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Effects of liposomal-curcumin on five
opportunistic bacterial strains found in the
equine hindgut - preliminary study
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Abstract

Background: The horse intestinal tract is sensitive and contains a highly complex microbial population. A shift in
the microbial population can lead to various issues such as inflammation and colic. The use of nutraceuticals in the
equine industry is on the rise and curcumin is thought to possess antimicrobial properties that may help to
minimize the proliferation of opportunistic bacteria.

Methods: Four cecally-cannulated horses were utilized to determine the optimal dose of liposomal-curcumin (LIPC)
on reducing Streptococcus bovis/equinus complex (SBEC), Escherichia coli K-12, Escherichia coli general, Clostridium
difficile, and Clostridium perfringens in the equine hindgut without adversely affecting cecal characteristics. In the first
study cecal fluid was collected from each horse and composited for an in vitro, 24 h batch culture to examine LIPC
at four different dosages (15, 20, 25, and 30 g) in a completely randomized design. A subsequent in vivo 4 × 4 Latin
square design study was conducted to evaluate no LIPC (control, CON) or LIPC dosed at 15, 25, and 35 g per day
(dosages determined from in vitro results) for 9 days on the efficacy of LIPC on selected bacterial strains, pH, and
volatile fatty acids. Each period was 14 days with 9 d for acclimation and 5 d withdrawal period.

Results: In the in vitro study dosage had no effect (P ≥ 0.42) on Clostridium strains, but as the dose increased SBEC
concentrations increased (P = 0.001). Concentrations of the E. coli strain varied with dose. In vivo, LIPC’s antimicrobial
properties, at 15 g, significantly decreased (P = 0.02) SBEC when compared to 25 and 35 g dosages. C. perfringens
decreased linearly (P = 0.03) as LIPC dose increased. Butyrate decreased linearly (P = 0.01) as LIPC dose increased.

Conclusion: Further studies should be conducted with a longer dosing period to examine the antimicrobial properties
of curcumin without adversely affecting cecal characteristics.
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Background
Horses may suffer from inflammation in their gastro-
intestinal (GI) tract, such as colic, enterocolitis, diarrhea,
and inflammatory bowel disease [1]. It has been reported
that seasonal environmental changes, viruses, intestinal
parasites, and infectious agents, such as C. difficile and
C. perfringens, are a few causes of colitis, or inflamma-
tion of the large intestine, and diarrhea [2–4]. The intes-
tinal tract contains a highly complex, yet sensitive
microbial population, and a shift in this population can
lead to serious gastrointestinal issues for horses [2]. C.

perfringens, C. difficile, E. coli general and K-12, and
Streptococcus bovis/equinus complex (SBEC) are com-
mon opportunistic bacteria found in the hindgut. In a
study examining the hindgut of horses with starch-
induced laminitis, it has been suggested that SBEC could
precede the onset of laminitis due to the increased con-
centrations of Streptococcus spp. isolates [5].
Oral administration of nonselective nonsteroidal anti-

inflammatory drugs (NSAIDs) to horses, with gastro-
intestinal disease, is a common practice in veterinary
medicine [6]. However, studies examining the effects of
NSAIDs suggest that these drugs are associated with
adverse gastrointestinal effects [6]. Additionally, studies
have shown that NSAIDs, in vitro, can affect hindgut
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mobility, which could lead to a change in the pH, vola-
tile fatty acid concentration, and overall digestion [7].
Since nonselective NSAIDs are more preferable in
equine medicine [6], the potential of additional adverse
effects could lead to dysbiosis of the hindgut microbiota.
The utilization of nutraceuticals, in an effort to prevent
the aforementioned dysbiosis, offer a potential therapy
to mitigate the adverse side effects associated with the
traditional therapeutic use of NSAIDs.
Curcumin is the active ingredient in turmeric [Curcuma

longa], and in human [8], chicken [9], and horse [10] stud-
ies it has demonstrated antimicrobial properties. While
the targeted nature of the antimicrobial effects are yet un-
known in horses; curcumin’s antimicrobial properties may
help to minimize the proliferation of opportunistic bac-
teria in the equine hindgut. However, while curcumin
could potentially be an alternative treatment for a wide
variety of diseases, it has poor bioavailability [11]. Ob-
served in humans [8], and mice [12], curcumin’s poor bio-
availability is due to its hydrophobic properties and quick
elimination from the body [12]. However, studies have
speculated that encapsulating curcumin in liposomes
could increase its bioavailability [12]. The objective of this
research was to evaluate the antimicrobial properties of
liposomal-curcumin and its effect on cecal characteristics.

