

JAST (Journal of Animal Science and Technology) TITLE PAGE
Upload this completed form to website with submission

ARTICLE INFORMATION		Fill in information in each box below
Article Type		Research article
Article Title (within 20 words without abbreviations)		Effect of ovarian ligation on carcass traits and meat quality in female Hanwoo cattle using propensity score matching
Running Title (within 10 words)		Effect of ovarian ligation on carcass traits and meat quality
Author		<p>Hee-Woon Lee^{1,2#}, Hae Rim Kim^{3, #}, Byunghoon Cha¹, Mirim Yu⁴, Misun Ha⁵, Sooho Choi⁶, Yan Zhang⁷, Xiangzi Li⁸, Seong Ho Choi^{9*}</p> <p># HW Lee and HR Kim are co-first authors and contributed equally to this work.</p>
Affiliation		<p>¹ Mari Animal Medical Laboratory and Mari Animal Medical Center, Cheongju-si and Yongin-si, Gyeonggi 17178, Republic of Korea</p> <p>² School of Animal Science, Horticulture, and Food Engineering, Animal Science major, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea</p> <p>³ Department of Statistical Data Science, University of Seoul, Seoul 02504, Republic of Korea</p> <p>⁴ Department of Business Administration, University of Seoul, Seoul 02504, Republic of Korea</p> <p>⁵ The Provincial Office of Gyeongsangbuk-do, Andong-si, Gyeongbuk 36759, Republic of Korea</p> <p>⁶ Soo Animal Hospital, Yeongju-si, Gyeongbuk 36105, Republic of Korea</p> <p>⁷ College of Animal Science and Technology, Jilin Agricultural Science and Technology College, Jilin 132109, China</p> <p>⁸ Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation Ministry of Education, Department of Animal Science, Yanbian University, Yanji 133002, China</p> <p>⁹ Department of Animal Science, College of Agriculture, Life & Environment, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea</p>
ORCID (for more information, please visit https://orcid.org)		<p>Hee-Woon, Lee (ORCID: 0000-0003-1152-3993) Hae Rim, Kim (ORCID: 0000-0003-2186-8792) Byunghoon, Cha (ORCID: 0009-0009-8982-8720) Mirim, Yu (ORCID: 0009-0006-1316-4188) Misun, Ha (ORCID: 0009-0007-5061-1036) Sooho, Choi (ORCID: 0009-0005-4750-9984) Yan, Zhang (ORCID: 0000-0003-2752-0578) Xiangzi, Li (ORCID: 0000-0003-3061-3847) Seong Ho, Choi (ORCID: 0000-0001-8869-0218)</p>
Competing interests		No potential conflict of interest relevant to this article was reported.
Funding sources State funding sources (grants, funding sources, equipment, and supplies). Include name and number of grant if available.		This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (IPEF) and the Korea Smart Farm R&D Foundation (KosFarm) through the Smart Farm Innovation Technology Development Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) and the Ministry of Science and ICT (MSIT), Rural Development Administration (RDA) (grant number: RS-2025-02305747).

Acknowledgements	Not applicable.
Availability of data and material	Data will be made available on reasonable request.
Authors' contributions Please specify the authors' role using this form.	<p>Conceptualization: Lee HW, Kim HR, Choi SH Data curation: Lee HW, Cha BH, Ha MS, Choi S Formal analysis: Kim HR, Yu MR Methodology: Kim HR, Zhang Y, Li X Software: Kim HR, Cha BH Validation: Lee HW, Choi SH Investigation: Lee HW, Kim HR, Cha BH Writing – original draft: Lee HW, Kim HR, Yu MR Writing – review & editing: Lee HW, Kim HR, Cha BH, Yu MR, Ha MS, Choi S, Zhang Y, Li X, Choi SH</p> <p>Lee HW and Kim HR are co-first authors and contributed equally to this work. Corresponding author: Choi SH. All authors read and approved the final manuscript.</p>
Ethics approval and consent to participate	This retrospective observational study was based on clinical data obtained during routine clinical procedures. No interventions were performed beyond routine clinical procedures; therefore, this study did not require ethical approval from the Institutional Animal Care and Use Committee.

4
5

CORRESPONDING AUTHOR CONTACT INFORMATION

For the corresponding author (responsible for correspondence, proofreading, and reprints)	Fill in information in each box below
First name, middle initial, last name	Seong Ho Choi
Email address – this is where your proofs will be sent	seongho@cbnu.ac.kr
Secondary Email address	
Address	Department of Animal Science, College of Agriculture, Life & Environment, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
Cell phone number	+82-10-5325-6192
Office phone number	+82-43-261-2545
Fax number	+82-43-273-2240

6
7

8 **Abstract**

9 Approaches including hormonal treatments and surgical interventions have been established to suppress
10 estrus and thus improve the average daily gain and meat quality in female Hanwoo cattle. Ovarian
11 ligation is one such approach which suppresses estrus without removal of the ovaries, thereby reducing
12 complications such as hemorrhage and ovarian remnant syndrome. Ovariectomy and ovarian ligation
13 have been increasingly applied in commercial farms to improve feed efficiency and meat quality;
14 however, objective validation using large-scale data remains limited. To address this gap, sensitivity
15 analysis was conducted by estimating odds ratios for superior carcass traits and grading through logistic
16 regression models, including unadjusted models, models adjusted for covariates (season, age at slaughter,
17 and parity), and models based on propensity score matching (PSM). Ovarian ligation significantly
18 increased the carcass, weight, and marbling scores in both heifers and cows. Compared with their non-
19 ligated counterparts, ligated female Hanwoo cattle had higher odds of receiving Quality Grade 1++ and
20 $\geq 1+$ in PSM-adjusted models. However, yield grade A was not improved in heifers and even decreased in
21 cows. These findings suggest that ovarian ligation exerts a more pronounced effect on meat quality than
22 on yield grade A, particularly given the lack of improvement or decline in yield grade A across parity
23 groups. Restricted spline curve analysis showed that ligated female Hanwoo cattle consistently had higher
24 probabilities of achieving superior quality grades (QG 1++ or $\geq 1+$) than the non-ligated heifers and cows,
25 with the largest differences at lower parity levels. In contrast, the probability of achieving a grade A yield
26 was higher in non-ligated cows than in ligated cows. Ovarian ligation is an effective and minimally
27 invasive strategy for enhancing meat quality in Hanwoo cattle, particularly heifers. However, its effect on
28 the yield grade may be limited or negative in cows. These findings provide practical evidence for
29 producers to consider ovarian ligation as a strategy to improve carcass traits and meat quality.

30

31

32 **Keywords:** Female Hanwoo cattle, Ovarian ligation, Carcass traits, Marbling score, Meat quality,
33 Propensity score matching

34

35

36 **Introduction**

37 Female Hanwoo cattle (hereafter, female Hanwoo) were classified as nulliparous heifers (heifers) or
38 parous cows (cows), according to their rearing purpose and calving history. The heifers had no calving
39 experience, whereas the cows were slaughtered after a short fattening period. In recent years, the use of
40 heifers for beef production has increased due to factors such as a decline in heifer prices, rising demand
41 for female Hanwoo, and the need to regulate the Hanwoo population [1].

