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Abstract

Muscle, studied mostly with respect to meat production, represents one of the largest protein reservoirs of the
body. As gene expression profiling holds credibility to deal with the increasing demand of food from animal
sources, excessive loss due to myopathies and other muscular dystrophies was found detrimental as it aggravates
diseases that result in increased morbidity and mortality. Holding key point towards improving the developmental
program of muscle in meat producing animals, elucidating the underlying mechanisms of the associated pathways
in livestock animals is believed to open up new avenues towards enhancing the lean tissue deposition. To this end,
identification of vital candidate genes having no known function in myogenesis, is believed to increase the current
understanding of the physiological processes going on in the skeletal muscle tissue. Taking consequences of
gene expression changes into account, knowledge of the pathways associated with their activation and as such
up-regulation seems critical for the overall muscle homeostasis. Having important implications on livestock
production, a thorough understanding of postnatal muscle development seems a timely step to fulfil the growing
need of ever increasing populations of the world.
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Background
Nutrition significantly influences the physical endurance
and performance of living beings. For maximum perform-
ance, a diet that can provide a minimum half of our daily
energy intake in the form of proteins and carbohydrates is
recommended. Differences in food choice for optimal nu-
tritional balance have led to selection of substrates of ani-
mal origin rich in proteins. To meet the modest increased
interest in food from animal sources, most of the studies
in livestock remain confined for being the main contribu-
tor of meat. Therefore, maintaining a balance between
supply and demand requires a good understanding of
muscle regulation to enable improved muscle mass with-
out compromising animal health and meat quality. As
contribution of livestock to mankind goes beyond food
production to multipurpose uses, it became necessary to
have a deep insight of the genetic machinery that regulates

diverse cellular functions in consideration with their
important economical role [1]. In this regard, studies per-
taining to muscle development using a wide range of
experimental models systems have opened up new ave-
nues to gain better insight into changes in gene expression
during different stages of growth and development.
Technological advancement that has led to methods

such as microarrays, have shifted studies more toward
global gene expression profiling ([2, 3] and References
therein). Rather than utilizing the C2C12 cell line, pri-
mary cells compatible with in vivo environments were
used to get accurate information regarding the roles of
genes in muscle development [3]. Knowing the fact that
factors responsible for muscle depot traits have pro-
nounced effects on the taste and palatability of meat, a
study was directed to investigate differences in the expres-
sion patterns of proteins among bovine primary muscle
satellite cells (MSCs) from beef shank (BS), longissimus
dorsi (LD), deep pectoral (DP) and semitendinosus (ST)
muscle of Hanwoo cattle [2]. Microarray, expressed se-
quence tagging (EST) and RNA sequencing revealed
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information about importance of certain novel genes with
unknown function, especially with regard to their differen-
tial expression in the myogenic program. Using primary
cell culture system, gender-specific effect of serum compo-
nents on the proliferation and differentiation of MSCs re-
vealed male serum (MS) enhancing the proliferation and
differentiation of MSCs, while female serum (FS) enhan-
cing lipid accumulation associated with the taste and palat-
ability of adipocyte-like cells (ALCs) [4–7]. Taken together,
importance of differentially expressed genes such as fibro-
modulin (FMOD), matrix Gla protein (MGP), and trans-
thyretin (TTR) with respect to regulation of the myogenic
program was reported [2, 8–10]. Identification of differen-
tially expressed genes eventually led to increased interest
in studying their roles in the differentiation and trans-
differentiation processes. Although studies establishing
their roles in muscle development are still ongoing, studies
are currently being pursued to delineate the accurate
mechanism through which they act [11, 12]. The present
study was aimed to bring out state of art information re-
garding satellite cells and of the genes that play important
role with respect to regulation of muscle cell program.

