal diet supplemented with 1.3-fold higher digestible threonine; Arg, multiple stress conditions and basal diet supplemented with 1.3-
912 fold higher digestible arginine.

913 BW, body weight; BWG, body weight gain; FI, feed intake; FE, feed efficiency.

914

Table 5. Effects of dietary threonine and arginine on breast meat quality of broiler chickens raised under multiple stress conditions¹⁾

		Treatments ²⁾					
Items		PC	NC	Thr	Arg	SEM	p-value
Breast yield, %		20.1	20.0	21.6	21.1	0.50	0.083
pH	1 h	6.1	6.2	6.1	6.1	0.09	0.468
	24 h	5.3	5.5	5.4	5.5	0.09	0.098
Meat color	L*	48.8	47.2	48.4	49.2	0.62	0.166
	a*	3.8	3.5	3.5	3.6	0.27	0.818
	b*	9.4	10.2	10.3	10.3	0.61	0.700
Water holding capacity, %		71.1	67.9	68.9	68.6	2.42	0.811
TBARS, mg MDA/kg meat		0.34	0.31	0.31	0.31	0.015	0.368

915 ¹⁾Data are least squares means of 8 observations per treatment.

916 ²⁾PC, positive control (thermoneutral conditions and basal diet); NC, negative control (multiple stress conditions and basal diet); Thr, multiple stress
 917 conditions and basal diet supplemented with 1.3-fold higher digestible threonine; Arg, multiple stress conditions and basal diet supplemented with 1.3-
 918 fold higher digestible arginine.

919 L*, lightness; a*, redness; b*, yellowness; TBARS, thiobarbituric acid reactive substances; MDA, malondialdehyde.

920 **Table 6.** Effects of dietary threonine and arginine on relative organ weight of broiler chickens raised under multiple stress conditions¹⁾

Items	Treatments ²⁾				SEM	<i>p</i> -value
	PC	NC	Thr	Arg		
Liver, %	2.11	2.00	1.92	1.91	0.062	0.113
Spleen, %	0.09	0.09	0.10	0.07	0.008	0.203
Kidney, %	0.54	0.53	0.54	0.53	0.026	0.985
bursa of Fabricius, %	0.24	0.20	0.19	0.19	0.032	0.647
Thymus, %	0.32	0.31	0.29	0.27	0.023	0.427

921 ¹⁾Data are least squares means of 8 observations per treatment.

922 ²⁾PC, positive control (thermoneutral conditions and basal diet); NC, negative control (multiple stress conditions and basal diet); Thr, multiple stress
 923 conditions and basal diet supplemented with 1.3-fold higher digestible threonine; Arg, multiple stress conditions and basal diet supplemented with 1.3-
 924 fold higher digestible arginine.

925 **Table 7.** Effects of dietary threonine and arginine on serum biochemical parameters of broiler chickens raised under multiple stress conditions¹⁾

Items	Treatments ²⁾				SEM	<i>p</i> -value
	PC	NC	Thr	Arg		
ALT, U/L	3.38 ^b	4.00 ^a	3.63 ^{ab}	4.13 ^a	0.196	0.044
AST, U/L	278	298	279	280	16.8	0.816
Creatinine, mg/dL	0.08	0.10	0.09	0.10	0.013	0.654
Uric acid, mg/dL	5.85	4.21	4.13	3.85	0.637	0.133

926 ^{a,b}Means within a variable with no common superscript differ significantly (*p* < 0.05).927 ¹⁾Data are least squares means of 8 observations per treatment.928 ²⁾PC, positive control (thermoneutral conditions and basal diet); NC, negative control (multiple stress conditions and basal diet); Thr, multiple stress
929 conditions and basal diet supplemented with 1.3-fold higher digestible threonine; Arg, multiple stress conditions and basal diet supplemented with 1.3-
930 fold higher digestible arginine.

931 AST, aspartate aminotransferase; ALT, alanine aminotransferase.

Table 8. Effects of dietary threonine and arginine on blood hematological parameters of broiler chickens raised under multiple stress conditions¹⁾

Items	Treatments ²⁾				SEM	<i>p</i> -value
	PC	NC	Thr	Arg		
RBC, 10 ⁶ /µL	2.27	2.45	2.39	2.22	0.118	0.524
WBC, 10 ⁶ /µL	24.5	18.6	18.8	23.3	7.06	0.917
Hb, g/dL	6.78	7.15	6.59	6.45	0.234	0.192
Hct, %	30.7	32.2	31.4	29.5	1.38	0.550
Segment, %	26.4	28.0	17.6	30.5	7.21	0.619
Lymphocyte, %	72.3	68.9	81.4	68.5	7.08	0.557
Monocyte, %	0.63	2.65	0.44	0.53	1.004	0.357
Eosinophil, %	0.00	0.01	0.03	0.00	0.014	0.541
Basophil, %	0.61	0.38	0.54	0.53	0.259	0.930

¹⁾Data are least squares means of 8 observations per treatment.

