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Abstract  44 
Rumen microbiota is essential for nutrient digestion, immune function, and metabolic health in 45 

ruminants. With growing interest in sustainable animal production, recent studies have focused on the 46 
combined use of diet and probiotics in modulating rumen microbial community and its association with 47 
host performance. This review summarizes the effects of dietary strategies on microbial composition and 48 
fermentation efficiency. This review also discusses how probiotics such as Saccharomyces cerevisiae, 49 
Lactobacillus, Lacticasibacillus, Lactiplantibacillus, and Bacillus spp. stabilize the rumen environment, 50 
enhance fiber degradation, and reduce harmful microbes. These effects are influenced by both the 51 
probiotic strain and physiological stage of the animal. Furthermore, it explores how microbial 52 
fermentation products, such as volatile fatty acids and ammonia, play an important role as functional 53 
indicators reflecting microbial activity and host physiology. Metabolomics, which enables the 54 
comprehensive analysis of rumen metabolites, has proven valuable for investigating the influence of diet 55 
and probiotics on host metabolism. Hence, the integration of dietary strategies with probiotics can 56 
synergistically enhance rumen health and overall productivity in ruminants. 57 
 58 
Keywords: ruminants, rumen, microbiota, probiotics, upcycled agrofood byproducts 59 
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Introduction 79 

The rumen, the largest compartment of the stomach in the ruminant digestive system, plays a critical 80 
role in microbial fermentation [1]. It hosts a complex community of microbiota such as bacteria, archaea, 81 
protozoa, fungi, and viruses, and bacteria are the most dominant group in rumen microbiota (up to 90%) 82 
and contribute to the feed metabolism [1]. Rumen microbiota plays a key role in the degradation of forage 83 
and plant polysaccharides into volatile fatty acids (VFAs), microbial protein, amino acids, and vitamins 84 
that serve as energy sources (Fig. 1) [1-4]. In addition to nutrient conversion, the rumen microbiota also 85 
regulates the immune system and maintains gut barrier integrity [5, 6]. A balanced rumen microbial 86 
community is essential for the optimal health and productivity of ruminants [7, 8]. 87 

The relationship between the rumen microbiota and the host is controlled by several mechanisms. For 88 
example, microbial metabolites such as acetate, butyrate, and propionate are used by the host for energy 89 
production [9, 10]. In addition, microbial antigens may influence local immune responses, and systemic 90 
immune modulation may occur under certain conditions. Changes in microbial composition are associated 91 
with variation in rumen pH and the development of the rumen epithelium [8]. 92 

The microbial community in the rumen is very sensitive to different factors, including diet, age, and 93 
health condition [11-13]. Dietary changes can disrupt microbial balance, potentially leading to subacute 94 
ruminal acidosis, which is related to reduced fiber digestion and reduced feed efficiency. Additionally, the 95 
composition of the microbial community changes with age [14, 15]. Microbes that colonize the rumen at 96 
an early age can affect the fermentation capacity and overall health status of the rumen later on [16]. 97 
Therefore, maintaining a stable microbial balance is important to support growth and productivity. In this 98 
review, microbial stability refers to the ability of the rumen microbial community to maintain balanced 99 
composition and stable fermentation activity despite changes in diet or environmental conditions.  100 

To improve rumen microbial balance, several studies have explored dietary strategies and the use of 101 
probiotics [17]. Feeding management practices that incorporate functional feed ingredients and the use of 102 
phytochemicals have been shown to promote beneficial microbial populations and improve fermentation 103 
in the rumen. Recently, upcycled feed ingredients such as brewer’s spent grain, okara, and fruit pomace 104 
have been used as alternative feed resources [18-20]. These materials contain complex carbohydrates and 105 
bioactive compounds that support the growth of fiber-degrading bacteria such as Fibrobacter 106 
succinogenes and Ruminococcus flavefaciens [21-24]. Enhanced microbial activity subsequently 107 
improves the production of short-chain fatty acids and increase feed efficiency. 108 

In addition to probiotics such as Saccharomyces cerevisiae, strains of Lactobacillus, Lacticasibacillus, 109 
Lactiplantibacillus, and Bacillus have been used to support rumen health [25-27]. These probiotics 110 
contribute to improving fiber digestion, stabilize rumen pH, reduce harmful bacteria, and support immune 111 
regulation. 112 
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This review explores the influence of diet and probiotics on the rumen microbiota and overall 113 
physiology of ruminants. It also discusses the potential synergistic benefits of combining both approaches 114 
to improve productivity, health, and sustainability in ruminants. In addition, this review provides an 115 
integrative overview of recent studies and highlights key mechanisms linking dietary modulation and 116 
probiotic supplementation with rumen microbial balance and host metabolism. 117 
 118 

