

JAST (Journal of Animal Science and Technology) TITLE PAGE
Upload this completed form to website with submission

ARTICLE INFORMATION		Fill in information in each box below
Article Type	Review article	
Article Title (within 20 words without abbreviations)	Integrated effects of diet and probiotics on rumen microbiota and host physiology in ruminants	
Running Title (within 10 words)	Diet and probiotic impacts on rumen function	
Author	Jeehwan Choe ¹ , Miri Park ² , Seung-Man Yu ³ , Sooah Kim ⁴	
Affiliation	1 Major of Beef Science, Department of Livestock, Korea National College of Agriculture and Fisheries, Jeonju 54874, South Korea 2 Research Division of Food Functionality, Korea Food Research Institute, Wanju, 55365, South Korea 3 Department of Radiological Science, Jeonju University, Jeonju 55069, South Korea 4 Department of Environment Science & Biotechnology, Jeonju University, Jeonju 55069, South Korea	
ORCID (for more information, please visit https://orcid.org)	Jeehwan Choe (https://orcid.org/0000-0002-7217-972X) Miri Park (https://orcid.org/0000-0002-0149-743X) Seung-Man Yu (https://orcid.org/0000-0003-4145-4511) Sooah Kim (https://orcid.org/0000-0002-9096-4879)	
Competing interests	No potential conflict of interest relevant to this article was reported.	
Funding sources State funding sources (grants, funding sources, equipment, and supplies). Include name and number of grant if available.	This research was supported by the Regional Innovation System & Education (RISE) program through the Jeonbuk RISE Center, funded by the Ministry of Education (MOE) and the Jeonbuk State, Republic of Korea (2025-RISE-13-JJU).	
Acknowledgements	Not applicable.	
Availability of data and material	No new data were created or analyzed in this study.	
Authors' contributions Please specify the authors' role using this form.	Conceptualization: Choe J, Kim S. Methodology: Choe J, Park M, Yu S-M, Kim S. Investigation: Choe J, Park M, Yu S-M, Kim S. Writing - original draft: Choe J, Kim S. Writing - review & editing: Choe J, Park M, Yu S-M, Kim S.	
Ethics approval and consent to participate	This article does not require IRB/IACUC approval because there are no human and animal participants.	

5 CORRESPONDING AUTHOR CONTACT INFORMATION

For the corresponding author (responsible for correspondence, proofreading, and reprints)		Fill in information in each box below
First name, middle initial, last name	Sooah Kim	
Email address – this is where your proofs will be sent	skim366@jj.ac.kr	
Secondary Email address	tndklove@gmail.com	
Address	33 Cheonjam-ro, Jeonju-si, Jeonju University, Jeonju 55069, South Korea	
Cell phone number	+82-10-8012-7322	

Office phone number	+82-63-220-2384
Fax number	+82-63-220-2054

6
7

ACCEPTED

8 Submitted to *Journal of Animal Science and Technology (JAST)*

9 **Integrated effects of diet and probiotics on rumen microbiota and host physiology in**
10 **ruminants**

13 Jeehwan Choe^{1, #}, Miri Park^{2, #}, Seung-Man Yu³, Sooah Kim^{4,*}

15 ¹Major of Beef Science, Department of Livestock, Korea National College of Agriculture and
16 Fisheries, Jeonju 54874, South Korea

17 ²Research Division of Food Functionality, Korea Food Research Institute, Wanju, 55365, South
18 Korea

19 ³Department of Radiological Science, Jeonju University, Jeonju 55069, South Korea

20 ⁴Department of Environment Science & Biotechnology, Jeonju University, Jeonju 55069, South
21 Korea

22 # These two authors equally contributed to this research as the first author.

23 *Correspondence: skim366@jj.ac.kr (S.K.), Tel.: +82-63-220-2384 (S.K)

44 **Abstract**

45 Rumen microbiota is essential for nutrient digestion, immune function, and metabolic health in
46 ruminants. With growing interest in sustainable animal production, recent studies have focused on the
47 combined use of diet and probiotics in modulating rumen microbial community and its association with
48 host performance. This review summarizes the effects of dietary strategies on microbial composition and
49 fermentation efficiency. This review also discusses how probiotics such as *Saccharomyces cerevisiae*,
50 *Lactobacillus*, *Lacticasibacillus*, *Lactiplantibacillus*, and *Bacillus* spp. stabilize the rumen environment,
51 enhance fiber degradation, and reduce harmful microbes. These effects are influenced by both the
52 probiotic strain and physiological stage of the animal. Furthermore, it explores how microbial
53 fermentation products, such as volatile fatty acids and ammonia, play an important role as functional
54 indicators reflecting microbial activity and host physiology. Metabolomics, which enables the
55 comprehensive analysis of rumen metabolites, has proven valuable for investigating the influence of diet
56 and probiotics on host metabolism. Hence, the integration of dietary strategies with probiotics can
57 synergistically enhance rumen health and overall productivity in ruminants.

58

59 **Keywords:** ruminants, rumen, microbiota, probiotics, upcycled agrofood byproducts

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

Introduction

80 The rumen, the largest compartment of the stomach in the ruminant digestive system, plays a critical
81 role in microbial fermentation [1]. It hosts a complex community of microbiota such as bacteria, archaea,
82 protozoa, fungi, and viruses, and bacteria are the most dominant group in rumen microbiota (up to 90%)
83 and contribute to the feed metabolism [1]. Rumen microbiota plays a key role in the degradation of forage
84 and plant polysaccharides into volatile fatty acids (VFAs), microbial protein, amino acids, and vitamins
85 that serve as energy sources (Fig. 1) [1-4]. In addition to nutrient conversion, the rumen microbiota also
86 regulates the immune system and maintains gut barrier integrity [5, 6]. A balanced rumen microbial
87 community is essential for the optimal health and productivity of ruminants [7, 8].

88 The relationship between the rumen microbiota and the host is controlled by several mechanisms. For
89 example, microbial metabolites such as acetate, butyrate, and propionate are used by the host for energy
90 production [9, 10]. In addition, microbial antigens may influence local immune responses, and systemic
91 immune modulation may occur under certain conditions. Changes in microbial composition are associated
92 with variation in rumen pH and the development of the rumen epithelium [8].

93 The microbial community in the rumen is very sensitive to different factors, including diet, age, and
94 health condition [11-13]. Dietary changes can disrupt microbial balance, potentially leading to subacute
95 ruminal acidosis, which is related to reduced fiber digestion and reduced feed efficiency. Additionally, the
96 composition of the microbial community changes with age [14, 15]. Microbes that colonize the rumen at
97 an early age can affect the fermentation capacity and overall health status of the rumen later on [16].
98 Therefore, maintaining a stable microbial balance is important to support growth and productivity. In this
99 review, microbial stability refers to the ability of the rumen microbial community to maintain balanced
100 composition and stable fermentation activity despite changes in diet or environmental conditions.