42 During the fattening period in females, estrus symptoms that occur periodically can reduce feed
43 efficiency and negatively affect productivity [2]. During estrus, physiological changes such as increased
44 activity, nervousness, and reduced feed intake lead to a decline in feed efficiency [3,4]. To improve feed
45 efficiency and meat quality, estrus suppression is commonly applied to cows with a history of calving or
46 to heifers during the pre-slaughter fattening period [5].

47 Ovariectomy is performed to suppress ovarian function, and various surgical instruments have been
48 developed for this purpose [6]. These instruments include the Kimberling-Rupp Spaying Device [7], an
49 ovarian removal instrument for mammals [8], the Willis-drop Spay Instrument [9], and the Meagher
50 Ovary Flute [10]. All these procedures involve intra-abdominal ovarian removal. However, this approach
51 poses the risk of severe hemorrhage due to transection of the ovarian artery and vein, and if ovarian tissue
52 remains in the abdominal cavity, it may lead to complications such as ovarian remnant syndrome [11].

53 Ovarian ligation has garnered attention as a safe technique with minimal adverse effects [12]. As this
54 method does not involve transection of the ovarian artery and vein, the risk of severe hemorrhage is
55 significantly reduced, and postoperative clinical observations are minimized [12]. The large animal
56 ovarian ligation device used in this procedure is a novel surgical instrument patented in the Republic of
57 Korea [13]. Unlike traditional ovariectomy, which involves complete removal of the ovary, ovarian
58 ligation induces regression without excision. Consequently, secretion of major hormones such as estrogen
59 and progesterone from the ovary is not entirely suppressed [12].

60 In the participating commercial farms, ovarian ligation has been applied under field conditions with the
61 expectation of improving feed efficiency, enhancing meat quality, and increasing carcass traits. However,
62 statistical analyses based on field-level ligation procedure and slaughter records for evaluating the
63 effectiveness of ovarian ligation are limited. Although numerous studies have reported the effect of
64 ovariectomy on carcass traits and grade, quantitative evidence regarding the effects of ovarian ligation
65 remains limited [15,15]. Previous studies have suggested that parity in female Hanwoo cattle may
66 influence meat quality [16]. In the present study, analyses were conducted separately for heifers and
67 cows.

68 This study aimed to evaluate the effects of ovarian ligation in female Hanwoo cattle quantitatively.
69 After adjusting for baseline differences between the ligated and non-ligated groups using propensity score
70 matching (PSM), statistical comparisons were conducted to assess differences in carcass traits and meat
71 quality. The findings of this study provide practical evidence to support nutritional management strategies
72 on commercial farms.

73
74

75 **Materials and Methods**

76 *Ovarian ligation*

77 In this study, ovarian ligation procedures were performed at two Large Animal Hospitals: Mari Animal
78 Medical Center and Soo Animal Hospital. Eligibility for the procedure was first assessed through rectal
79 examination, and an appropriately sized large animal ovarian ligation device was selected based on the
80 size of the left and right ovaries. A specially designed silicone ligation ring corresponding to the ovarian
81 size was attached to the device. A disinfected vaginal wall perforator was used to create an insertion site
82 in the heifer's or cow's vaginal wall. The ligation device equipped with a ring was inserted through the
83 perforated site, and the ring was gently deployed onto the left and right ovaries using an appropriately
84 sized ligation device. The ligation ring constricted the ovarian artery and vein, inducing ovarian
85 regression. Upon completion of the ovarian ligation procedure, antibiotics and anti-inflammatory agents
86 were administered to prevent infection and inflammation.

87 ***Data source***

88 The data were obtained from the Cow Chronicle (www.cowchronicle.com), an electronic medical
89 record system specialized for bovine health management, which was developed and operated by the Mari
90 Animal Medical Center. The dataset included records related to ovarian ligation procedures and slaughter
91 outcomes.

92 This study uses data collected from commercial farms in Korea between 2013 and 2024 (n = 29,751).
93 Excluding non-Hanwoo (n = 17,577) and non-female (n = 3,007) cattle, 9,167 female Hanwoo were
94 included in this study. Cases in which only one ovary was ligated were excluded (n=5) because the
95 function of the contralateral ovary remained intact. Cases with duplicate identification numbers (ID)
96 caused by the procedure being performed twice due to failure (n = 39) were excluded. A total of 9,123
97 female Hanwoo cattle raised and slaughtered on farms where ovarian ligation was conducted were
98 classified into two groups: ligated (n = 5,746) and non-ligated (intact; n = 3,377) (Figure 1). The required
99 sample size calculated using G*Power was 343 animals, and the achieved statistical power was 0.9504,
100 indicating that the sample size was sufficient to meet the pre-specified power requirements.

101 ***Korean carcass grading system***

102 In Korea, carcass traits are evaluated according to the Korean Carcass Grading Procedure [17] and
103 classified into yield grade (YG) and quality grade (QG).

104 YG was determined based on backfat thickness, rib-eye area, and carcass weight, using a yield index
105 calculated according to the specified formula for breed and sex. YG was categorized into three grades: A,
106 B, and C. For female Hanwoo cattle, the yield index was calculated using the formula shown in
107 Equation 1 [18], and the evaluation criteria included backfat thickness, rib-eye area, and carcass weight.

108 The QG was determined using the marbling score (1–9, where 1 = devoid and 9 = abundant), meat
109 color (1–7, where 1=very bright red and 7 = very dark red), fat color (1–7, where 1 = creamy white and 7
110 = yellowish), texture score (1–5, where 1 = firm and 5 = soft), and maturity score (1–9, where 1 = very
111 youthful and 9 = very mature) [17]. Among these, the marbling score plays a primary role in determining
112 QG, which is classified into grades 1 + +, 1 +, 1, 2, and 3. A marbling score of 9, 8, or 7 corresponds to

113 grade 1++, a score of 6 to grade 1+, a score of 5 or 4 to grade 1, a score of 3 or 2 to grade 2, and a score
114 of 1 to grade 3 [17]. Grade 1++ represents the most desirable quality, whereas Grade 3 indicates the
115 lowest quality (Supplementary Table 1).

116 Backfat thickness, rib-eye area, marbling score, meat color, fat color, and texture score were measured
117 on the cut surface of the longissimus dorsi muscle between the last thoracic and first lumbar vertebrae of
118 the left half of the carcass. The maturity score was assessed by evaluating the degree of cartilage
119 ossification in the spinous processes of the vertebrae of the left half-carcass.