Dietary modulation of rumen microbiota 119 

Diet is one of the most important factors affecting the composition and activity of the rumen microbiota 120 
[11, 12]. Recently, together with conventional macronutrients and feed additives, the use of upcycled 121 
agro-industrial byproducts such as okara, fruit pomace, and brewer’s spent grain has gained increasing 122 
attention as a sustainable feeding strategy. As summarized in Table 1, dietary interventions affecting the 123 
rumen microbiota can be classified into macronutrient composition, functional additives, and upcycled 124 
byproducts. The forage-to-concentrate ratio in ruminant diets significantly influences microbial 125 
community and the fermentation pathway, which in turn impacts the health and productivity of ruminants 126 
[28, 29]. A diet with a high forage ratio was found to be associated with increased rumen microbiota 127 
diversity and modulation the carbohydrate metabolic pathway in Holstein cows [27]. Similarly, in Angus, 128 
feeding a diet with an increased concentrate ratio resulted in a decreased the diversity of rumen 129 
microbiota, which was changed the composition of rumen microbiota. These microbial changes were 130 
associated with a negative effect on animal health, including a reduction in rumen pH and increase in 131 
inflammatory responses [28]. Forage-based diets are associated with increased abundance of fibrolytic 132 
bacteria such as F. succinogenes and R. flavefaciens. These bacteria are essential for degrading fiber 133 
components such as cellulose and hemicellulose into VFAs such as acetate and butyrate that support lipid 134 
metabolism, promote rumen epithelial development, and maintain gut barrier function [30]. 135 

However, diets rich in rapidly fermentable carbohydrates, such as corn or barley, increase the number 136 
of amylolytic bacteria, including Streptococcus bovis and Prevotella species [31]. These microbes 137 
produce high levels of propionate as an energy source for ruminants and contribute to a rapid decrease in 138 
rumen pH due to acid accumulation [24]. If not properly managed, high fermentable diets can lead to 139 
subacute ruminal acidosis, which is associated with poor fiber digestion, ruminal inflammation, and 140 
decreased feed utilization [32-34]. On the other hand, a high fermentable diet, that is, concentrate, can 141 
improve growth performance and nutrient digestibility of crude protein, leading to increased productivity 142 
[24]. Therefore, diet composition should be carefully adjusted to maintain a balance between productivity 143 
and rumen health. 144 

Recently, the use of upcycled feed ingredients has received increased attention as a sustainable dietary 145 
strategy for modulation of rumen microbiota [35]. These include agrofood byproducts such as brewer’s 146 
spent grain, okara, fruit pomace, and wheat bran, which are rich in dietary fiber, protein, and bioactive 147 
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compounds such as polyphenols and oligosaccharides [18-20]. They can serve as prebiotics by increasing 148 
the growth of beneficial rumen microbes [36]. For example, depending on the inclusion level and 149 
processing method, okara has been reported to improve fiber digestibility, increase the levels of acetate 150 
and butyrate, and help maintain rumen pH stability [37]. Another study reported that certain fruit pomaces 151 
reduce the population of methane-producing archaea under specific dietary conditions, thereby lowering 152 
the environmental impact of ruminant production [38]. Fermentation using agroindustry byproducts can 153 
modulate the rumen microbiota for the sustainable livestock industry [39]. Rice straw fermented with 154 
Aspergillus terreus decreased the production of methane in the goat’s rumen by up to 32% due to 155 
levastatin produced by A. terreus, which inhibits the growth of Methanobrevibacter smithii [40].  156 

In addition to adjusting the forage-to-concentrate ratio and incorporating upcycled feeds and/or other 157 
dietary additives can be used to further manage rumen microbes more effectively. For example, essential 158 
oils such as thymol and carvacrol can support fiber-digesting microbes while reducing harmful bacteria 159 
[41]. Another study describes the effect of selenium supplementation, a trace mineral commonly used as a 160 
supplement for regulating animal metabolism, on rumen microbiota, fermentation, and digestibility [42]. 161 
Selenium supplementation can affect specific rumen microorganisms such as cellulolytic bacteria, non-162 
fiber carbohydrate degrading bacteria, and lactic acid bacteria, consequences in a positive effect on total 163 
VFA, the molar proportion of propionate, the acetate to propionate ratio, ruminal NH3-N, pH, enzymatic 164 
activity, and digestibility [42]. 165 