934 ²⁾PC, positive control (thermoneutral conditions and basal diet); NC, negative control (multiple stress conditions and basal diet); Thr, multiple stress
935 conditions and basal diet supplemented with 1.3-fold higher digestible threonine; Arg, multiple stress conditions and basal diet supplemented with 1.3-
936 fold higher digestible arginine.

937 RBC, red blood cell; WBC, white blood cell; Hb, hemoglobin; Hct, hematocrit.

938

ACCEPTED

939 **Table 9.** Effects of dietary threonine and arginine on stress indicators of broiler chickens raised under multiple stress conditions¹⁾

Items	Treatments ²⁾				SEM	<i>p</i> -value
	PC	NC	Thr	Arg		
Blood H:L ratio	0.20 ^b	0.30 ^a	0.29 ^a	0.28 ^a	0.020	0.006
Feather corticosterone, pg/mg	3.43 ^b	5.07 ^a	2.69 ^b	3.11 ^b	0.439	0.005

940 ^{a,b}Means within a variable with no common superscript differ significantly (*p* < 0.05).941 ¹⁾Data are least squares means of 8 observations per treatment.942 ²⁾PC, positive control (thermoneutral conditions and basal diet); NC, negative control (multiple stress conditions and basal diet); Thr, multiple stress
943 conditions and basal diet supplemented with 1.3-fold higher digestible threonine; Arg, multiple stress conditions and basal diet supplemented with 1.3-
944 fold higher digestible arginine.

945 H:L ratio, heterophil to lymphocyte ratio.

Table 10. Effects of dietary threonine and arginine on liver characteristics of broiler chickens raised under multiple stress conditions¹⁾

		Treatments ²⁾					
Items		PC	NC	Thr	Arg	SEM	p-value
Liver color	L*	22.2	22.1	23.0	22.0	0.70	0.710
	a*	13.8	13.4	13.6	13.2	0.52	0.854
	b*	2.5	2.4	3.1	2.2	0.50	0.624
Hemorrhagic score ³⁾		0.16	0.63	0.34	0.47	0.212	0.465
Fatty liver score ⁴⁾		1.13	1.03	1.09	1.03	0.074	0.753
Fat concentration, %		21.9	21.7	23.1	22.5	1.28	0.852

947 ¹⁾Data are least squares means of 8 observations per treatment.948 ²⁾PC, positive control (thermoneutral conditions and basal diet); NC, negative control (multiple stress conditions and basal diet); Thr, multiple stress
949 conditions and basal diet supplemented with 1.3-fold higher digestible threonine; Arg, multiple stress conditions and basal diet supplemented with 1.3-
950 fold higher digestible arginine.951 ³⁾The hemorrhagic score is graded subjectively on a scale from 0 to 5 with 0 indicating normal liver, 1 up to 10 subcapsular petechial or ecchymotic
952 hemorrhages, 2 for more than 10 subcapsular petechial or ecchymotic hemorrhages, and 3 to 5 for large and massive hemorrhages [30].

953 ⁴⁾The color scored from 1 (dark red) to 5 (light yellowish red), the color of normal liver was scored 1 and the color score from 2 to 5 (from dark red to
954 light yellowish red) [31].

955 L*, lightness; a*, redness; b*, yellowness.

ACCEPTED

956 **Table 11.** Effects of dietary threonine and arginine on animal welfare score of broiler chickens raised under multiple stress conditions¹⁾

Items	Treatments ²⁾				SEM	<i>p</i> -value
	PC	NC	Thr	Arg		
Gait score	0.36	0.59	0.35	0.35	0.123	0.447
Footpad dermatitis	0.04	0.06	0.13	0.06	0.030	0.179
Hock burn	0.18	0.22	0.21	0.13	0.075	0.840
Feather cleanliness	0.20	0.30	0.16	0.21	0.068	0.527

957 ¹⁾Data are least squares means of 8 observations per treatment.958 ²⁾PC, positive control (thermoneutral conditions and basal diet); NC, negative control (multiple stress conditions and basal diet); Thr, multiple stress
959 conditions and basal diet supplemented with 1.3-fold higher digestible threonine; Arg, multiple stress conditions and basal diet supplemented with 1.3-
960 fold higher digestible arginine.

Table 12. Effects of dietary threonine and arginine on liver and jejunal antioxidant status of broiler chickens raised under multiple stress conditions¹⁾

Items	Treatments ²				SEM	<i>p</i> -value
	PC	NC	Thr	Arg		
Liver						
TAC, mM trolox/mg protein	0.14	0.14	0.14	0.14	0.005	0.655
MDA, μ mol/mg protein	0.17	0.18	0.16	0.19	0.015	0.452
ROS, mM	42.0 ^b	53.1 ^a	45.5 ^{ab}	42.7 ^b	2.95	0.040
NO, μ mol/mg protein	0.48	0.51	0.43	0.47	0.044	0.601
Jejunum						
TAC, mM trolox/mg protein	0.10	0.11	0.10	0.10	0.006	0.399
MDA, μ mol/mg protein	1.08	1.05	1.04	1.04	0.082	0.976
ROS, mM	50.6	53.1	56.4	54.9	2.79	0.459
NO, μ mol/mg protein	0.36 ^c	1.02 ^a	0.58 ^b	0.46 ^{bc}	0.060	<0.001

^{a-c} Means within a variable with no common superscript differ significantly (*p* < 0.05).