Satellite cells in muscle development
Muscle in all its forms makes up nearly half the body’s
mass. It is endowed with features of excitability (active
response to stimulus), contractility (contraction upon
stimulus), extensibility (stretchable capacity) and elasti-
city (ability to recoil and regain its normal length) that
enable it to function [13]. In an intact muscle, the indi-
vidual muscle fibres are wrapped and held together by
connective tissue sheaths; namely, the epimysium, which
is the outermost layer surrounding the entire muscle,
the perimysium covering individual bundles or fascicles
inside the perimysium, and the endomysium, which sur-
rounds individual muscle fibres within fascicles. To-
gether, these connective tissue sheaths support each cell
and reinforce the muscle as a whole. Among the three
muscle types, skeletal muscle represent highly adaptive
tissue endowed with the ability to alter muscle mass and
fiber size via the addition of new myonuclei in response
to physiological stimuli. Being a form of striated muscle,
it contributes to function and dysfunction of the muscu-
loskeletal system. Although activated by reflexes, skeletal
muscles composed of multinucleated myofibers are sub-
jected to conscious (voluntary) control. Their fitness is
correlated with two healthy states, strength and muscu-
lar endurance. Strength represents the force capacity
and muscular endurance the ability to contract without
getting exhausted.
Muscle cells, which are believed to be remnant embry-

onic myoblasts, comprise a population of muscle-specific
progenitors that possess extraordinary regenerative cap-
acity. Technological advancement has led to track their

original location across a broad range of vertebrate species
including mice [14–16], chicken [17, 18], rat [19] and
humans [20, 21]. Addition to generation of purified po-
pulations of MSCs using advanced techniques such as
fluorescent-activated cell sorting (FACS), expression
of β-galactosidase (β-gal) or fluorophores (e.g., GFP)
using nestin regulatory circuits has made their moni-
toring possible, even in freshly isolated myofibers [22, 23].
Studies investigating the fusion of mononucleated myo-
blasts for generation of multi-nucleated myofibers set the
stage for the current understanding of regeneration
[24, 25]. Subsequent studies conducted by Konigsberg
et al., [26] and Bischoff [27] provided substantial evi-
dence of myofiber harbouring cells having the poten-
tial to give rise to myoblasts and multi-nucleated
myotubes. Confirmation of sharing a similar anatomic
position across the majority of vertebrates has led to ac-
ceptance of its candidature as source of myogenic cells ne-
cessary for postnatal growth.
Skeletal muscle originates from the mesodermal cells

of somites and its development begins with the commit-
ment of muscle satellite cells (MSCs) surrounding each
myofiber to proliferate and differentiate to myoblasts.
Despite the fact that myofiber number remains constant
during early (neonatal/juvenile) stages of life, their con-
tribution to growth is attributed to fusion of MSCs.
MSCs represent 30 % of the nuclei during early postna-
tal growth [17, 28]. Being the main contributor to imme-
diacy and sensitivity of skeletal muscle, MSCs play a key
role in maintenance of the structural and functional in-
tegrity of muscle (Fig. 1). Subsequent to activation, about
80 % (responsive population) of the MSCs enter the cell
cycle phase, while the remaining 20 % (reserve popula-
tion) that represent the true stem cell population
undergo symmetric divisions to replenish the quiescent
cell pool [29, 30]. Progression of MSCs along the myo-
genic lineage commences with the co-expression of
paired box transcription factors, Pax3/Pax7, followed by
contribution from basic helix loop helix (bHLP) family of
transcription factors, commonly referred as myogenic-
regulatory factors (MRFs; including Mrf4, Myf5, MyoD
and myogenin; MyoG) [31, 32]. The fate of MSCs is deter-
mined by changes in the pattern of expression of MRFs.
For example, down regulation of Pax7 and upregulation of
Myf5/MyoD followed by MyoG commits them to the
myogenic program, while absence of MRFs leads to
retention of the quiescence state among the satellite cell
population [32, 33]. Regardless of origin, MSCs share
Pax7 expression across all muscles [34, 35]. Although ex-
clusively expressed in the subpopulations of quiescent
MSCs, the role of Pax3 is restricted to proliferation via in-
duction of Myf5 because it does not play any indispens-
able role in quiescence. The stochastic down regulation of
MyoD to retain the state of quiescence under in vitro
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conditions is interpreted as the underlying mechanism
for self-renewal of MSCs. Overall, it is the network of
transcriptional factors that appears to control the pro-
gression of MSC lineage from origin towards myogenic
specification, differentiation and then fusion to generate
myoblasts.