Equation 1

$$= \frac{[6.90137 - 0.9446 \times BFT(\text{mm}) + 0.31805 \times RA(\text{cm}^2) - 0.54952 \times CW(\text{kg})]}{CW(\text{kg})} \times 100$$

120
121 *BFT; BAKFAT THICKNESS, RA; RIBEYE AREA, CW; CARCASS WEIGHT*

122 *Statistics*

123 Statistical power was calculated a priori to ensure sufficient sample size estimation for the Wilcoxon
124 signed-rank test (matched pairs) using G*Power version 3.1.9.7. The parameters were set as a small effect
125 size ($dz = 0.2$), a significance level (α) of 0.05, and a statistical power ($1-\beta$) of 0.95, assuming a two-
126 tailed test. The effect size of 0.2 was selected as a conservative assumption to avoid overestimation of the
127 true effect, while the power level of 0.95, which is more stringent than the commonly used 0.80, was
128 chosen to enhance the robustness and reliability of statistical inference in this large-scale retrospective
129 study.

130 Continuous variables are presented as mean and standard deviation or median (interquartile range: Q1–
131 Q3) for each group based on Shapiro–Wilk test. Slaughter age in months satisfied the normality
132 assumption and was analyzed using the t-test, and other continuous variables did not satisfy the normality
133 assumption and were analyzed using non-parametric tests. The Wilcoxon signed-rank test was performed
134 based on the unique identification code (Cow ID) matched using PSM. Additionally, the median
135 difference and 95% confidence intervals (CI) were calculated. Categorical variables are presented as N
136 and percentages, and the McNemar test was used as a paired test for categorical comparisons.

137 Logistic regression analysis was performed to calculate odds ratios (ORs) and 95% CIs. Three
138 modeling approaches were applied. First, the unadjusted model (n=9,123) was a univariate logistic
139 regression using the original dataset, including only ligation status as the independent variable. Second, in
140 Adjusted Model 1 (n=9,123), multivariable logistic regression analysis was performed by including the
141 slaughter season, birth season, slaughter age in months, and parity as covariates using the original dataset.
142 In this analysis, slaughter season and birth season were treated as categorical variables, whereas slaughter
143 age in months and parity were included as continuous variables. Third, Adjusted Model 2 (n=2,890) used
144 a PSM approach to adjust for potential confounding factors between the ligated and non-ligated groups,
145 thereby ensuring comparability. Propensity scores were calculated using a logistic regression model that
146 included the same covariates as in Adjusted Model 1. A 1:1 nearest-neighbor matching without

147 replacement was performed (caliper = 0.001), and the standard mean difference (SMD) was calculated to
148 evaluate covariate balance between groups. Multicollinearity among covariates was evaluated using the
149 variance inflation factor (VIF), and all VIF values were below 5.

150 Using ligated heifers as the reference group, the predicted ORs for the association between ligation
151 status, carcass traits, and meat quality were estimated across the different parity levels. Restricted spline
152 curves were plotted using the rcsplot function from the plotRCS package with four nodes (5th, 33rd, 66th,
153 and 95th) specified for the spline.

154 All statistical analyses and visualizations were performed using R statistical software (version 4.5.0; R
155 Foundation for Statistical Computing, Vienna, Austria). Statistical significance was set at a two-sided *p*-
156 value <0.05.

157
158
159

160 Results

161 Table 1 presents the distributions of slaughter season, birth season, slaughter age in months, and parity
162 before and after PSM between the ligated and non-ligated groups stratified by heifers and cows. Before
163 PSM, significant differences were observed between ligated (n = 4,302) and non-ligated (n = 839) heifers
164 in terms of slaughter season, birth season, and age at slaughter in months (*p*<0.001). Specifically, the
165 mean slaughtered age in months was 31.08 months (SD=3.45) in the ligated group and 43.55 months
166 (SD=22.65) in the non-ligated group. In cows, significant differences were also found between the ligated
167 (n=1,444) and non-ligated (n=2,538) groups for slaughter season, birth season, slaughter age in months,
168 and parity (*p*<0.001). The mean age in months was 60.85 months (SD=20.76) in the ligated group and
169 65.99 months (SD=26.08) in the non-ligated group. After PSM, 509 heifers and 936 cows were matched
170 in each group (ligated vs. non-ligated). Following matching, no significant differences were observed
171 between the two groups across any of the covariates, indicating good balance (SMD<0.05).

172 Table 2 summarizes the comparison of carcass traits and meat quality between the matched ligated and
173 non-ligated groups (509 heifers and 936 cows in each group) after PSM. Among heifers, the ligated group
174 showed a significantly higher carcass weight than the non-ligated group (median 369.0 kg vs. 355.0 kg,
175 median difference 14.00 kg [95% CI: 7.00, 20.50], *p*<0.001). The rib-eye area was also significantly
176 greater in the ligated group (86.0 cm² vs. 84.0 cm², median difference 2.00 cm² [95% CI: 0.00, 3.50],
177 *p*=0.024). Marbling score was higher in the ligated group (median 6.0 vs. 5.0, median difference 1.50
178 [95% CI: 1.50, 2.00], *p*<0.001). The yield index was slightly lower in the ligated group (median
179 difference -1.92 [95% CI: -2.28, -1.55], *p*<0.001). However, no statistically significant differences in
180 backfat thickness, fat color, or texture score were found between the groups. Although meat color was
181 significantly different (*p*=0.003), the median value was the same in both groups (5.0 vs. 5.0). The

182 maturity score was lower in the ligated group (median difference: -1.00 [95% CI: -1.00, -0.50],
183 $p<0.001$).

184 In cows, the ligated group also showed significantly higher carcass weight than the non-ligated group
185 (median 373.0 kg vs. 354.0 kg, median difference 20.00 kg [95% CI: 15.00, 24.50], $p<0.001$), as well as a
186 larger rib-eye area (86.0 cm² vs. 84.0 cm², median difference 2.50 cm² [95% CI: 1.50, 3.50], $p<0.001$).
187 The marbling score was also significantly higher in the ligated group (median 5.0 vs. 4.0, median
188 difference, 1.00 [95% CI: 1.00, 1.50]; $p<0.001$). Unlike in heifers, the ligated group of cows showed
189 significantly greater backfat thickness (median 13.0 vs. 12.0, median difference 1.50 [95% CI: 1.00,
190 2.00], $p<0.001$). No significant differences were observed among the groups in fat color, maturity score,
191 or texture score. The meat color was statistically different despite having the same median value (5.0 vs.
192 5.0, median difference -0.50 [95% CI: -1.00, -0.00], $p<0.001$). The yield index was also significantly
193 lower in the ligated group (median difference -2.76 [95% CI: -3.06, -2.45], $p<0.001$).

194 As shown in Table 3, the distribution of QG significantly increased in the ligated group in both heifers
195 and cows ($p<0.001$, McNemar's test). In contrast, among heifers, no statistically significant difference in
196 YG was found between the ligated and non-ligated groups ($p=0.767$, McNemar's test). However, in cows,
197 the proportion of grade A meat was significantly higher in the non-ligated group than in the ligated group
198 ($p<0.001$, McNemar test).