101 To improve rumen microbial balance, several studies have explored dietary strategies and the use of
102 probiotics [17]. Feeding management practices that incorporate functional feed ingredients and the use of
103 phytochemicals have been shown to promote beneficial microbial populations and improve fermentation
104 in the rumen. Recently, upcycled feed ingredients such as brewer's spent grain, okara, and fruit pomace
105 have been used as alternative feed resources [18-20]. These materials contain complex carbohydrates and
106 bioactive compounds that support the growth of fiber-degrading bacteria such as *Fibrobacter*
107 *succinogenes* and *Ruminococcus flavefaciens* [21-24]. Enhanced microbial activity subsequently
108 improves the production of short-chain fatty acids and increase feed efficiency.

109 In addition to probiotics such as *Saccharomyces cerevisiae*, strains of *Lactobacillus*, *Lactococcus*,
110 *Lactiplantibacillus*, and *Bacillus* have been used to support rumen health [25-27]. These probiotics
111 contribute to improving fiber digestion, stabilize rumen pH, reduce harmful bacteria, and support immune
112 regulation.

113 This review explores the influence of diet and probiotics on the rumen microbiota and overall
114 physiology of ruminants. It also discusses the potential synergistic benefits of combining both approaches
115 to improve productivity, health, and sustainability in ruminants. In addition, this review provides an
116 integrative overview of recent studies and highlights key mechanisms linking dietary modulation and
117 probiotic supplementation with rumen microbial balance and host metabolism.

118

119 **Dietary modulation of rumen microbiota**

120 Diet is one of the most important factors affecting the composition and activity of the rumen microbiota
121 [11, 12]. Recently, together with conventional macronutrients and feed additives, the use of upcycled
122 agro-industrial byproducts such as okara, fruit pomace, and brewer's spent grain has gained increasing
123 attention as a sustainable feeding strategy. As summarized in Table 1, dietary interventions affecting the
124 rumen microbiota can be classified into macronutrient composition, functional additives, and upcycled
125 byproducts. The forage-to-concentrate ratio in ruminant diets significantly influences microbial
126 community and the fermentation pathway, which in turn impacts the health and productivity of ruminants
127 [28, 29]. A diet with a high forage ratio was found to be associated with increased rumen microbiota
128 diversity and modulation the carbohydrate metabolic pathway in Holstein cows [27]. Similarly, in Angus,
129 feeding a diet with an increased concentrate ratio resulted in a decreased the diversity of rumen
130 microbiota, which was changed the composition of rumen microbiota. These microbial changes were
131 associated with a negative effect on animal health, including a reduction in rumen pH and increase in
132 inflammatory responses [28]. Forage-based diets are associated with increased abundance of fibrolytic
133 bacteria such as *F. succinogenes* and *R. flavefaciens*. These bacteria are essential for degrading fiber
134 components such as cellulose and hemicellulose into VFAs such as acetate and butyrate that support lipid
135 metabolism, promote rumen epithelial development, and maintain gut barrier function [30].

136 However, diets rich in rapidly fermentable carbohydrates, such as corn or barley, increase the number
137 of amylolytic bacteria, including *Streptococcus bovis* and *Prevotella* species [31]. These microbes
138 produce high levels of propionate as an energy source for ruminants and contribute to a rapid decrease in
139 rumen pH due to acid accumulation [24]. If not properly managed, high fermentable diets can lead to
140 subacute ruminal acidosis, which is associated with poor fiber digestion, ruminal inflammation, and
141 decreased feed utilization [32-34]. On the other hand, a high fermentable diet, that is, concentrate, can
142 improve growth performance and nutrient digestibility of crude protein, leading to increased productivity
143 [24]. Therefore, diet composition should be carefully adjusted to maintain a balance between productivity
144 and rumen health.

145 Recently, the use of upcycled feed ingredients has received increased attention as a sustainable dietary
146 strategy for modulation of rumen microbiota [35]. These include agrofood byproducts such as brewer's
147 spent grain, okara, fruit pomace, and wheat bran, which are rich in dietary fiber, protein, and bioactive

148 compounds such as polyphenols and oligosaccharides [18-20]. They can serve as prebiotics by increasing
149 the growth of beneficial rumen microbes [36]. For example, depending on the inclusion level and
150 processing method, okara has been reported to improve fiber digestibility, increase the levels of acetate
151 and butyrate, and help maintain rumen pH stability [37]. Another study reported that certain fruit pomaces
152 reduce the population of methane-producing archaea under specific dietary conditions, thereby lowering
153 the environmental impact of ruminant production [38]. Fermentation using agroindustry byproducts can
154 modulate the rumen microbiota for the sustainable livestock industry [39]. Rice straw fermented with
155 *Aspergillus terreus* decreased the production of methane in the goat's rumen by up to 32% due to
156 levastatin produced by *A. terreus*, which inhibits the growth of *Methanobrevibacter smithii* [40].

157 In addition to adjusting the forage-to-concentrate ratio and incorporating upcycled feeds and/or other
158 dietary additives can be used to further manage rumen microbes more effectively. For example, essential
159 oils such as thymol and carvacrol can support fiber-digesting microbes while reducing harmful bacteria
160 [41]. Another study describes the effect of selenium supplementation, a trace mineral commonly used as a
161 supplement for regulating animal metabolism, on rumen microbiota, fermentation, and digestibility [42].
162 Selenium supplementation can affect specific rumen microorganisms such as cellulolytic bacteria, non-
163 fiber carbohydrate degrading bacteria, and lactic acid bacteria, consequences in a positive effect on total
164 VFA, the molar proportion of propionate, the acetate to propionate ratio, ruminal NH₃-N, pH, enzymatic
165 activity, and digestibility [42].

166 A well-managed and balanced diet can control the microbial community in the rumen [43]. Provision
167 of sufficient energy and fiber improves microbial fermentation and fosters a stable microbial population
168 [44]. In addition, other interventions such as probiotic supplementation and controlled feeding time can
169 reinforce microbial stability [45]. These dietary strategies reduce digestive problems, enhance nutrient
170 utilization, and increase rumen productivity.

171 In conclusion, feeding strategies that incorporate upcycled feed materials and functional additives are
172 important for maintaining a stable rumen microbial community and improving fermentation efficiency.
173 These methods enhance nutrient utilization, promote animal health, and contribute to environmental
174 sustainability by reducing feed waste and making better use of available resources.