Myogenesis in livestock
Subjected to intensive selection for improvement in
terms of quality and quantity of meat, livestock breeds
(cattle, sheep, poultry) represent useful genetic model
for the study of hypertrophy and other muscle traits
[36, 37]. Although the extent of muscle cell multiplica-
tion determines how many muscle fibres are formed, the
fate of growing muscle fibres during myogenesis depends
largely on the extent of progenitor muscle cell multiplica-
tion. Being dependent on the number and proliferative
stage of progenitor cells, maternal nutrition is known to
have a dramatic effect on the development of skeletal

muscle during this stage [38–41]. Prenatal myogenesis is
divided into primary (embroyonic; during which primary
muscle fibres arise) and secondary (fetal; leading to sec-
ondary muscle fibres) myogenesis. However, only a small
fraction of primary muscle serves as template for second-
ary muscle fibres. Growth selection that led to increases in
the proliferation rates of myoblast and/or satellite is re-
presented by increased myonuclear numbers and higher
muscle DNA content. Muscle fibres formed during the
prenatal stage contributes significantly to growth and
development of muscle in livestock. As such, genetic and
environmental factors capable of influencing prenatal
myogenesis act as a determining factor to the number of
muscle fibres in any muscle. Muscle fibres number being
essentially fixed at birth; therefore, postnatal growth re-
sults from the hypertrophy of existing muscle fibres in
meat-producing animals [42, 43]. For contribution to
hypertrophy of muscle fibres, nuclei being unable to divide
are procured for incorporated into muscle fibres through

Fig. 1 A story of 3 M’s (MSC’s, Muscle and Meat). An outline depicting phases of transition of MSCs along with the role of transcriptional factors,
genes and growth enhancing substances (hormones) associated the myogenic program
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the proliferative activity of MSCs. Hence, understanding
the mechanism pertaining to prenatal development of
skeletal muscle is important as it is well known for its dra-
matic impact on postnatal growth and development.
Increased muscle fibre number, which is attributed to

the proliferative activity of MSCs during prenatal
growth, markedly determines the growth and develop-
ment capacity of postnatal muscles. However, increase in
the mass during postnatal growth occurs due to increased
muscle fibre size (length and girth) rather than muscle
fibre number. Accordingly, MSCs remain the sole source
that contributes for increase in the muscle fiber size. In
addition to the increase in muscle fiber size, fusion of
MSCs generates myoblasts with pre-existing muscle fibres
that contribute to an increased number of nuclei in adult
muscle fibres. Postnatal growth rate is inversely correlated
with muscle fibre number, as muscle development was
found lower due to high fibre numbers and higher owing
to low number of fibres. It has been suggested that this oc-
curs owing to reduced energy and oxygen supply by lower
capillary density, as well as impairment of the nuclear con-
trol of cellular processes due to low nuclear: cytoplasm ra-
tio [44–46]. In short, there is clear antagonism between
muscle fibre number and thickness, with low fibre number
correlating with fibres that exhibit higher hypertrophy. It
has been reported that muscle hypertrophy that lead to in-
crease in muscle mass reduces the stress adaptability of fi-
bres, which in turn is associated with poor meat quality of
major livestock breeds [46–49]. Hence, having a better
knowledge of the involvement of MSCs in postnatal
hypertrophy is essential to improve the efficiency of
muscle growth in meat-producing animals.