199 Table 4 presents the OR in QG (1++, $\geq 1+$) and YG (A). ORs were calculated using the non-ligated
200 group as the reference group, using the original and PSM datasets (Table 4). Restricted spline curves
201 using the original dataset and ORs were calculated using the ligated group with heifers as the reference
202 group (Figure 2, Supplementary Table 3).

203 In the analysis of heifers (Table 4), the ligated group showed a significantly higher QG of 1++ than the
204 non-ligated group. Specifically, the unadjusted model showed an OR of 5.90 [95% CI: 4.70, 7.52],
205 whereas the model adjusted by slaughter season, birth season, and slaughtered age in months (Model 1)
206 showed an OR of 5.53 [95% CI: 4.32, 7.19]. The PSM-adjusted OR was 3.61 [95% CI: 2.66, 4.96]. A
207 similar pattern was observed for QG $\geq 1+$, where the PSM-adjusted OR was 3.35 [95% CI: 2.60, 4.35],
208 indicating a statistically significant improvement in meat quality. However, no significant difference was
209 observed between the ligated and non-ligated groups for YG = A (Model 2 OR: 0.88 [95% CI: 0.66,
210 1.16]).

211 A similar trend was observed in cows (Table 4). The ligated group had a significantly higher likelihood
212 of achieving a QG of 1++ (PSM-adjusted OR: 3.00 [95% CI: 2.11, 4.34]) and QG $\geq 1+$ (PSM-adjusted OR:
213 2.46 [95% CI: 2.00, 3.03]). In contrast, for YG = A, the PSM-adjusted OR was 0.71 (95% CI: 0.57, 0.88),
214 indicating that the likelihood of achieving grade A was significantly lower in the ligated group of cows.

215 Restricted spline curve analysis (Figure 2, Supplementary Table 3) of the ligated group, with heifers as
216 the reference group, showed similar patterns. As parity increased, the likelihood of achieving a QG of
217 1++ or $\geq 1+$ decreased sharply. Across the entire parity range, the ligated group consistently demonstrated

218 higher probabilities than the non-ligated group, with the most pronounced differences observed at lower
219 parity levels (1–3). In contrast, for YG = A, the probability was higher in the non-ligated group than in
220 the ligated group.

221
222

223 Discussion

224 Various techniques have been introduced to enhance meat quality in female Hanwoo cattle, ranging
225 from hormonal treatments to surgical interventions. The underlying principle involves suppressing estrus
226 to enhance average daily gain and meat quality. Studies have reported that dietary supplementation with
227 melengestrol acetate, an orally active progestin, suppresses estrus in female cattle and improves both
228 average daily gain and meat quality [19]. While ovarioectomy is the most commonly used surgical method,
229 ovarian ligation has been developed as a safer alternative with a minimal risk of hemorrhagic
230 complications [12,13]. Among the 5,746 procedures performed in this study, 39 (0.68%) required re-
231 intervention due to estrus recurrence or the presence of non-regressed ovaries. These cases included
232 instances in which a portion of the ovary was not ligated, leaving residual ovarian tissue; the broad
233 ligament covered the ovary at the time of ligation, resulting in the silicone ring constricting only the broad
234 ligament and allowing the ovary to slip out; neovascularization occurred over the ring, thereby re-
235 establishing normal blood flow to the ovary; or the ring itself fractured. Although these issues were
236 resolved through repeat procedures, the corresponding cases were excluded from the final dataset.

237 As this study was based on retrospective data, it was necessary to adjust for covariates that could
238 potentially cause bias. Previous studies have demonstrated that slaughter season, birth season, and
239 slaughtered age in months are statistically significant factors influencing carcass traits in Hanwoo cattle
240 [20-24]. We compared the two groups using the original data and PSM dataset for sensitivity analysis, an
241 unadjusted model, and a model adjusted for slaughter season, birth season, slaughtered age in months, and
242 parity as covariates.

243 In the dataset (Table 1), the number of heifers that underwent ovarian ligation (n = 4,302) was
244 significantly higher than that of cows (n = 1,444). This discrepancy may reflect the differences in the
245 levels of interest in fattening technologies between beef and breeding farms. Beef farms actively pursue
246 strategies to improve both meat quality and carcass traits, and tend to adopt various technologies for this
247 purpose. In such settings, heifers are often purchased for fattening purposes rather than breeding, and
248 ovarian ligation is commonly performed to prevent calving. In contrast, breeding farms primarily focus on
249 improving fertility efficiency and generally show less interest in fattening technologies. Consequently,
250 cows raised for breeding on these farms are typically fattened only after they have calved at least once,
251 and there is less motivation to apply technologies aimed at enhancing meat quality or carcass traits.

252 Before PSM, slaughter age in months was significantly lower in the ligated heifer group than in the
253 non-ligated group (Table 1). In the commercial farms that provided data for this study, non-ligated
254 (intact) heifers were primarily raised for breeding purposes and were often fattened at a later stage
255 following reproductive failure or abortion. Therefore, the observed difference in slaughter age likely
256 reflects a delayed transition from breeding to fattening, resulting in increased slaughter age in the non-
257 ligated group.

258 PSM was applied to adjust for baseline differences between the ligated and non-ligated groups. The
259 matching procedure confirmed that there were no significant differences between the two groups for all
260 analytical variables. In both heifers and cows, carcass weight, rib-eye area, and marbling score were
261 higher in the ligated group than in the non-ligated group. These results indicated the positive effects of
262 ovarian ligation, as the ligated group exhibited improvements in carcass traits related to yield (carcass
263 weight and rib-eye area) and meat quality (marbling score). Furthermore, the proportions of QG 1++ and
264 1+ were higher in the ligated group than in the non-ligated group, suggesting that ovarian ligation had a
265 positive influence on meat quality (Table 3). However, a statistically significant decrease in the yield
266 index was observed in cows, most likely because of the computational method of the yield index
267 (Supplementary Table 2). According to this equation, an increase in the rib-eye area contributes to a
268 higher yield index, whereas increases in the carcass weight and backfat thickness contribute to a lower
269 yield index. This is because, in cows, although rib-eye area, which increases yield index, was elevated,
270 concurrent increases in carcass weight and backfat thickness, which reduce yield index, were also
271 observed. Despite the statistically significant difference in meat color between the two groups, the median
272 values were virtually identical (Table 2). In cows, a median difference in meat color of -0.50 [95% CI: -
273 1.00, 0.00] was observed. The ligated group showed a tendency toward a slightly brighter meat color than
274 the non-ligated group. In the ligated group, the 95% CI for the meat color was 4–5 for heifers and 5–5 for
275 cows. In contrast, the non-ligated group showed a consistent 95% CI of 5–5 for both heifers and cows.
276 According to the Korean carcass grading system, a meat color score of 3–5 was classified as QG 1++
277 [17]. Therefore, the actual influence of meat color on QG between the two groups appears to be limited.
278 However, because a meat color score of 6 or higher results in a decrease in quality to QG 1+, even a slight
279 reduction in meat color may have a positive impact on QG. No significant differences in fat color or
280 texture score were observed between the groups in either heifers or cows (Table 2).