175
176

177 **Role of probiotics in enhancing microbial stability and host 178 functions**

179 Dietary changes, stress, and diseases can disrupt the balance of the microbial ecosystem in the rumen
180 and lead to decreased fermentation ability and digestive efficiency. To overcome these challenges,
181 probiotics, which are living organisms that confer health benefits to the host, have been used in ruminant

182 diets. They can modulate rumen microbial community and improve its functional stability, thereby
183 increasing digestive efficiency and productivity [46] (Fig. 2). For example, it was reported that Holstein
184 calves fed a diet supplemented with compound probiotics alter rumen fermentation and improve rumen
185 development [47].

186 *S. cerevisiae*, *Lactobacillus*, *Lacticasibacillus*, *Lactiplantibacillus* spp., *Bifidobacterium*, and spore-
187 forming *Bacillus* strains are commonly used as probiotics in ruminants. Among them, *S. cerevisiae* may
188 help maintain optimal anaerobic conditions in the rumen by consuming residual oxygen, which can create
189 more favorable environments for anaerobes such as *Ruminococcus albus* and *F. succinogenes*, playing a
190 key role in fiber degradation [48]. In addition, *S. cerevisiae* is associated with enhanced fiber degradation
191 and elevated the production of VFAs such as acetate and butyrate, which are major energy sources for
192 ruminants.

193 Probiotics support host functions through multiple mechanisms. First, some strains produce enzymes
194 such as cellulase, xylanase, and protease, which complement endogenous ruminal enzymes and improve
195 feed degradation [17]. Second, probiotics can suppress the growth of harmful microbes by outcompeting
196 them for nutrients and producing antimicrobial substances. Third, certain probiotics can influence the
197 immune system by interacting with the gut-associated lymphoid tissue (GALT), helping to reduce
198 inflammation and support the integrity of the intestinal barrier [49].

199 The effectiveness of probiotic supplementation varies depending on the strain used and the
200 physiological status of the host animal. For example, strains such as *Lacticaseibacillus rhamnosus* and
201 *Bacillus subtilis* are more beneficial for young calves, as they can help in immune development and gut
202 health [50]. Conversely, *S. cerevisiae* is commonly used in lactating cows to help stabilize rumen pH and
203 improve milk production [51]. In addition, several studies have reported the beneficial effects of multi-
204 strain or mixed probiotic supplementation on rumen fermentation, nutrient utilization, and host metabolic
205 health in ruminants [52-54]. For example, a recent study using a probiotic blend containing *Lactobacillus*,
206 *Bacillus*, and *Bifidobacterium*, alone or in combination with *Saccharomyces cerevisiae*, demonstrated
207 improvements in rumen characteristics, nutrient digestibility, and blood biochemical parameters in sheep
208 [52]. Quadric-strain probiotic blends can enhance rumen fermentation efficiency while reducing methane
209 emissions, further supporting the potential of multi-strain probiotics for sustainable ruminant production
210 [53]. However, the effects of mixed probiotics may vary depending on diet composition, supplementation
211 amount, and the physiological stage of the host animal. Therefore, further studies should focus on
212 elucidating inter-microbial interactions within probiotic mixtures and optimizing strain combinations for
213 targeted rumen modulation and precision feeding strategies.

214 Recently, probiotics mixed with agrofood byproducts have gained attention due to the stabilization of
215 the microbial ecosystem and host physiology in ruminants (Fig. 2). Some agrofood byproducts may serve
216 as prebiotics due to their non-digestible fibers and bioactive contents. They improve fermentation efficacy

217 and microbial diversity. Several studies have shown that probiotics combined with agrofood byproducts
218 increased VFAs, which were key metabolites for energy production and immune regulation [55].
219 Agrofood byproducts fermented with probiotics can achieve additional advantages, including reducing
220 antinutrients in feed stuff, degrading the crude fiber, and reducing the level of lignin, resulting in
221 increased feed intake and nutrients digestibility [39]. Further study should focus on optimizing probiotic
222 strains based on the developmental stage of the animal and dietary composition to maximize the benefits
223 of this combined strategy in sustainable ruminant production.

224 The combined influence of diet and probiotics plays a pivotal role in optimizing rumen fermentation
225 and host physiology. The efficacy of probiotics often depends on the nutrient composition and physical
226 characteristics of the diet. For instance, *S. cerevisiae* tends to exhibit greater benefits in high-forage diets
227 by promoting fibrolytic bacterial growth and enhancing fiber degradation [56-58]. Whereas bacterial
228 probiotics such as *Lacticaseibacillus rhamnosus* may perform better under high-concentrate feeding
229 conditions by supporting rumen epithelial barrier function and reducing inflammation [59]. Additionally,
230 polyphenol-rich upcycled feeds such as fruit pomace or okara can act synergistically with probiotics,
231 serving as prebiotic substrates that promote beneficial microbial colonization [60]. Therefore, dietary
232 formulation and probiotic selection should be strategically integrated to achieve optimal microbial
233 modulation, feed efficiency, and host performance in precision nutrition systems.

234

235 **Functional Outcomes and Omics-based Integration**

236 To understand how dietary changes and probiotics affect the rumen microbiota and the host animal, it
237 is essential to characterize the taxonomic composition of the rumen microbiota and its functional
238 activities. The rumen microbial community represents the primary biological system responsible for
239 fermentation, and changes in microbial composition affect metabolic processes.

240 Metabolomics is a useful tool because it can measure various metabolites that are produced during
241 fermentation, providing insight into the actual biological processes occurring in the rumen [61]. Key
242 metabolites commonly measured in ruminants include VFAs (mainly acetate, propionate, and butyrate),
243 ammonia, methane-related compounds, and branched-chain fatty acids. For example, butyrate is known to
244 help maintain the rumen epithelial cells and reduce inflammation [62]. Propionate plays an important role
245 in producing glucose in the liver [63]. However, elevated ammonia levels are indicative of excessive
246 protein degradation and inefficient nitrogen utilization. Advanced technologies such as nuclear magnetic
247 resonance (NMR), gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass
248 spectrometry (LC-MS) have been used to analyze various metabolites.

249 The interpretation of the taxonomic composition of the rumen microbiota and their functional activities
250 becomes more robust when metabolomics data are combined with microbiome data obtained from 16S
251 rRNA sequencing

252 g [64] (Fig. 3). For example, if microbiome data using 16S rRNA gene sequencing show more
253 *Prevotella* species, metabolomics can confirm whether this leads to more propionate production, better
254 protein breakdown, or possibly an increase in unwanted byproducts like ammonia or branched-chain
255 VFAs [65, 66].