Muscle homeostasis: balance of atrophy and
hypertrophy
Muscles are highly adaptable owing to their remarkable
plasticity. They arise as multinucleate syncytium from
the fusion of mononuclear myoblasts. An intricate balance
between production and degradation of myofibrils is cru-
cial to muscle growth and maintenance of healthy state
[50, 51]. In addition to mammals, studies of Drosophila
highlighted the role pertaining to balance in the protein
content (synthesis and breakdown) in determining the fate
of muscle tissue [51]. By regulating the number of cells
capable of undergoing proliferation, MSCs modulate
myofiber growth accordingly. To ensure constant and har-
monious growth of all muscles, cellular turnover (addition
of new myonuclei via fusion of satellite cells) in addition
to maintenance of proteins appears crucial during early
embryonic development in the muscle development pro-
gram. Contribution of cellular turnover to the homeostasis
of adult fibres is achieved through increased synthesis
rather than degradation of proteins. Adhering to this, the
interrelated processes are tightly regulated 1) at the level

of protein synthesis through degradation of the misfolded
proteins, and 2) at the level of protein degradative ma-
chinery required to replace proteins as a result of changes
in muscle activity. The net difference in these two pro-
cesses contributes to gross protein deposition, which is
manifested as muscle hypertrophy.
Coordinated regulation in the pathways controlling

synthesis and degradation of muscle proteins strongly
influences the physical endurance of the growing muscle
[52]. In efforts to elucidate the pathways controlling cellu-
lar and protein turnover, application of genetic approaches
for gain or loss of function mutation has helped in es-
tablishing their role in muscle hypertrophy or reduced
muscle growth [51]. Muscle specific over-expression of
insulin like growth factor 1 (IGF-1) or Akt by employing a
transgenic module through electroporation leads to res-
toration of muscle growth with matching physiological
strength and displays higher regeneration potential for
sustainable muscle growth [53, 54]. IGF-1 is known to
activate mitogen-activated protein kinase/extracellular
signal reduced kinase (MEPK/ERK) and phosphoinositide
3-kinase (PI3)-Akt pathways, which are in turn associated
with the induction of muscle growth either by stimulating
protein synthesis through mammalian target of Rapamy-
cin (mTOR) or by inhibiting the degradative machinery
induced by forkhead box O (FOXO) transcription factors.
Upon activation by Akt, mTOR act through two different
branches of the Akt pathway; Rapamycin-sensitive TORC1
containing raptor and Rapamycin-insensitive TORC2
containing rictor ([55] and references therein). Conversely,
reduced PI3k signalling causes decreased protein synthesis
machinery and a subsequent increase in proteolysis
through FOXO mediated expression of the atrogene pro-
gram. In addition to reduced PI3k signalling during fasting
and in diseased state, increased expression of myostatin
(MSTN) leads to inhibition of PI3k-Akt signalling [54].
Overall, this pathway has a positive effect on regulation of
muscle growth by stimulating protein synthesis and inhi-
biting the degradation trigger of proteins by the FOXO
system via the ubiquitin-proteosome system (UPS) and
autophagy (Fig. 1).
MSTN (also referred as growth and differentiation

factor-8, GDF-8), a member of the transforming growth
factor-β (TGF- β) family expressed and secreted by skel-
etal muscle tissues, is an endogenous negative regulatory
factor that regulates growth and development of the
muscle [56–58]. Its function as a negative regulator was
first reported by McPherron et al., [59] through studies
on MSTN null (MSTN-/-) mice, exhibiting double mass
attributed by combination of increased number (hyperpla-
sia) and size (hypertrophy) of muscle fibres. This effect
was observed through regulation of muscle fiber sizes
rather than contribution from MSCs, which are devoid of
MSTN receptors [60–62]. MSTN, which is expressed
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primarily by myotubes, acts as an inactive precursor pro-
tein in the extracellular matrix of muscle and/or remains
in circulation as an endocrine hormone until it undergoes
proteolytic cleavage followed by dimerization of the C-ter-
minal to generate active MSTN [63, 64]. However, until
its release from the cell it remains inactive through the
formation of a latent complex with the N-terminal pro-
peptide [65–67].
Subsequent to activation (removal of N-terminal pro-