281 Backfat thickness and maturity score showed different patterns in heifers and cows (Table 2). In cows,
282 the backfat thickness score was higher in the ligated group than in the non-ligated group. This outcome
283 can be considered a negative change in terms of its effect on lowering the yield index. The effect of
284 ovarian ligation on increasing backfat thickness was more pronounced at a higher slaughter age (Table 1).
285 In previous studies on Hanwoo cattle, an increase in slaughter age in months was significantly associated
286 with greater backfat thickness scores [25]; however, as the effect of slaughter age in months was adjusted
287 for in the present analysis, the increase in backfat thickness observed only in cows after ovarian ligation

288 could not be fully accounted for by previously reported associations. Previous studies have shown that
289 extended fattening periods are associated with increased backfat thickness and marbling score [26]. In the
290 commercial farms that provided data for this study, cows were frequently slaughtered at approximately 6
291 months postpartum. By contrast, ovarian ligation was generally conducted at around 2 months postpartum
292 in ligated cows, and these animals were subsequently subjected to fattening management for at least 6
293 months following the procedure. Accordingly, farms performing ovarian ligation may have placed greater
294 emphasis on marbling score, which could indicate a longer fattening period in ligated cows. In heifers, the
295 ligated group exhibited a lower maturity score. The maturity score is determined by the color, shape, and
296 degree of bone and cartilage ossification [27]. Higher maturity scores are associated with increased
297 yellow fat deposition and tougher meat texture [28]. Therefore, an increase in the maturity score has a
298 negative impact on meat quality. According to the Korean meat grading system, a maturity score of 8 or 9
299 indicates a one-grade reduction in QG [17]. Thus, a median difference of -1.00 [95% CI: $-1.00, -0.50$] in
300 maturity score observed in the ligated group of heifers can be considered a positive contributor to QG
301 assessment. However, because the 95% CI for non-ligated heifers was 3–4, it is difficult to conclude
302 whether this difference had a substantial impact on QG assessment. In cows, no difference in maturity
303 score was observed between the ligated and non-ligated groups.

304 In heifers, the likelihoods of achieving QG 1++ and 1+ were 3.61 [95% CI: 2.66, 4.96] and 3.35 [95%
305 CI: 2.60, 4.35] times higher, respectively, in the ligated group compared with the non-ligated group
306 (Table 4). In cows, the corresponding odds were 3.00 [95% CI: 2.11, 4.34] and 2.46 [95% CI: 2.00, 3.03],
307 respectively. These results indicated a statistically significant improvement in meat quality associated
308 with ovarian ligation in both heifers and cows, with a more pronounced effect observed in heifers. In
309 contrast, the odds of achieving YG = A were not significantly different among heifers, whereas a negative
310 association was observed among cows. This suggests that the effects of ovarian ligation on yield
311 outcomes differ according to parity.

312 The results of this study confirmed that ovarian ligation improved marbling score, rib-eye area, and
313 carcass weight. The effect of ovarian ligation was greatest in heifers, whereas in cows, the effect
314 diminished with increasing parity compared with that observed in heifers (Figure 2). As parity, defined at
315 the time of ovarian ligation, increased, the probabilities of achieving QG 1++ and QG 1+ showed a
316 markedly decreasing trend. Across all parity levels, the ligated group consistently demonstrated higher
317 odds than the non-ligated group (Figure 2A, B, Supplementary Table 3). The difference between the
318 ligated and non-ligated groups was particularly pronounced at lower parity levels, suggesting that ovarian
319 ligation may have a beneficial effect in improving QG at lower parity levels. However, compared to
320 ligated heifers, female Hanwoo cattle in the ligated group were more likely to achieve YG=A up to the
321 third parity, whereas those in the non-ligated group maintained a higher probability up to the fourth
322 parity. This suggests that ovarian ligation may have a negative effect on the yield index. These results
323 highlight the need to establish breeding and fattening strategies that consider the relationship between QG

324 and YG. From an economic perspective, this trade-off may still be acceptable in pricing systems where
325 carcass weight and QG premiums contribute more substantially to carcass value than YG discounts.
326 Previous pricing analyses have demonstrated that carcass weight and QG account for a considerably
327 greater share of revenue variation than yield grade [29], suggesting that the observed increases in carcass
328 weight and marbling in ligated cows offset the economic loss associated with a lower yield index. Further
329 studies are warranted to determine the optimal timing of ovarian ligation to maximize improvements in
330 carcass traits, including QG and YG.

331

332

333 Acknowledgments

334 Not applicable.

335

336

337 References

1. Joo ST, Hwang YH, Frank D. Characteristics of Hanwoo cattle and health implications of consuming highly marbled Hanwoo beef. *Meat Sci.* 2017;132:45–51. <https://doi.org/10.1016/j.meatsci.2017.04.262>
2. Cheon SN, Park GW, Park KH, Jeon JH. Peri-estrus activity and mounting behavior and its application to estrus detection in Hanwoo (Korea Native Cattle). *J Anim Sci Technol.* 2023;65:748–58. <https://doi.org/10.5187/jast.2022.e126>
3. Barros FFP da C, Teixeira PPM, Silva MAM, Coelho CMM, de Lopes MCS, Kawanami AE, et al. Single-port laparoscopic ovariectomy using a pre-tied loop ligature in Santa Ines ewes. *Cienc Rural.* 2015;45:2033–8. <https://doi.org/10.1590/0103-8478cr20140926>
4. Pahl C, Hartung E, Mahlkow-Nerge K, Haeussermann A. Feeding characteristics and rumination time of dairy cows around estrus. *J Dairy Sci.* 2015;98:148–54. <https://doi.org/10.3168/jds.2014-8025>
5. Bailey CR, Duff GC, Sanders SR, Cuneo SP, McMurphy CP, Limesand SW, et al. Effects of ovariectomy and anabolic steroid implantation on the somatotrophic axis in feedlot heifers. *S Afr J Anim Sci.* 2008;38:207–16. <https://doi.org/10.4314/sajas.v38i3.4127>
6. Chew BP, Erb RE, Fessler JF, Callahan CJ, Malven PV. Effects of ovariectomy during pregnancy and of prematurely induced parturition on progesterone, estrogens, and calving traits. *J Dairy Sci.* 1979;62:557–66. [https://doi.org/10.3168/jds.S0022-0302\(79\)83290-7](https://doi.org/10.3168/jds.S0022-0302(79)83290-7)
7. Rupp GP, Kimberling CV. A new approach for spaying heifers. *Vet Med Small Anim Clin.* 1982;77:561–5. <https://www.cabidigitallibrary.org/doi/full/10.5555/19822203972>
8. Nisshin Marubeni Feed Co., Ltd. Mammalian ovarian extraction device. Japan Patent JP3530895B2; 1996. <https://patents.google.com/patent/JP3530895B2>
9. Zobell DR, Goonewardene LA, Bertagnoli C, Ziegler K. The effects of spaying and anabolic implants on the average daily weight gain of heifers on pasture. *Can Vet J.* 1993;34:727–30. <https://pmc.ncbi.nlm.nih.gov/articles/PMC1686648/>