963 ¹⁾Data are least squares means of 8 observations per treatment.

964 ²⁾PC, positive control (thermoneutral conditions and basal diet); NC, negative control (multiple stress conditions and basal diet); Thr, multiple stress
965 conditions and basal diet supplemented with 1.3-fold higher digestible threonine; Arg, multiple stress conditions and basal diet supplemented with 1.3-
966 fold higher digestible arginine.

967 TAC, total antioxidant capacity; MDA, malondialdehyde; ROS, reactive oxygen species; NO, nitric oxide.

ACCEPTED

968 **Table 13.** Effects of dietary threonine and arginine on jejunal morphology of broiler chickens raised under multiple stress conditions¹⁾

Items	Treatments ²⁾				SEM	<i>p</i> -value
	PC	NC	Thr	Arg		
VH, μm	1,119 ^a	1,007 ^b	1,000 ^b	1,007 ^b	30.2	0.027
VW, μm	180	164	161	159	6.2	0.096
CD, μm	170	160	148	153	7.8	0.239
VH:CD ratio	6.7	6.4	6.8	6.6	0.27	0.719
Goblet cell, cell/200 μm	29.1 ^a	24.1 ^b	27.4 ^{ab}	24.0 ^b	1.31	0.026

969 ^{a,b}Means within a variable with no common superscript differ significantly (*p* < 0.05).970 ¹⁾Data are least squares means of 8 observations per treatment.971 ²⁾PC, positive control (thermoneutral conditions and basal diet); NC, negative control (multiple stress conditions and basal diet); Thr, multiple stress
972 conditions and basal diet supplemented with 1.3-fold higher digestible threonine; Arg, multiple stress conditions and basal diet supplemented with 1.3-
973 fold higher digestible arginine.

974 VH, villus height; VW, villus width; CD, crypt depth; VH:CD ratio, villus height to crypt depth ratio.

975 **Table 14.** Effects of dietary threonine and arginine on jejunal permeability of broiler chickens raised under multiple stress conditions¹⁾

Items	Treatments ²⁾				SEM	<i>p</i> -value
	PC	NC	Thr	Arg		
PD, mV	40 ^a	27 ^c	32 ^b	32 ^b	1.4	<0.001
Isc, μ A/cm ²	200	197	197	201	5.0	0.913
TEER, Ω /cm ²	206 ^a	137 ^c	164 ^b	165 ^b	7.3	<0.001

976 ^{a-c}Means within a variable with no common superscript differ significantly (*p* < 0.05).977 ¹⁾Data are least squares means of 8 observations per treatment.978 ²⁾PC, positive control (thermoneutral conditions and basal diet); NC, negative control (multiple stress conditions and basal diet); Thr, multiple stress
979 conditions and basal diet supplemented with 1.3-fold higher digestible threonine; Arg, multiple stress conditions and basal diet supplemented with 1.3-
980 fold higher digestible arginine.

981 PD, potential difference; Isc, short circuit current; TEER, transepithelial electrical resistance.

982 **Table 15.** Effects of dietary threonine and arginine on tight junction-related and stress-related gene expression of broiler chickens raised under multiple
 983 stress conditions¹⁾

Items	Treatments ²⁾				SEM	<i>p</i> -value
	PC	NC	Thr	Arg		
<i>OCLN</i>	1.00 ^a	0.44 ^c	0.67 ^b	0.71 ^b	0.054	<0.001
<i>CLDNI</i>	1.00 ^a	0.47 ^b	0.59 ^b	0.60 ^b	0.059	<0.001
<i>ZO-1</i>	1.00 ^a	0.44 ^b	0.90 ^a	0.94 ^a	0.076	<0.001
<i>JAM2</i>	1.00 ^a	0.61 ^b	1.66 ^b	1.63 ^b	0.080	0.005
<i>HSP70</i>	1.00 ^a	0.52 ^c	0.78 ^b	0.86 ^{ab}	0.097	<0.001

984 ^{a-c}Means within a variable with no common superscript differ significantly (*p* < 0.05).

985 ¹⁾Data are least squares means of 8 observations per treatment.

986 ²⁾PC, positive control (thermoneutral conditions and basal diet); NC, negative control (multiple stress conditions and basal diet); Thr, multiple stress
 987 conditions and basal diet supplemented with 1.3-fold higher digestible threonine; Arg, multiple stress conditions and basal diet supplemented with 1.3-
 988 fold higher digestible arginine.

989 *OCLN*, occludin; *CLDNI*, claudin-1; *ZO-1*, zonula occludens-1; *JAM2*, junctional adhesion molecule B; *HSP70*, heat shock protein 70.