peptide), mature myostatin binds to its transmembrane
receptor, activin receptor protein type IIB/A (ActRIIB/
A), which undergoes dimerization with activin type I
receptors (ALK-4/5) to induce signalling in the internal
cellular environment through Smad proteins [68–70].
Activation of Smad2 and Smad3 lead to heterodimer
complex formation with the common mediator, Smad4.
Subsequent to translocation to the nucleus, Smad com-
plex (Smad2,-3,-4) activates transcription of target genes
though interaction with the DNA [71, 72] or block the
fusion of proliferating myoblasts after transactivation of
MyoD [73, 74]. Additionally, Smad complex activates
signalling along the Erk1/2 MAPK pathway to prevent
myoblasts proliferation via p21/Rb signalling cascade
and promotion of anti-apoptotic pathways via activation
of p53 in differentiated cells. Upon activation, Smad7 (in-
hibitory Smad protein) functions as a negative feedback
inhibitor for the MSTN signalling pathway [58, 75, 76].
Corresponding to muscle progenitor cells, MSTN

maintains a fine balance between proliferation and differen-
tiation; however, any disturbance to this balance changes
this to either differentiation (in the case of over-expression)
or proliferation (inhibition of MSTN), which leads to ex-
pansion of progenitor cell pool. Furthermore, reports have
suggested that inhibition of the PI3K/Akt/mTOR signalling
pathway occurs via phosphorylated SMAD3 through in-
duction of the E3-ligase, atrogin-1 [77, 78]. Another study
reported that induction of the degradation of muscle pro-
tein through ubiquitin-proteasome machinery inhibit the
PI3K/Akt/mTOR signalling pathway [79]. Taken together,
these studies suggest the possibility of cross-talk at differ-
ent levels between MSTN and PI3K/Akt/mTOR signalling
pathways.

Hormonal regulation of muscle mass
Regulation of growth occurs through the substantial
involvement of neuro-endocrine system as well as local
autocrine/paracrine actions of hormones and growth
factors. These compounds elicit their effects either
through changes in their local production or with re-
spect to their activity in controlling the myogenic stages
of muscle cells. A key prerequisite for optimised muscle
growth involves the balanced secretion of two hormones,
growth hormone (GH) and testosterone (T). Growth
hormone (GH) stimulates growth, cell reproduction and

regeneration in humans and other animals. Used mainly
as a performance enhancing drug, GH stimulates pro-
duction of IGF-1, a peptide hormone homologous to
proinsulin from the liver through JAK-STAT pathway
([80] and references therein). Acting via IGF-1, GH pro-
duces its effect through the stimulation of MSC prolifer-
ation along with synthesis of proteins in muscle. The
growth stimulating effects of IGF-1 have been reported
from a wide variety of tissues. Postnatal application of
GH leads to an increase in lean growth and decrease in
fat deposition, and often stimulates muscle fibre hyper-
trophy [81, 82].
To accomplish this, the most frequent mechanism of

change in thyroid hormone (TH) level is GH-mediated
increase in T4 to T3 conversion by means of deiodina-
tion in target tissues [10, 83]. Binding of THs to their
distributor proteins (thyroxine-binding globulin (TBG),
transthyretin (TTR) and albumin) facilitates their distri-
bution to a greater extent. TBG exhibiting highest affinity
(1.0 × 1010 M−1 and 4.6 × 108 M−1) leads the group for
transporting T4 and T3, followed by TTR (7.0 × 107 M−1

and 1.4 × 107 M−1) and then albumin (7.0 × 105 M−1 and
1.0 × 105 M−1) [84]. Taken together, all three proteins con-
stitute a buffering network for T4 in the blood, which pro-
vides a means of protection against fluctuation in the level
of THs that can led either to hypothyroidism or hyperthy-
roidism. Regardless of variation in the concentration of
distributing proteins, TBG (0.015 g/l) is known to distrib-
ute major proportion (up to 75 %) of T4 and T3 followed
by TTR (0.25 g/l) and albumin (42 g/l), which distribute
15 % and 10 %, respectively (Alshehri et al. [84]).
Concentration of TH distributor proteins having high
binding affinity for THs prevents partitioning of THs
into the lipid component of the cell membrane, thereby
ensures a continuous pool of circulating THs in the
blood [85, 86].
Although synthesis of TTR is restricted to the liver, its