A well-managed and balanced diet can control the microbial community in the rumen [43]. Provision 166 
of sufficient energy and fiber improves microbial fermentation and fosters a stable microbial population 167 
[44]. In addition, other interventions such as probiotic supplementation and controlled feeding time can 168 
reinforce microbial stability [45]. These dietary strategies reduce digestive problems, enhance nutrient 169 
utilization, and increase rumen productivity. 170 

In conclusion, feeding strategies that incorporate upcycled feed materials and functional additives are 171 
important for maintaining a stable rumen microbial community and improving fermentation efficiency. 172 
These methods enhance nutrient utilization, promote animal health, and contribute to environmental 173 
sustainability by reducing feed waste and making better use of available resources. 174 
 175 
 176 

Role of probiotics in enhancing microbial stability and host 177 

functions 178 

Dietary changes, stress, and diseases can disrupt the balance of the microbial ecosystem in the rumen 179 
and lead to decreased fermentation ability and digestive efficiency. To overcome these challenges, 180 
probiotics, which are living organisms that confer health benefits to the host, have been used in ruminant 181 

ACCEPTED



8 
 

diets. They can modulate rumen microbial community and improve its functional stability, thereby 182 
increasing digestive efficiency and productivity [46] (Fig. 2). For example, it was reported that Holstein 183 
calves fed a diet supplemented with compound probiotics alter rumen fermentation and improve rumen 184 
development [47]. 185 

S. cerevisiae, Lactobacillus, Lacticasibacillus, Lactiplantibacillus spp., Bifidobacterium, and spore-186 
forming Bacillus strains are commonly used as probiotics in ruminants. Among them, S. cerevisiae may 187 
help maintain optimal anaerobic conditions in the rumen by consuming residual oxygen, which can create 188 
more favorable environments for anaerobes such as Ruminococcus albus and F. succinogenes, playing a 189 
key role in fiber degradation [48]. In addition, S. cerevisiae is associated with enhanced fiber degradation 190 
and elevated the production of VFAs such as acetate and butyrate, which are major energy sources for 191 
ruminants.  192 

Probiotics support host functions through multiple mechanisms. First, some strains produce enzymes 193 
such as cellulase, xylanase, and protease, which complement endogenous ruminal enzymes and improve 194 
feed degradation [17]. Second, probiotics can suppress the growth of harmful microbes by outcompeting 195 
them for nutrients and producing antimicrobial substances. Third, certain probiotics can influence the 196 
immune system by interacting with the gut-associated lymphoid tissue (GALT), helping to reduce 197 
inflammation and support the integrity of the intestinal barrier [49]. 198 

The effectiveness of probiotic supplementation varies depending on the strain used and the 199 
physiological status of the host animal. For example, strains such as Lacticaseibacillus rhamnosus and 200 
Bacillus subtilis are more beneficial for young calves, as they can help in immune development and gut 201 
health [50]. Conversely, S. cerevisiae is commonly used in lactating cows to help stabilize rumen pH and 202 
improve milk production [51]. In addition, several studies have reported the beneficial effects of multi-203 
strain or mixed probiotic supplementation on rumen fermentation, nutrient utilization, and host metabolic 204 
health in ruminants [52-54]. For example, a recent study using a probiotic blend containing Lactobacillus, 205 
Bacillus, and Bifidobacterium, alone or in combination with Saccharomyces cerevisiae, demonstrated 206 
improvements in rumen characteristics, nutrient digestibility, and blood biochemical parameters in sheep 207 
[52]. Quadric-strain probiotic blends can enhance rumen fermentation efficiency while reducing methane 208 
emissions, further supporting the potential of multi-strain probiotics for sustainable ruminant production 209 
[53]. However, the effects of mixed probiotics may vary depending on diet composition, supplementation 210 
amount, and the physiological stage of the host animal. Therefore, further studies should focus on 211 
elucidating inter-microbial interactions within probiotic mixtures and optimizing strain combinations for 212 
targeted rumen modulation and precision feeding strategies. 213 