256 In addition, multi-omics integration that involves microbiomics, metabolomics, and host
257 transcriptomics can provide a more comprehensive understanding of host and microbiota interactions,
258 thereby facilitating the development of more effective feeding systems [67]. In particular, host
259 transcriptomic data obtained from metabolically active tissues such as the rumen epithelium and liver, can
260 provide insights into the regulatory effects of microbial metabolites on nutrient absorption, immune
261 modulation, and metabolic homeostasis [68-70]. It is also important to consider the time point of
262 transcriptomic sampling because host reaction can significantly change between early dietary adaptation
263 periods and longer-term feeding, depending on its overall health and physiological state. For example, a
264 multi-omics study in Tibetan sheep revealed changes in rumen epithelial gene expression, microbial
265 composition, and metabolite profiles during cold-season adaptation, elucidating host-microbiome
266 interactions through the modulation of pathways such as PPAR signaling and xenobiotic metabolism
267 under environmental stressors [68].

268 These data can be used in precision feeding strategies to enhance animal health, productivity, and feed
269 efficiency. Recently, metabolomics studies have increasingly revealed the role of diet and probiotic
270 interactions in modulating rumen fermentation and improving animal productivity [71]. For example, a
271 higher acetate-to-propionate ratio might indicate increased fiber fermentation, although this may vary
272 depending on diet, pH, and microbial factors, and these data can be used to modify the feed type or
273 supplement strategies, such as the use of fiber-rich byproducts or administration of specific probiotics
274 [72]. These strategies can help to identify useful biomarkers for digestion or dysbiosis, monitor how
275 probiotics or dietary changes affect microbial metabolism, and predict ruminant performance traits such
276 as feed efficiency or methane emissions [73, 74].

277 As omics technologies continue to improve and analysis becomes cheaper and faster, standardized
278 multi-omics approaches coupled with machine learning tools will help farmers and researchers apply
279 these insights in real time [75, 76]. This could lead to more personalized feeding systems that not only
280 improve animal growth and health but also reduce waste and environmental impact.

281

282

283 Conclusion

284 This review confirms that dietary modulation, the utilization of upcycled feeds, and probiotic
285 supplementation are powerful strategies for modulating the rumen microbial community and host
286 physiology. However, the true potential lies in the integrated application of these approaches, which can

287 synergistically stabilize the rumen environment, enhance fermentation efficiency, and improve host health.
288 Future research must move beyond analyzing individual effects to focus on elucidating the complex
289 mechanistic interactions between specific dietary components and specific probiotic strains. To achieve
290 this, the active use of multi-omics approaches, including genomics, is essential to understand the precise
291 interactions between the host, microbiome, diet, and probiotics. The ultimate goal is to leverage this
292 deeper understanding to develop precision feeding systems tailored to an animal's unique host genetics
293 and microbial profile, thereby simultaneously enhancing the sustainability and productivity of ruminant
294 production.

295

296

297 **References**

- 298 1. Loor JJ, Elolimy AA, McCann JC. Dietary impacts on rumen microbiota in beef and dairy
299 production. *Anim Front.* 2016;6(3):22-9. <https://doi.org/10.2527/af.2016-0030>
- 300 2. Dijkstra J. Production and absorption of volatile fatty acids in the rumen. *Livest Prod Sci.*
301 1994;39(1):61-9. [https://doi.org/10.1016/0301-6226\(94\)90154-6](https://doi.org/10.1016/0301-6226(94)90154-6)
- 302 3. Gresner N, Rodehutscord M, Südekum KH. Amino acid pattern of rumen microorganisms in
303 cattle fed mixed diets-An update. *J Anim Physiol Anim Nutr.* 2022;106(4):752-71.
304 <https://doi.org/10.1111/jpn.13676>
- 305 4. Qi W, Xue M-Y, Jia M-H, Zhang S, Yan Q, Sun H-Z. Understanding the functionality of the
306 rumen microbiota: searching for better opportunities for rumen microbial manipulation. *Anim Biosci.*
307 2024;37(2):370-84. <https://doi.org/10.5713/ab.23.0308>
- 308 5. Takiishi T, Fenero CIM, Câmara NOS. Intestinal barrier and gut microbiota: Shaping our immune
309 responses throughout life. *Tissue Barriers.* 2017;5(4):e1373208.
310 <https://doi.org/10.1080/21688370.2017.1373208>
- 311 6. Zheng DP, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and
312 disease. *Cell Res.* 2020;30(6):492-506. <https://doi.org/10.1038/s41422-020-0332-7>
- 313 7. Matthews C, Crispie F, Lewis E, Reid M, O'Toole PW, Cotter PD. The rumen microbiome: a
314 crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. *Gut*
315 *Microbes.* 2019;10(2):115-32. <https://doi.org/10.1080/19490976.2018.1505176>
- 316 8. Cammack KM, Austin KJ, Lamberson WR, Conant GC, Cunningham HC. Ruminant nutrition
317 symposium: Tiny but mighty: the role of the rumen microbes in livestock production. *J Anim Sci.*
318 2018;96(2):752-70. <https://doi.org/10.1093/jas/skx053>
- 319 9. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of
320 short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. *J Lipid*
321 *Res.* 2013;54(9):2325-40. <https://doi.org/10.1194/jlr.R036012>

322 10. Shi J, Su H, He S, Dai S, Mao H, Wu D. Pan-genomic insights into rumen microbiome-mediated
323 short-chain fatty acid production and regulation in ruminants. *Microorganisms*. 2025;13(6):1175.
324 <https://doi.org/10.3390/microorganisms13061175>

325 11. Wu Y, Jiao C, Diao Q, Tu Y. Effect of dietary and age changes on ruminal microbial diversity in
326 Holstein calves. *Microorganisms*. 2024;12(1):12. <https://doi.org/10.3390/microorganisms12010012>

327 12. Palmonari A, Federiconi A, Formigoni A. Animal board invited review: The effect of diet on
328 rumen microbial composition in dairy cows. *Animal*. 2024;18(10):101319.
329 <https://doi.org/10.1016/j.animal.2024.101319>

330 13. Yin X, Ji S, Duan C, Tian P, Ju S, Yan H, et al. Age-related changes in the ruminal microbiota
331 and their relationship with rumen fermentation in lambs. *Front Microbiol*. 2021;12:679135.
332 <https://doi.org/10.3389/fmicb.2021.679135>

333 14. Elmhadi ME, Ali DK, Khogali MK, Wang HR. Subacute ruminal acidosis in dairy herds:
334 Microbiological and nutritional causes, consequences, and prevention strategies. *Anim Nutr*. 2022;10:
335 148-55. <https://doi.org/10.1016/j.aninu.2021.12.008>