synthesis has also been reported in the choroid plexus of
brain and in muscle tissues [2, 9, 87, 88]. Besides trans-
porting thyroxine, TTR is known to assist in the transport
of retinol through its binding to retinol-binding protein
(RBP) [89]. Having dual role in transport thyroxine and
retinol fetches it with the name TransThyRetin. In mam-
mals, TTR possesses higher binding affinity for T4 than its
active form, T3, while all other vertebrate species exhibit
higher binding affinity of TTR for T3 than T4. Transit
times for delivery of THs to tissues vary according to the
binding affinities of different TH distributor proteins. As
such TTR having intermediate affinity is responsible for
immediate delivery of THs to tissues compared to TBG,
which holds THs tightly and albumin, which binds THs
loosely to deliver them at their specific sites [9, 84]. At the
tissue level, particularly in muscle, TTR was found to play
a critical role in transporting and delivering T4 to cells.
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Using knockdown approach, we demonstrated that TTR
was more involved in differentiation than proliferation.
During differentiation, TTR was found to be associated
with regulation of the expression of early stage genes such
as myosin light chain 2 (MYL2), as well as in affect-
ing the functioning of Ca2+ channel genes such as Cav1.1
and Cav3.1 [8, 10].
TTR is highly conserved in terms of structure across a

broad range of species. Once reaching the respective
destination, it is acted upon by a family of deiodinases
that either activates it via T4 to T3 conversion or inacti-
vates it following conversion to either T2 or rT3 [90].
Following binding to thyroid receptors (TRs), T3 under-
goes translocation to the nucleus, where it acts on the
promoter region of certain specific genes, thereby caus-
ing dissociation of corepressor molecules or association
of coactivator proteins. Secretion of T4 from thyroid
gland contributes to first level T3 availability to cells.
The second level of regulation occurs at the peripheral
level, where TH transporters (MCT8, MCT10 and
OATP1C1) and TH metabolising enzymes (deiodi-
nases) regulate intracellular T3 levels in a tissue-specific
fashion.
The growth promoting effects of steroids (anabolic

hormones) are well known in cattle, whereas limited ef-
fects are known from swine [91]. Indeed, steroids have
long been used to improve the efficiency and product
quality of animal meat. Testosterone (TS) is known for
its ability to control the number and size of muscle fibre.
TS has also been found to stimulate growth of existing
myofibres longitudinally to increase number of fibre per
cross sectional area of muscle. Postnatal application of
testosterone stimulates muscle fibre hypertrophy directly
or indirectly without increasing fibre number through
stimulation in the satellite cell proliferation and synthe-
sis of muscle proteins [4, 92–94]. However, in the case
of males and females, difference in fibre number arises
via hormonal action during prenatal period of fibre for-
mation. While the male sex hormone plays an important
role in enhancing proliferation and differentiation of
MSC, the female sex hormone is influential in the transi-
tion of MSCs towards transdifferentiation, which causes
lipid accumulation in differentiating myotubes [94, 95].
Increased intramuscular fat is desirable in the meat in-
dustry as it marginally increases tenderness, juiciness
and flavor intensity. Based on this knowledge, growth-
promoting agents that can influence muscle growth in
farm animals have been derived. There have also been
reports of growth-promoting effects exerted by β-
adrenergic agonists among various species [96–99]. In
contrast to GH, most β-adrenergic agonists are not able
to stimulate MSC proliferation, and instead produce
short term effects by increasing protein synthesis in the
muscle fibres.