365 10. Disney H, Ovary M. Flute. United States Patent US5997551A; 1999.
366 <https://patents.google.com/patent/US5997551A/en>

367 11. Drost M, Savio JD, Barros CM, Badinga L, Thatcher WW. Ovariectomy by colpotomy
368 in cows. *J Am Vet Med Assoc.* 1992;200:337–9.
369 <https://doi.org/10.2460/javma.1992.200.03.337>

370 12. Ko BH, Park DG, Lee WJ. Postoperative observation of spaying with the silicon ring on
371 the ovaries in heifers: A retrospective study in 28 cases. *Vet Sci.* 2022;9:643.
372 <https://doi.org/10.3390/vetsci9110643>

373 13. Gyeongsangbuk-do livestock technology research. Large animal ovary ligation device.
374 Korean Patent KR101194372B1; 2012.
375 <https://patents.google.com/patent/KR101194372B1/en?oq=101194372>

376 14. Markel C, Schults M, Ritchie C, Newman C, Bedke C, Mills B, et al. 7 Evaluation of
377 finishing performance and carcass characteristics of beef heifers with variable degrees of
378 heart failure risk and differing reproductive tract type. *J Anim Sci.* 2022;100 Suppl 4:3.
379 <https://doi.org/10.1093/jas/skac313.003>

380 15. Popp JD, McAllister TA, Burgevitz WJ, Kemp RA, Kastelic JP, Cheng KJ. Effect of
381 trenbolone acetate/estradiol implants and estrus suppression on growth performance and
382 carcass characteristics of beef heifers. *Can J Anim Sci.* 1997;77:325–8.
383 <https://doi.org/10.4141/A97-001>

384 16. Cho S, Seong P, Kang G, Kwon Y, Cho Y, Kang SM, et al. Effect of parity on meat
385 quality and composition of loin and top round muscles from Hanwoo cow beef. *Ann*
386 *Anim Resour Sci.* 2012;23:95–103. <https://doi.org/10.12718/AARS.2012.23.2.95>

387 17. Ministry of Agriculture, Food and Rural Affairs. Korean carcass grading procedure;
388 2025. Republic of Korea.
389 <https://www.law.go.kr/admRulLsInfoP.do?admRulId=34415&efYd=0>

390 18. Lee JM, Yoo YM, Park BY, Chae H, Kim DH, Kim YK, et al. Study on the carcass
391 yield grade of Hanwoo. *J Anim Sci Technol.* 2005;47:261–70.
392 <https://doi.org/10.5187/JAST.2005.47.2.261>

393 19. Roche JF, Crowley JP. The long-term suppression of heat in cattle with implants of
394 melengestrol acetate. *Anim Sci.* 1973;16:245–50.
395 <https://doi.org/10.1017/S0003356100030099>

396 20. Cho K, Song Y, Yeo JM, Park JK, Kim DW, Roh SH, et al. Analysis of seasonal effect
397 on Korean native cattle (Hanwoo) birth weight. *J Anim Sci Technol.* 2021;63:759–65.
398 <https://doi.org/10.5187/jast.2021.e72>

399 21. Hossain MA, Aung SH, Park JY, Kim SH, Lee SS, Nam KC. Effects of gender and
400 slaughter age on physicochemical and quality traits of Korean Hanwoo striploin. *J Anim*
401 *Sci Technol.* 2024;66:614–29. <https://doi.org/10.5187/jast.2023.e127>

402 22. Koo YM, Kim SD, Kim JI, Song CE, Lee KH, Jeoung YH, et al. Research of statistical
403 model for genetic evaluation of Hanwoo carcass traits. *J Anim Sci Technol.*
404 2011;53:283–8. <https://doi.org/10.5187/JAST.2011.53.4.283>

405 23. Panjono KSM, Kang SM, Lee IS, Lee SK. Carcass characteristics of Hanwoo (Korean
406 cattle) from different sex conditions, raising altitudes and slaughter seasons. *Livest Sci.*
407 2009;123:283–7. <https://doi.org/10.1016/j.livsci.2008.11.024>

408 24. Patterson DC, Moore CA, Moss BW, Kilpatrick DJ. Parity-associated changes in
409 slaughter weight and carcass characteristics of 3/4 Charolais crossbred cows kept on a
410 lowland grass/grass silage feeding and management system. *Anim Sci.* 2002;75:221–35.
411 <https://doi.org/10.1017/S135772980005298X>

412 25. Kwon KM, Nogoy KMC, Jeon HE, Han SJ, Woo HC, Heo SM, et al. Market weight,
413 slaughter age, and yield grade to determine economic carcass traits and primal cuts yield

414 of Hanwoo beef. *J Anim Sci Technol.* 2022;64:143–54.
415 <https://doi.org/10.5187/jast.2021.e136>

416 26. Sperber JL, Bondurant RG, Erickson GE, Bruns K, Funston RN, MacDonald JC. Effect
417 of extended days on feed on carcass gain, efficiency, and quality of individually fed beef
418 steers. *Transl Anim Sci.* 2024;8:txae081. <https://doi.org/10.1093/tas/txae081>

419 27. Cho SH, Kim J, Park BY, Seong PN, Kang GH, Kim JH, et al. Assessment of meat
420 quality properties and development of a palatability prediction model for Korean
421 Hanwoo steer beef. *Meat Sci.* 2010;86:236–42.
422 <https://doi.org/10.1016/j.meatsci.2010.05.011>

423 28. Hilton GG, Tatum JD, Williams SE, Belk KE, Williams FL, Wise JW, et al. An
424 evaluation of current and alternative systems for quality grading carcasses of mature
425 slaughter cows. *J Anim Sci.* 1998;76:2094–103. <https://doi.org/10.2527/1998.7682094x>

426 29. Tatum, JD, Belk, KE, Field, TG, Scanga, JA, Smith, GC. Relative importance of weight,
427 quality grade, and yield grade as drivers of beef carcass value in two grid-pricing
428 systems. *Prof Anim Sci*, 2006;22:41-47. [https://doi.org/10.15232/S1080-7446\(15\)31059-7](https://doi.org/10.15232/S1080-7446(15)31059-7)