Recently, probiotics mixed with agrofood byproducts have gained attention due to the stabilization of 214 
the microbial ecosystem and host physiology in ruminants (Fig. 2). Some agrofood byproducts may serve 215 
as prebiotics due to their non-digestible fibers and bioactive contents. They improve fermentation efficacy 216 
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and microbial diversity. Several studies have shown that probiotics combined with agrofood byproducts 217 
increased VFAs, which were key metabolites for energy production and immune regulation [55]. 218 
Agrofood byproducts fermented with probiotics can achieve additional advantages, including reducing 219 
antinutrients in feed stuff, degrading the crude fiber, and reducing the level of lignin, resulting in 220 
increased feed intake and nutrients digestibility [39]. Further study should focus on optimizing probiotic 221 
strains based on the developmental stage of the animal and dietary composition to maximize the benefits 222 
of this combined strategy in sustainable ruminant production. 223 

The combined influence of diet and probiotics plays a pivotal role in optimizing rumen fermentation 224 
and host physiology. The efficacy of probiotics often depends on the nutrient composition and physical 225 
characteristics of the diet. For instance, S. cerevisiae tends to exhibit greater benefits in high-forage diets 226 
by promoting fibrolytic bacterial growth and enhancing fiber degradation [56-58]. Whereas bacterial 227 
probiotics such as Lacticaseibacillus rhamnosus may perform better under high-concentrate feeding 228 
conditions by supporting rumen epithelial barrier function and reducing inflammation [59]. Additionally, 229 
polyphenol-rich upcycled feeds such as fruit pomace or okara can act synergistically with probiotics, 230 
serving as prebiotic substrates that promote beneficial microbial colonization [60]. Therefore, dietary 231 
formulation and probiotic selection should be strategically integrated to achieve optimal microbial 232 
modulation, feed efficiency, and host performance in precision nutrition systems. 233 
 234 

Functional Outcomes and Omics-based Integration 235 

To understand how dietary changes and probiotics affect the rumen microbiota and the host animal, it 236 
is essential to characterize the taxonomic composition of the rumen microbiota and its functional 237 
activities. The rumen microbial community represents the primary biological system responsible for 238 
fermentation, and changes in microbial composition affect metabolic processes.  239 

Metabolomics is a useful tool because it can measure various metabolites that are produced during 240 
fermentation, providing insight into the actual biological processes occurring in the rumen [61]. Key 241 
metabolites commonly measured in ruminants include VFAs (mainly acetate, propionate, and butyrate), 242 
ammonia, methane-related compounds, and branched-chain fatty acids. For example, butyrate is known to 243 
help maintain the rumen epithelial cells and reduce inflammation [62]. Propionate plays an important role 244 
in producing glucose in the liver [63]. However, elevated ammonia levels are indicative of excessive 245 
protein degradation and inefficient nitrogen utilization. Advanced technologies such as nuclear magnetic 246 
resonance (NMR), gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass 247 
spectrometry (LC-MS) have been used to analyze various metabolites. 248 

The interpretation of the taxonomic composition of the rumen microbiota and their functional activities 249 
becomes more robust when metabolomics data are combined with microbiome data obtained from 16S 250 
rRNA sequencing 251 
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g [64] (Fig. 3). For example, if microbiome data using 16S rRNA gene sequencing show more 252 
Prevotella species, metabolomics can confirm whether this leads to more propionate production, better 253 
protein breakdown, or possibly an increase in unwanted byproducts like ammonia or branched-chain 254 
VFAs [65, 66].  255 

In addition, multi-omics integration that involves microbiomics, metabolomics, and host 256 
transcriptomics can provide a more comprehensive understanding of host and microbiota interactions, 257 
thereby facilitating the development of more effective feeding systems [67]. In particular, host 258 
transcriptomic data obtained from metabolically active tissues such as the rumen epithelium and liver, can 259 
provide insights into the regulatory effects of microbial metabolites on nutrient absorption, immune 260 
modulation, and metabolic homeostasis [68-70]. It is also important to consider the time point of 261 
transcriptomic sampling because host reaction can significantly change between early dietary adaptation 262 
periods and longer-term feeding, depending on its overall health and physiological state. For example, a 263 
multi-omics study in Tibetan sheep revealed changes in rumen epithelial gene expression, microbial 264 
composition, and metabolite profiles during cold-season adaptation, elucidating host-microbiome 265 
interactions through the modulation of pathways such as PPAR signaling and xenobiotic metabolism 266 
under environmental stressors [68]. 267 