336 15. Monteiro HF, Zhou ZY, Gomes MS, Peixoto PMG, Bonsaglia ECR, Canisso IF, et al. Rumen and
337 lower gut microbiomes relationship with feed efficiency and production traits throughout the lactation of
338 Holstein dairy cows. *Sci Rep*. 2022;12(1):4904. <https://doi.org/10.1038/s41598-022-08761-5>

339 16. Li K, Shi B, Na R. The colonization of rumen microbiota and intervention in pre-weaned
340 ruminants. *Animals*. 2023;13(6):994. <https://doi.org/10.3390/ani13060994>

341 17. Zhang R, Mei S, He G, Wei M, Chen L, Chen Z, et al. Feeding probiotics-fermented distiller's
342 grains diets increases rumen enzyme activities and glycerophospholipid levels in finishing cattle by
343 modulating rumen microbiota. *Microbiome*. 2025;13(1):137. <https://doi.org/10.1186/s40168-025-02138-2>

344 18. Shen Y, Abeynayake R, Sun X, Ran T, Li J, Chen L, et al. Feed nutritional value of brewers'
345 spent grain residue resulting from protease aided protein removal. *J Anim Sci Biotechnol* 2019;10(1):78.
346 <https://doi.org/10.1186/s40104-019-0382-1>

347 19. Durman T, de Lima LS, Rufino MOA, Gurgel ALC, Horst JA, Itavo LCV, et al. Feeding okara, a
348 soybean by-product, to dairy cows as partial protein source enhances economic indexes and preserves
349 milk quality, intake, and digestibility of nutrients. *Trop Anim Health Prod*. 2022;54(1):14.
350 <https://doi.org/10.1007/s11250-021-03010-9>

351 20. Gadulrab K, Sidoruk P, Kozlowska M, Szumacher-Strabel M, Lechniak D, Kolodziejksi P, et al.
352 Effect of feeding dried apple pomace on ruminal fermentation, methane emission, and biohydrogenation
353 of unsaturated fatty acids in dairy cows. *Agriculture*. 2023;13(10):2032.
354 <https://doi.org/10.3390/agriculture13102032>

355 21. Suen G, Weimer PJ, Stevenson DM, Aylward FO, Boyum J, Deneke J, et al. The complete
356 genome sequence of *Fibrobacter succinogenes* S85 reveals a cellulolytic and metabolic specialist. Plos
357 One. 2011;6(4):e18814. <https://doi.org/10.1371/journal.pone.0018814>

358 22. Julliand V, de Vaux A, Millet L, Fonty G. Identification of *Ruminococcus flavefaciens* as the
359 predominant cellulolytic bacterial species of the equine cecum. Appl Environ Microbiol.
360 1999;65(8):3738-41. <https://doi.org/10.1128/AEM.65.8.3738-3741.1999>

361 23. Froidurot A, Julliand V. Cellulolytic bacteria in the large intestine of mammals. Gut Microbes.
362 2022;14(1):2031694. <https://doi.org/10.1080/19490976.2022.2031694>

363 24. Khiaosa-Ard R, Mahmood M, Mickdam E, Pacifico C, Meixner J, Traintinger LS. Winery by-
364 products as a feed source with functional properties: dose-response effect of grape pomace, grape seed
365 meal, and grape seed extract on rumen microbial community and their fermentation activity in RUSITEC.
366 J Anim Sci Biotechnol. 2023;14(1):92. <https://doi.org/10.1186/s40104-023-00892-7>

367 25. Cattaneo L, Lopreiato V, Piccioli-Cappelli F, Trevisi E, Minuti A. Effect of supplementing live
368 *Saccharomyces cerevisiae* yeast on performance, rumen function, and metabolism during the transition
369 period in Holstein dairy cows. J Dairy Sci. 2023;106(6):4353-65. <https://doi.org/10.3168/jds.2022-23046>

370 26. Jiang X, Xu HJ, Cui ZQ, Zhang YG. Effects of supplementation with *Lactobacillus plantarum*
371 299v on the performance, blood metabolites, rumen fermentation and bacterial communities of
372 preweaning calves. Livest Sci. 2020;239:104120. <https://doi.org/10.1016/j.livsci.2020.104120>

373 27. Jia P, Dong LF, Tu Y, Diao QY. *Bacillus subtilis* and *Macleaya cordata* extract regulate the
374 rumen microbiota associated with enteric methane emission in dairy cows. Microbiome. 2023;11(1):229.
375 <https://doi.org/10.1186/s40168-023-01654-3>

376 28. Wang L, Li Y, Zhang Y, Wang L. The effects of different concentrate-to-forage ratio diets on
377 rumen bacterial microbiota and the structures of Holstein cows during the feeding cycle. Animals.
378 2020;10(6):957. <https://doi.org/10.3390/ani10060957>

379 29. Chen H, Wang CJ, Huasai S, Chen A. Effects of dietary forage to concentrate ratio on nutrient
380 digestibility, ruminal fermentation and rumen bacterial composition in Angus cows. Sci Rep. 2021;11(1):
381 17023. <https://doi.org/10.1038/s41598-021-96580-5>

382 30. Henderson G, Cox F, Ganesh S, Jonker A, Young W, Janssen PH. Rumen microbial community
383 composition varies with diet and host, but a core microbiome is found across a wide geographical range.
384 Sci Rep. 2015;5:14567. <https://doi.org/10.1038/srep14567>

385 31. Li XB, Huang XX, Li Q, Li XY, Li JH, Li C, et al. Effects of different grains on bacterial
386 diversity and enzyme activity associated with digestion of starch in the foal stomach. BMC Vet Res.
387 2022;18(1):407. <https://doi.org/10.1186/s12917-022-03510-2>

388 32. Zhang Y, Jia R, Zhao Y, Su N, Fan G, Yuan C, et al. Associations of ruminal microbiota with
389 susceptibility to subacute ruminal acidosis in dairy goats. *Microb Pathog*. 2025;206:107727.
390 <https://doi.org/10.1016/j.micpath.2025.107727>

391 33. Plaizier JC, Khafipour E, Li S, Gozho GN, Krause DO. Subacute ruminal acidosis (SARA),
392 endotoxins and health consequences. *Anim Feed Sci Technol*. 2012;172(1-2):9-21.
393 <https://doi.org/10.1016/j.anifeedsci.2011.12.004>

394 34. Zhang L, Xia Z, Fu J, Yang Y. Role of the rumen epithelium and associated changes under high-
395 concentrate diets. *Int J Mol Sci*. 2025;26(6):2573. <https://doi.org/10.3390/ijms26062573>