Meat quality: a parameter needed for consumer
satisfaction
Optimal meat quality represents a complex of intrinsic
(e.g. color stability, tenderness, palatability and water-
holding capacity) and extrinsic (e.g. price, brand name,
origin, packaging, labelling, etc) characteristics, that are
meant to satisfy consumers. Optimal meat quality char-
acteristics vary with human culture and time, with a
general trend of increasing contribution to safety and
healthiness that are important for consumption and eco-
nomic reasons. With increasing demand for products
with enhanced safety and healthiness, food production
systems with improved quality standards are important
to deliver and guarantee the safety of the products to
consumers. Variation in meat quality arises through dif-
ferences in the metabolic processes occurring in the
muscles during peri- and post-slaughter period. Accord-
ingly, muscle fibre type and capillarity within animals
are important factors [46, 100]. Meat quality is generally
accessed in terms of tenderness, taste, etc. Tenderness of
meat is positively related to the muscle fibre characteris-
tics (cross-sectional areas of the fibres, fibre types, meta-
bolic enzyme activities, collagen quantity) and the amount
of intramuscular fat that contribute to determination of
flavor [101, 102]. Color of meat is determined by the level
of myoglobin oxygenation [100]. Meat with high percent-
ages of oxidative fibres (greater myoglobin content) has a
red color. These fibres show a high level of post-mortem
shortening and generally have a low glycogen content.
Capillarization is another relevant factor that influences
meat quality since it is associated with supply of oxygen
to muscles fibres. Through this, capillarization not only
influences the metabolic state at time of slaughter but also
during post-slaughter period.
Adipogenesis overlaps myogenesis during mid-gestation

period in ruminant animals and humans [103–105]. Com-
mitment of MSCs to adipogenic lineages (transdifferentia-
tion) being in competition with the regular myogenic
(differentiation) program, is shaped through the involve-
ment of numerous inductive regulators (Fig. 2). Progres-
sive loss of muscle mass that exerts negative effect on the
structural and functional integrity of muscle fibre results
in the decline of muscle strength [106, 107]. However,
switching the commitment of MSCs from myogenic to
adipogenic program during fetal muscle development
results in increased intramuscular fat and therefore marb-
ling in the offspring [40, 108–110]. Being crucial to the
flavor of meat, enhancement of intramuscular fat through
increased number and size of intramuscular adipocytes
improves meat quality [103, 111, 112]. Growing demand
for highly marbled meat has resulted in exploration of the
inducers that can cause transition of MSCs towards
adipose-like cells (ALCs) within muscle [3, 113, 114]. In
search for inducers, role of adipogenic transcriptional
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factors CCAAT-enhancer binding protein alpha (C/EBPα)
and peroxisome proliferator-activated receptor gamma
(PPARγ) was found conserved [5, 115–117]. Considering
the importance of fat in muscle to meat industry, ligands
such as thiazolidinediones, which activates the function of
transcription factors C/EPBα and PPARγ, are being used
to induce transdifferentiation in MSCs [117–119]. While
maternal over-nutrition has been found to increase adipo-
cytes during late gestation in the skeletal muscles of fetal
sheep [41, 120], controlled concentrations of serum lipids
have been shown to induce transdifferentiation of MSCs
into adipoblasts [5, 119].

Conclusion
Growth rate corresponding to muscle is considered an
important performance factors for evaluating profits.
Studies of MSC populations have enhanced the current
understanding of the regulatory mechanisms that direct
somatic stem cell populations for their role in the develop-
mental program. Advancement in the high-throughput
sequencing and system biology that advanced the search
for such genes have made it possible to elucidate a core
regulatory network of myogenic genes that drives the
myogenic fate of pluripotent stem cells. This program,
though orchestrated by key transcription factors, dictates
the balance between proliferation and differentiation and
drives the functional transformation from individual pro-
liferating myogenic cells to a syncytial contractile myofi-
ber. Additionally, increasing knowledge obtained through
in silico studies of differentially expressed genes has pro-
vided an outstanding tool for investigating the interacting
network operating between different genes to elucidate
the molecular machinery behind activation, proliferation

and differentiation of MSCs. To meet the growing de-
mand of the increasing population, exploiting the regula-
tory circuits through the use of primary culture system is
believed to provide deep insight into the measures that
can be employed for improving the postnatal skeletal
muscle growth among different animal species. As such,
understanding genetic and epigenetic regulation of cell
pluripotency, reprogramming and cell differentiation/
dedifferentiation seems critical to improve livestock
production.
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