429
430

ACCEPTED

Tables and Figures

Table 1

Baseline characteristics of heifers and cows

		Before PSM				After PSM			
		Ligated (n=4,302)	Non-ligated (n=839)	SMD	p	Ligated (n=509)	Non-ligated (n=509)	SMD	p
Heifers	Spring (3–5)	726 (16.90%)	204 (24.30%)	0.227	<0.001	121 (23.80%)	121 (23.80%)	0.006	1
	Summer (6–8)	1,041 (24.20%)	228 (27.20%)			131 (25.70%)	131 (25.70%)		
	Fall (9–11)	1,217 (28.30%)	189 (22.50%)			125 (24.60%)	124 (24.40%)		
	Winter (12–2)	1,318 (30.60%)	218 (26.00%)			132 (25.90%)	133 (26.10%)		
Slaughtered season	Spring (3–5)	2,059 (47.90%)	327 (39.00%)	0.234	<0.001	213 (41.80%)	213 (41.80%)	0.006	1
	Summer (6–8)	927 (21.50%)	183 (21.80%)			109 (21.40%)	110 (21.60%)		
	Fall (9–11)	412 (9.60%)	136 (16.20%)			76 (14.90%)	76 (14.90%)		
	Winter (12–2)	904 (21.00%)	193 (23.00%)			111 (21.80%)	110 (21.60%)		
Slaughtered age in month		31.08 (±3.45)	43.55 (±22.65)	0.77	<0.001	31.96 (±5.99)	31.96 (±5.99)	<0.001	1
Cows		(n=1,444)	(n=2,538)			(n=936)	(n=936)		
Slaughtered season	Spring (3–5)	397 (27.50%)	615 (24.20%)	0.151	<0.001	260 (27.80%)	260 (27.80%)	<0.001	1
	Summer (6–8)	422 (29.20%)	650 (25.60%)			264 (28.20%)	264 (28.20%)		
	Fall (9–11)	318 (22.00%)	590 (23.20%)			190 (20.30%)	190 (20.30%)		
	Winter (12–2)	307 (21.30%)	683 (26.90%)			222 (23.70%)	222 (23.70%)		
Birth season	Spring (3–5)	700 (48.50%)	1,038 (40.90%)	0.165	<0.001	466 (49.80%)	466 (49.80%)	<0.001	1
	Summer (6–8)	301 (20.80%)	563 (22.20%)			191 (20.40%)	191 (20.40%)		

Fall (9–11)	181 (12.50%)	349 (13.80%)			100 (10.70%)	100 (10.70%)		
Winter (12–2)	262 (18.10%)	588 (23.20%)			179 (19.10%)	179 (19.10%)		
Slaughtered age in month	60.85 (\pm 20.76)	65.99 (\pm 26.08)	0.218	<0.001	57.59 (\pm 17.46)	57.59 (\pm 17.46)	<0.001	1
1	413 (28.60%)	560 (22.10%)	0.242	<0.001	286 (30.60%)	286 (30.60%)	<0.001	1
2	389 (26.90%)	627 (24.70%)			261 (27.90%)	261 (27.90%)		
3	319 (22.10%)	575 (22.70%)			215 (23.00%)	215 (23.00%)		
4	135 (9.30%)	323 (12.70%)			87 (9.30%)	87 (9.30%)		
5	92 (6.40%)	188 (7.40%)			53 (5.70%)	53 (5.70%)		
6	43 (3.00%)	102 (4.00%)			20 (2.10%)	20 (2.10%)		
Parity (%)	7	24 (1.70%)	68 (2.70%)		9 (1.00%)	9 (1.00%)		
8	24 (1.70%)	55 (2.20%)			5 (0.50%)	5 (0.50%)		
9	4 (0.30%)	19 (0.70%)			0 (0.00%)	0 (0.00%)		
10	1 (0.10%)	11 (0.40%)			0 (0.00%)	0 (0.00%)		
11	0 (0.00%)	6 (0.20%)			0 (0.00%)	0 (0.00%)		
12	0 (0.00%)	2 (0.10%)			0 (0.00%)	0 (0.00%)		
13	0 (0.00%)	2 (0.10%)			0 (0.00%)	0 (0.00%)		

Abbreviations: SMD = standard mean difference.

¹ Categorical variables are presented by N (%), and continuous variables are presented as means \pm std;

Table 2

Comparison of carcass traits between ligated and non-ligated female Hanwoo

	Heifers			Cows				
	Ligated (n=509)	Non-ligated (n=509)	Difference Median (95% CI)	Ligated (n=936)	Non-ligated (n=936)	Difference Median (95% CI)		
Carcass weight	369.00 (335.00,401.00)	355.00 (322.00,385.00)	14.00 (7.00, 20.50)	<0.001	373.00 (343.00,403.00)	354.00 (321.00,386.50)	20.00 (15.00, 24.50)	<0.001
Backfat thickness	13.00 (10.00,16.00)	12.00 (10.00,16.00)	0.00 (-0.50, 1.00)	0.686	13.00 (10.00,17.00)	12.00 (10.00,16.00)	1.50 (1.00, 2.00)	<0.001
Rib-eye area	86.00 (78.00,94.00)	84.00 (77.00,92.00)	2.00 (0.00, 3.50)	0.024	86.00 (79.00,93.00)	84.00 (76.00,91.00)	2.50 (1.50, 3.50)	<0.001
Marbling score	6.00 (5.00,8.00)	5.00 (3.00,6.00)	1.50 (1.50, 2.00)	<0.001	5.00 (4.00,6.00)	4.00 (3.00,6.00)	1.00 (1.00, 1.50)	<0.001
Meat color	5.00 (4.00,5.00)	5.00 (5.00,5.00)	-0.00 (-0.00, -0.00)	0.003	5.00 (5.00,5.00)	5.00 (5.00,5.00)	-0.50 (-1.00, -0.00)	<0.001
Fat color	3.00 (3.00,3.00)	3.00 (3.00,3.00)	-0.00 (-0.00, 0.00)	0.284	3.00 (3.00,3.00)	3.00 (3.00,3.00)	0.00 (-0.00, 0.00)	0.349
Maturity score	3.00 (3.00,3.00)	3.00 (3.00,4.00)	-1.00 (-1.00, -0.50)	<0.001	7.00 (5.00,8.00)	7.00 (5.00,7.00)	0.00 (-0.00, 0.00)	0.284
Texture score	1.00 (1.00,2.00)	2.00 (1.00,2.00)	0.00 (-0.00, 0.00)	0.204	2.00 (1.00,3.00)	2.00 (1.00,2.00)	0.00 (-0.00, 0.00)	0.084
Yield index	61.32 (60.12,62.46)	62.70 (60.87,66.53)	-1.92 (-2.28, -1.55)	<0.001	60.97 (59.76,62.19)	63.30 (61.04,66.97)	-2.76 (-3.06, -2.45)	<0.001

¹ The dataset after propensity score matching (PSM) was used. Continuous variables were analyzed using the paired Wilcoxon signed-rank test