396 35. Dou Z, Dierenfeld ES, Wang X, Chen X, Shurson GC. A critical analysis of challenges and
397 opportunities for upcycling food waste to animal feed to reduce climate and resource burdens. *Resour*
398 *Conserv Recycl*. 2024;203:107418. <https://doi.org/10.1016/j.resconrec.2024.107418>

399 36. Ravanal MC, Contador CA, Wong WT, Zhang Q, Roman-Benn A, Ah-Hen KS, et al. Prebiotics
400 in animal nutrition: Harnessing agro-industrial waste for improved gut health and performance. *Anim*
401 *Nutr*. 2025;21:179-92. <https://doi.org/10.1016/j.aninu.2024.11.025>

402 37. Tres TT, Jobim CC, Diaz TG, Daniel JLP, Jacovaci FA. Okara or soybean grain added to the
403 rehydrated corn grain silage for cattle: digestibility, degradability and ruminal parameters. *Acta Sci, Anim*
404 *Sci*. 2020;42:48586. <https://doi.org/10.4025/actascianimsci.v42i1.48586>

405 38. Giller K, Bossut L, Eggerschwiler L, Terranova M. In vitro ruminal fermentation, methane
406 production and nutrient degradability as affected by fruit and vegetable pomaces in differing
407 concentrations. *J Anim Physiol Anim Nutr*. 2022;106(5):957-67. <https://doi.org/10.1111/jpn.13656>

408 39. Michalak M, Wojnarowski K, Cholewinska P, Szeligowska N, Bawej M, Pacon J. Selected
409 alternative feed additives used to manipulate the rumen microbiome. *Animals*. 2021;11(6):1542.
410 <https://doi.org/10.3390/ani11061542>

411 40. Azlan PM, Jahromi MF, Ariff MO, Ebrahimi M, Candyrine SCL, Liang JB. *Aspergillus terreus*
412 treated rice straw suppresses methane production and enhances feed digestibility in goats. *Trop Anim*
413 *Health Prod*. 2018;50(3):565-71. <https://doi.org/10.1007/s11250-017-1470-x>

414 41. Yu J, Cai L, Zhang J, Yang A, Wang Y, Zhang L, et al. Effects of thymol supplementation on
415 goat rumen fermentation and rumen microbiota in vitro. *Microorganisms*. 2020;8(8):1160.
416 <https://doi.org/10.3390/microorganisms8081160>

417 42. Hendawy AO, Sugimura S, Sato K, Mansour MM, Abd El-Aziz AH, Samir H, et al. Effects of
418 selenium supplementation on rumen microbiota, rumen fermentation, and apparent nutrient digestibility
419 of ruminant animals: A review. *Fermentation-Basel*. 2022;8(1):4.
420 <https://doi.org/10.3390/fermentation8010004>

421 43. Liu K, Zhang Y, Yu Z, Xu Q, Zheng N, Zhao S, et al. Ruminal microbiota-host interaction and its
422 effect on nutrient metabolism. *Anim Nutr*. 2021;7(1):49-55. <https://doi.org/10.1016/j.aninu.2020.12.001>

423 44. Perez HG, Stevenson CK, Lourenco JM, Callaway TR. Understanding rumen microbiology: an
424 overview. Encyclopedia. 2024;4(1):148-57. <https://doi.org/10.3390/encyclopedia4010013>

425 45. Xu Q, Ungerfeld EM, Morgavi DP, Waters SM, Liu J, Du W, et al. Editorial: Rumen
426 microbiome: interacting with host genetics, dietary nutrients metabolism, animal production, and
427 environment. Front Microbiol. 2023;14:1267149. <https://doi.org/10.3389/fmicb.2023.1267149>

428 46. Uyeno Y, Shigemori S, Shimosato T. Effect of probiotics/prebiotics on cattle health and
429 productivity. Microbes Environ. 2015;30(2):126-32. <https://doi.org/10.1264/jsme2.ME14176>

430 47. Wang H, Yu Z, Gao Z, Li Q, Qiu X, Wu F, et al. Effects of compound probiotics on growth
431 performance, rumen fermentation, blood parameters, and health status of neonatal Holstein calves. J
432 Dairy Sci. 2022;105(3):2190-200. <https://doi.org/10.3168/jds.2021-20721>

433 48. Newbold CJ, Wallace RJ, Chen XB, McIntosh FM. Different strains of *Saccharomyces cerevisiae*
434 differ in their effects on ruminal bacterial numbers in vitro and in sheep. J Anim Sci. 1995;73(6):1811-8.
435 <https://doi.org/10.2527/1995.7361811x>

436 49. Kober A, Rajoka MSR, Mehwish HM, Villena J, Kitazawa H. Immunomodulation potential of
437 probiotics: A novel strategy for improving livestock health, immunity, and productivity. Microorganisms.
438 2022;10(2):388. <https://doi.org/10.3390/microorganisms10020388>

439 50. Shi J, Zhao G, Huang X, Li X, Ma Y, Yang K. Effects of *Lactobacillus rhamnosus*
440 supplementation on growth performance, immune function, and antioxidant capacity of newborn foals. J
441 Equine Vet Sci. 2023;129:104501. <https://doi.org/10.1016/j.jevs.2023.104501>

442 51. Zhang Q, Ma L, Zhang X, Jia H, Tana, Guo Y, et al. Feeding live yeast (*Saccharomyces*
443 *cerevisiae*) improved performance of mid-lactation dairy cows by altering ruminal bacterial communities
444 and functions of serum antioxidation and immune responses. BMC Vet Res. 2024;20(1):245.
445 <https://doi.org/10.1186/s12917-024-04073-0>

446 52. Saleem AS, Elaref MY, Bassiony SM, Abdelnour SA, Helal AA, Abdel-Monem UM, et al.
447 Impact of probiotic blend on rumen fermentation, nutrient digestibility, and blood biochemistry in sheep.
448 Livest Sci. 2025;298:105728. <https://doi.org/10.1016/j.livsci.2025.105728>

449 53. Saleem ASA, Al-Marakby KM, Elaref MY, Bassiony SM, Helal AA, Abdel-Monem UM, et al.
450 Effects of quadric probiotic blends on rumen fermentation, nutrient degradability, and methane emission
451 in sheep: an *in vitro* study. AMB Express. 2025;15(1):144. <https://doi.org/10.1186/s13568-025-01955-w>

452 54. Jiao PX, Ma FC, Beauchemin KA, AlZahal O, Xie XL, Yang WZ. Effect of mixed live yeast and
453 lactic acid bacteria on in vitro fermentation with varying media pH using a high-grain or high-forage diet.
454 Can J Anim Sci. 2021;101(2). <https://doi.org/10.1139/cjas-2020-0138>