These data can be used in precision feeding strategies to enhance animal health, productivity, and feed 268 
efficiency. Recently, metabolomics studies have increasingly revealed the role of diet and probiotic 269 
interactions in modulating rumen fermentation and improving animal productivity [71]. For example, a 270 
higher acetate-to-propionate ratio might indicate increased fiber fermentation, although this may vary 271 
depending on diet, pH, and microbial factors, and these data can be used to modify the feed type or 272 
supplement strategies, such as the use of fiber-rich byproducts or administration of specific probiotics 273 
[72]. These strategies can help to identify useful biomarkers for digestion or dysbiosis, monitor how 274 
probiotics or dietary changes affect microbial metabolism, and predict ruminant performance traits such 275 
as feed efficiency or methane emissions [73, 74].  276 

As omics technologies continue to improve and analysis becomes cheaper and faster, standardized 277 
multi-omics approaches coupled with machine learning tools will help farmers and researchers apply 278 
these insights in real time [75, 76]. This could lead to more personalized feeding systems that not only 279 
improve animal growth and health but also reduce waste and environmental impact. 280 
 281 
 282 

Conclusion 283 

This review confirms that dietary modulation, the utilization of upcycled feeds, and probiotic 284 
supplementation are powerful strategies for modulating the rumen microbial community and host 285 
physiology. However, the true potential lies in the integrated application of these approaches, which can 286 
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synergistically stabilize the rumen environment, enhance fermentation efficiency, and improve host health. 287 
Future research must move beyond analyzing individual effects to focus on elucidating the complex 288 
mechanistic interactions between specific dietary components and specific probiotic strains. To achieve 289 
this, the active use of multi-omics approaches, including genomics, is essential to understand the precise 290 
interactions between the host, microbiome, diet, and probiotics. The ultimate goal is to leverage this 291 
deeper understanding to develop precision feeding systems tailored to an animal's unique host genetics 292 
and microbial profile, thereby simultaneously enhancing the sustainability and productivity of ruminant 293 
production. 294 
 295 
 296 
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Tables and Figures 526 

 527 
Table 1. Classification of dietary interventions affecting the rumen microbiota 528 

Dietary strategy Specific intervention Microbial modulation 
effect 

Functional outcome Reference 

Macronutrient High forage diets Fibrolytic bacteria ↑ Fiber digestion↑, ↑acetate & 
butyrate↑, gut health↑ 

[23–25] 

High concentrate 
diets 

Amylolytic bacteria ↑ Propionate↑, rumen pH↓ [26–28] 

Functional 
additives and 
supplements 

Essential oils Preserve fibrolytic 
bacteria, suppress 

pathogens 

Maintain balance, pathogenic 
fermentation↓ 

[33] 

Probiotics Stabilize microbial 
community 

Nutrient use↑, digestive 
issues↓ 

 

[36] 

Upcycled agro-
industrial 

byproducts 

Okara, fruit pomace, 
wheat bran, brewer’s 

spent grain, etc. 

Prebiotic effect↑, fiber-
degrading bacteria↑, 

methanogens↓ 

VFAs↑, methane↓, 
sustainability↑ 

[15–17], 
[29–32] 
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Fig. 1. Overview of rumen microbial fermentation. Volatile fatty acids (VFAs), amino acids, and 567 
vitamins produced during fermentation, are utilized for energy production, immune function, and 568 
gut barrier integrity. 569 
 570 
 571 
 572 
 573 
 574 
 575 
 576 
 577 
 578 
 579 
 580 
 581 
 582 
 583 
 584 
 585 
 586 
 587 
 588 
 589 
 590 
 591 
 592 
 593 
 594 
 595 
 596 
 597 
 598 
 599 

ACCEPTED



20 
 

 600 
 601 
 602 
 603 

 604 
 605 
 606 

Fig. 2. Effects of probiotics and upcycled agrofood byproducts on the enhancement of microbial 607 
diversity in the rumen. The microbial diversity contributes to enhanced fermentation efficacy, 608 
increased production of volatile fatty acids (VFAs), improved energy and nutrient uptake, and 609 
reduction of harmful microbes. 610 
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 636 
 637 
 638 

 639 
 640 
Fig. 3. Integration of metabolomics and microbiomics for host-microbiota interaction. 641 
Metabolomics approaches, including nuclear magnetic resonance (NMR), gas chromatography–642 
mass spectrometry (GC-MS), and liquid chromatography–mass spectrometry (LC-MS), 643 
combined with microbiome analysis based on 16S ribosomal RNA (16S rRNA) sequencing, can 644 
be applied to precision feeding strategies to enhance animal health, productivity, and feed 645 
efficiency. 646 
 647 
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