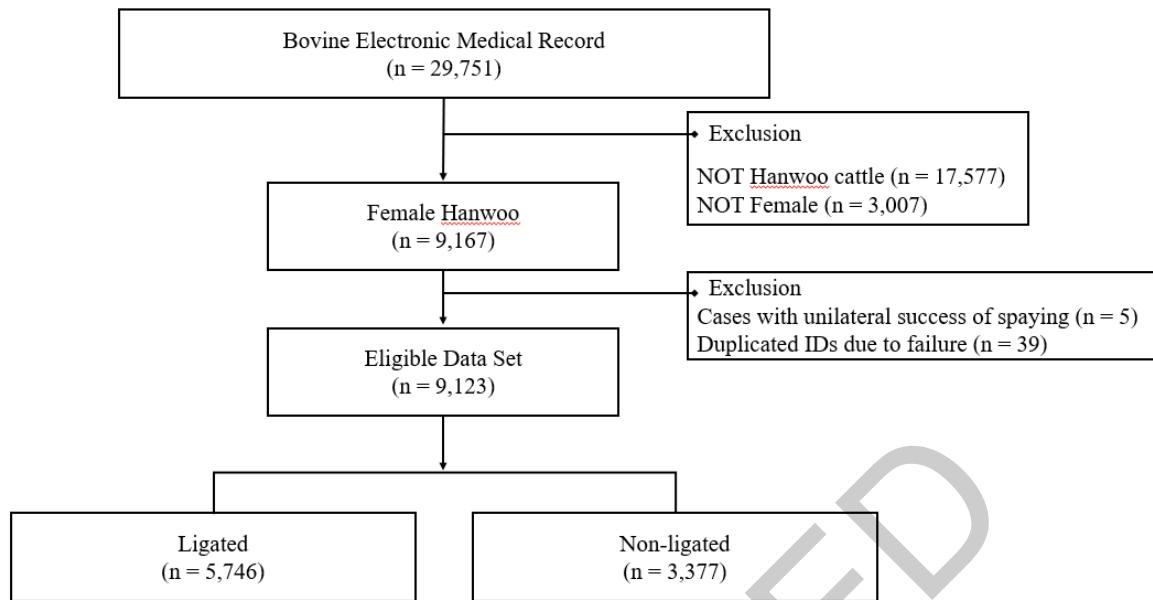
Table 3

Comparison of carcass grade between ligated and non-ligated female Hanwoo

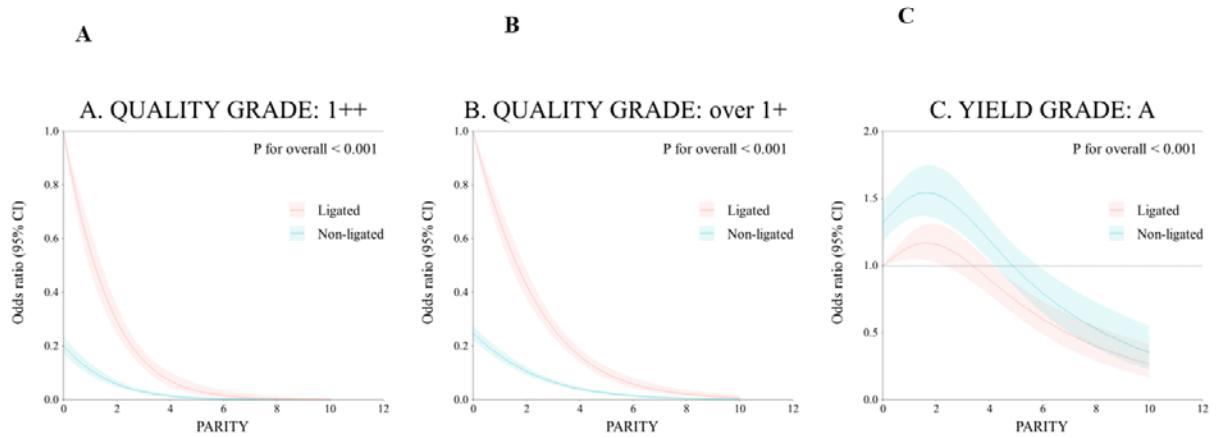
Heifers		Cows			
Ligated (n=509)	Non-ligated (n=509)	<i>p</i>	Ligated (n=936)	Non-ligated (n=936)	<i>p</i>
Yield grade (%)		0.767			0.001
A	125 (24.56%)	138 (27.11%)	196 (20.94%)	254 (27.14%)	
B	260 (51.08%)	247 (48.53%)	483 (51.60%)	488 (52.14%)	
C	124 (24.36%)	124 (24.36%)	257 (27.46%)	194 (20.73%)	
Quality grade (%)		<0.001			<.001
1++	184 (36.15%)	69 (13.56%)	119 (12.71%)	44 (4.70%)	
1+	155 (30.45%)	121 (23.77%)	256 (27.35%)	161 (17.20%)	
1	103 (20.24%)	163 (32.02%)	303 (32.37%)	285 (30.45%)	
2	62 (12.18%)	133 (26.13%)	195 (20.83%)	319 (34.08%)	
3	5 (0.98%)	23 (4.52%)	63 (6.73%)	127 (13.57%)	

¹The dataset after propensity score matching (PSM) was used. Categorical variables (grades) were analyzed using the McNemar's test.

Table 4


Odds ratio for carcass grade in heifers and cows

	Heifers			Cows		
	Unadjusted OR (95% CI) (n=9,123)	Model1 OR (95% CI) (n=9,123)	Model2 OR (95% CI) (n=2,890)	Unadjusted OR (95% CI) (n=9,123)	Model1 OR (95% CI) (n=9,123)	Model2 OR (95% CI) (n=2,890)
QUALITY						
GRADE=1++						
Non-ligated	ref	ref	ref	ref	ref	ref
Ligated	5.90 (4.70, 7.52)	5.53 (4.32, 7.19)	3.61 (2.66, 4.96)	4.09 (3.15, 5.35)	3.73 (2.86, 4.91)	3.00 (2.11, 4.34)
QUALITY						
GRADE \geq 1+						
Non-ligated	ref	ref	ref	ref	ref	ref
Ligated	5.32 (4.53, 6.27)	4.42 (3.71, 5.29)	3.35 (2.60, 4.35)	3.22 (2.77, 3.75)	3.06 (2.61, 3.58)	2.46 (2.00, 3.03)
YIELD						
GRADE="A"						
Non-ligated	ref	ref	ref	ref	ref	ref
Ligated	0.78 (0.66, 0.93)	0.74 (0.61, 0.90)	0.88 (0.66, 1.16)	0.80 (0.69, 0.93)	0.76 (0.65, 0.89)	0.71 (0.57, 0.88)


Abbreviation: OR = odds ratio

Unadjusted Model: original dataset was used

1 **Figure captions**
2
3

4
5 **Fig. 1.** Flow chart of the study design
6 * Missing Value and Duplicated cows
7 1) Entire rows duplicated (n = 13)
8 2) Duplicate IDs (n = 605, from 598 cows)
9 3) Missing values in carcass traits (n = 26)
10
11

Fig. 2. Restricted spline curve of odds ratios. Quality grade 1++, over 1+, and yield grade A by parity.

* Missing values and Duplicated cow IDs

1) Entire rows duplicated (n = 13)

2) Duplicate the unique identification code (Cow ID) (n = 605, from 598 cows)

3) Missing values in carcass traits (n = 26)

ACCEPTED