455 55. Arowolo MA, He JH. Use of probiotics and botanical extracts to improve ruminant production in
456 the tropics: A review. Anim Nutr. 2018;4(3):241-9. <https://doi.org/10.1016/j.aninu.2018.04.010>

457 56. Ding G, Chang Y, Zhao L, Zhou Z, Ren L, Meng Q. Effect of *Saccharomyces cerevisiae* on
458 alfalfa nutrient degradation characteristics and rumen microbial populations of steers fed diets with
459 different concentrate-to-forage ratios. *J Anim Sci Biotechnol.* 2014;5:24. <https://doi.org/10.1186/2049-1891-5-24>

460 57. Guedes CM, Gonçalves D, Rodrigues MAM, Dias-da-Silva A. Effects of a *Saccharomyces*
461 *cerevisiae* yeast on ruminal fermentation and fibre degradation of maize silages in cows. *Anim Feed Sci*
462 *Technol.* 2008;145(1):27-40. <https://doi.org/10.1016/j.anifeedsci.2007.06.037>

463 58. Guo J, Zhang Z, Guan LL, Zhou M, Yoon I, Khafipour E, et al. Postbiotics from *Saccharomyces*
464 *cerevisiae* fermentation stabilize rumen solids microbiota and promote microbial network interactions and
465 diversity of hub taxa during grain-based subacute ruminal acidosis (SARA) challenges in lactating dairy
466 cows. *Front Microbiol.* 2024;15:1409659. <https://doi.org/10.3389/fmicb.2024.1409659>

467 59. Leser T, Baker A. Molecular mechanisms of *Lactocaseibacillus rhamnosus*, LGG® probiotic
468 function. *Microorganisms.* 2024; 12(4):794. <https://doi.org/10.3390/microorganisms12040794>

469 60. Rodríguez-Daza MC, Pulido-Mateos EC, Lupien-Meilleur J, Guyonnet D, Desjardins Y, Roy D.
470 Polyphenol-mediated gut microbiota modulation: Toward prebiotics and further. *Front Nutr.*
471 2021;8:689456. <https://doi.org/10.3389/fnut.2021.689456>

472 61. Zhang X, Wang W, Wang Y, Cao Z, Yang H, Li S. Metagenomic and metabolomic analyses
473 reveal differences in rumen microbiota between grass- and grain-fed Sanhe heifers. *Front Microbiol.*
474 2024;15:1336278. <https://doi.org/10.3389/fmicb.2024.1336278>

475 62. Fukumori R, Doi K, Mochizuki T, Oikawa S, Gondaira S, Iwasaki T, et al. Sodium butyrate
476 administration modulates the ruminal villus height, inflammation-related gene expression, and plasma
477 hormones concentration in dry cows fed a high-fiber diet. *Anim Sci J.* 2022;93(1):e13791.
478 <https://doi.org/10.1111/asj.13791>

479 63. Mutsvangwa T, BuchananSmith JG, McBride BW. Effects of ruminally degradable nitrogen
480 intake and in vitro addition of ammonia and propionate on the metabolic fate of L-[1-¹⁴C]alanine and L-
481 [¹⁵N] alanine in isolated sheep hepatocytes. *J Anim Sci.* 1997;75(4):1149-59.
482 <https://doi.org/10.2527/1997.7541149x>

483 64. Wu Z, Zhang F, Su Q, Ji Q, Zhu K, Zhang Y, et al. Integrating 16S rRNA sequencing and LC-
484 MS-based metabolomics to evaluate the effects of dietary crude protein on ruminal morphology,
485 fermentation parameter and digestive enzyme activity in Tibetan sheep. *Animals.* 2024;14(15):2149..
486 <https://doi.org/10.3390/ani14152149>

487 65. Mao S, Zhang M, Liu J, Zhu W. Characterising the bacterial microbiota across the
488 gastrointestinal tracts of dairy cattle: membership and potential function. *Sci Rep.* 2015;5:16116.
489 <https://doi.org/10.1038/srep16116>

490

491 66. Shinkai T, Takizawa S, Enishi O, Higuchi K, Ohmori H, Mitsumori M. Characteristics of rumen
492 microbiota and *Prevotella* isolates found in high propionate and low methane-producing dairy cows.
493 *Front Microbiol.* 2024;15:1404991. <https://doi.org/10.3389/fmicb.2024.1404991>

494 67. Wang D, Chen L, Tang G, Yu J, Chen J, Li Z, et al. Multi-omics revealed the long-term effect of
495 ruminal keystone bacteria and the microbial metabolome on lactation performance in adult dairy goats.
496 *Microbiome.* 2023;11(1):215. <https://doi.org/10.1186/s40168-023-01652-5>

497 68. Liu X, Sha Y, Lv W, Cao G, Guo X, Pu X, et al. Multi-omics reveals that the rumen
498 transcriptome, microbiome, and its metabolome co-regulate cold season adaptability of Tibetan sheep.
499 *Front Microbiol.* 2022;13:859601. <https://doi.org/10.3389/fmicb.2022.859601>

500 69. Fonseca PAS, Lam S, Chen Y, Waters SM, Guan LL, Cánovas A. Multi-breed host rumen
501 epithelium transcriptome and microbiome associations and their relationship with beef cattle feed
502 efficiency. *Sci Rep.* 2023;13:16209. <https://doi.org/10.1038/s41598-023-43097-8>

503 70. Keogh K, Kenny DA, Alexandre PA, Waters SM, McGovern E, McGee M, et al.
504 Relationship between the rumen microbiome and liver transcriptome in beef cattle divergent for feed
505 efficiency. *Anim Microbiome.* 2024;6:52. <https://doi.org/10.1186/s42523-024-00337-0>

506 71. Pittaluga AM, Yang F, Gaffney JR, Embree M, Relling AE. Effect of supplementation with
507 ruminal probiotics on growth performance, carcass characteristics, plasma metabolites, methane
508 emissions, and the associated rumen microbiome changes in beef cattle. *J Anim Sci.* 2023;101:skac308.
509 <https://doi.org/10.1093/jas/skac308>

510 72. Zhang Z, Li F, Li F, Wang Z, Guo L, Weng X, et al. Influence of dietary forage neutral detergent
511 fiber on ruminal fermentation, chewing activity, nutrient digestion, and ruminal microbiota of Hu sheep.
512 *Animals.* 2025;15(3):314. <https://doi.org/10.3390/ani15030314>

513 73. Jami E, Mizrahi I. Composition and similarity of bovine rumen microbiota across individual
514 animals. *Plos One.* 2012;7(3):e33306. <https://doi.org/10.1371/journal.pone.0033306>

515 74. Zhao W, Ma L, Xue L, Jiang Q, Feng Y, Wang S, et al. The rumen microbiome and its
516 metabolome together with the host metabolome regulate the growth performance of crossbred cattle.
517 *BMC Genomics.* 2025;26(1):278. <https://doi.org/10.1186/s12864-025-11465-5>

518 75. Jiang K, Ma J, Xu J, Zhang Y, Niu H. Multi-omics revealed the effects of different feeding
519 systems on rumen microorganisms, cellulose degradation, and metabolites in mongolian cattle. *Animals.*
520 2025;15(12):1774. <https://doi.org/10.3390/ani15121774>

521 76. Pedrosa VB, Chen SY, Gloria LS, Doucette JS, Boerman JP, Rosa GJM, et al. Machine learning
522 methods for genomic prediction of cow behavioral traits measured by automatic milking systems in North
523 American Holstein cattle. *J Dairy Sci.* 2024;107(7):4758-71. <https://doi.org/10.3168/jds.2023-24082>

524

525

526

527

528

Tables and Figures

Table 1. Classification of dietary interventions affecting the rumen microbiota

Dietary strategy	Specific intervention	Microbial modulation effect	Functional outcome	Reference
Macronutrient	High forage diets	Fibrolytic bacteria ↑	Fiber digestion↑, ↑acetate & butyrate↑, gut health↑	[23–25]
	High concentrate diets	Amylolytic bacteria ↑	Propionate↑, rumen pH↓	[26–28]
	Essential oils	Preserve fibrolytic bacteria, suppress pathogens	Maintain balance, pathogenic fermentation↓	[33]
Functional additives and supplements	Probiotics	Stabilize microbial community	Nutrient use↑, digestive issues↓	[36]
Upcycled agro-industrial byproducts	Okara, fruit pomace, wheat bran, brewer's spent grain, etc.	Prebiotic effect↑, fiber-degrading bacteria↑, methanogens↓	VFAs↑, methane↓, sustainability↑	[15–17], [29–32]

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

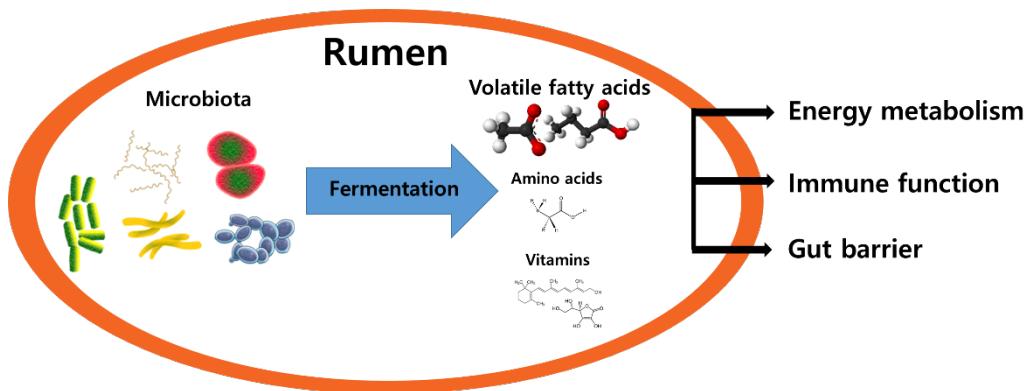
552

553

554

555

556

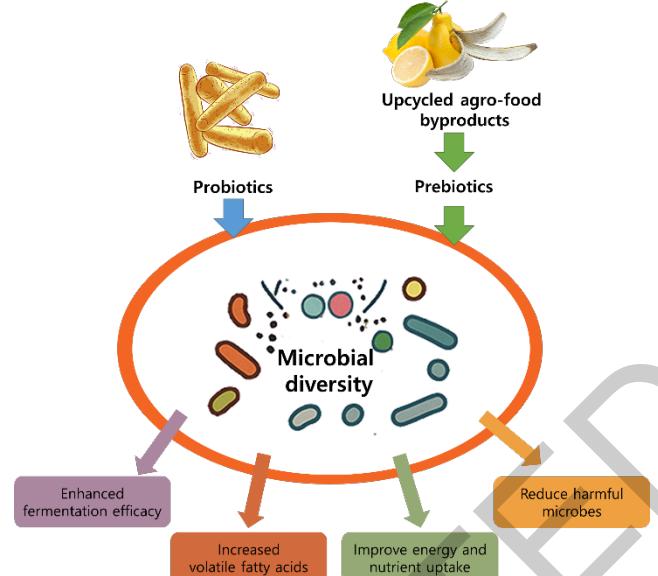

557

558

559

560

561
562
563

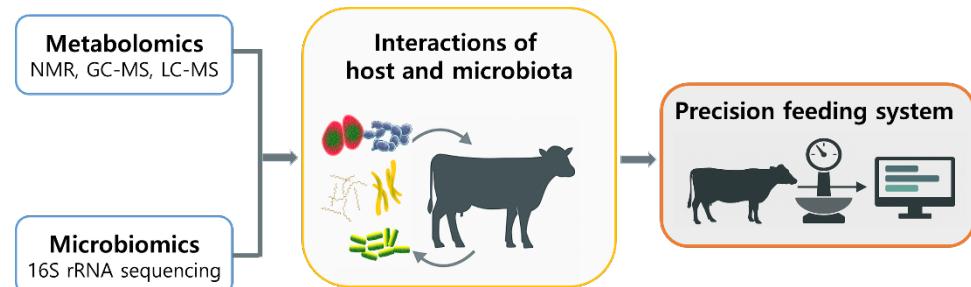


564
565
566

567 **Fig. 1.** Overview of rumen microbial fermentation. Volatile fatty acids (VFAs), amino acids, and
568 vitamins produced during fermentation, are utilized for energy production, immune function, and
569 gut barrier integrity.

570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599

600
601
602
603


604
605
606

607 **Fig. 2.** Effects of probiotics and upcycled agrofood byproducts on the enhancement of microbial
608 diversity in the rumen. The microbial diversity contributes to enhanced fermentation efficacy,
609 increased production of volatile fatty acids (VFAs), improved energy and nutrient uptake,
610 and reduction of harmful microbes.

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632

633
634
635
636
637
638

639
640

Fig. 3. Integration of metabolomics and microbiomics for host-microbiota interaction. Metabolomics approaches, including nuclear magnetic resonance (NMR), gas chromatography–mass spectrometry (GC-MS), and liquid chromatography–mass spectrometry (LC-MS), combined with microbiome analysis based on 16S ribosomal RNA (16S rRNA) sequencing, can be applied to precision feeding strategies to enhance animal health, productivity, and feed efficiency.