Methods
Four cecally-cannulated [13] horses, one gelding and
three mares, weighing 522.95 ± 16.59 kg and having a
body condition score (BCS) of 5.5 ± 0.5 on a scale of 1-
9, with nine being obese, were used for the in vitro batch
culture experiment and in the in vivo study. Southern
Illinois University Animal Care and Use Committee
(Protocol 14-048) approved care and handling of animals
used in this study.

In vitro
The in vitro 24 h batch culture examined the effect of
dose on bacteria concentrations when supplementing li-
posomal-curcumin (LIPC). Sixteen 125 mL Erhlenmeyer
flasks were randomly assigned one of the following treat-
ments in quadruplicate: 1) LIPC at the recommended dose
of 15 g, (15); 2) 20 g of LIPC, (20); 3) 25 g of LIPC (25); or
4) 30 g of LIPC, (30). Based on the recommended dosage
of 500 mg/g of turmeric at 15 g per 454.54 kg horse [10],

the selected treatments were increased by 5 g, up to twice
the recommended dose.
Composited cecal fluid mixed with McDougall’s buffer,

at a 1:4 ratio [12], was poured (50 mL) into 16 separate
125 mL Erlenmeyer flasks, degassed with carbon dioxide
(CO2), and placed in a water bath at 39 °C. The 125 mL
Erlenmeyer flasks also contained 0.50 g [14] of ground
alfalfa hay. Flasks were manually shaken every 2 h for
24 h.
Samples were collected at 0 and 24 h, pH measured

(Oakton pH 110 Advanced Portable Meter (Vernon
Hills, IL), stored in a 15 mL conical tube, and frozen at
−80 °C for later analysis, including deoxyribonucleic acid
(DNA) extraction (PowerSoil Mo Bio DNA Extraction
Kits (Mo Bio Laboratories, Carlsbad, CA) and qPCR
(Bio-Rad MyiQ Optical System Software 2.0). A Nano
Drop ND-1000 Spectrophotometer (Wilmington, DW)
assessed all DNA extractions for concentration and
quality prior to PCR.
Performed in triplicates, all real-time PCR runs and

each reaction mixture was prepared using Maxima SYBR
Green/ROX qPCR (Thermo Scientific, Waltham, MA).
The five opportunistic bacteria, E. coli general and K-12
[15] C. difficile [16, 17], C. perfringens [18], and SBEC
[19] were amplified using a CFX96 Touch Real-Time
PCR Detection System (Bio-Rad Laboratories, Inc.,
Hercules, CA), quantity analysis was performed by cal-
culating the absolute value, using the cycle threshold.
The primers sequences used are in Table 1.

In vivo
Four cecally-cannulated horses were utilized in a 4 × 4
Latin square to evaluate increasing doses of LIPC on the
concentrations of the same opportunistic bacteria stated
in the in vitro and to examine cecal characteristics, such
as volatile fatty acids (VFA) and ammonia nitrate (NH3)
concentrations. One of four treatments: 1) no LIPC, (0);
2) 15 g LIPC, recommended dose, (15); 3) 25 g LIPC
(25); or 4) 35 g LIPC (35) for a total of 7500 mg,
12,500 mg, and 17,500 mg, respectively, of the active in-
gredient dosed daily, were randomly assigned to horses.
Horses were fed 0.90-1.36 kg of Strategy® (Purina Mills,
St. Louis, MO), once daily at 0600 and the treatments
were top-dressed on the grain, for delivery and to main-
tain a BCS of 5-6. Post grain and treatment consumption,

Table 1 Forward and Reverse Primers used for real time PCR

Strains Forward Primers (5′ – 3′) Reverse Primers (5′ – 3′)

SBEC GCCTACATGAAGTCGGAATCG TACAAGGCCCGGGAACGTA

C. difficile CAAGTTGAGCGATTTACTTCGGTAA CTAATCAGACGCGGGTCCAT

C. perfringens AAATGTAACAGCAGGGGCA TGAAATTGCAGCAACTCTAGC

E. coli, general GTTAATACCTTTGCTCATTGA ACCAGGGTATCTAATCCTGTT

E. coli K12 GCTACAATGGCGCATACAAA TTCATGGAGTCGAGTTGCAG
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horses were then turned out to pasture (predominantly
K31 Tall Fescue) and allowed to graze until 1600. This was
the daily procedure with the exception for d 9 of each
period, during which they were stalled all day and had ab
libitum access to hay and water after complete consump-
tion of Strategy® and treatment.
Each period was 14 days with a 9 d acclimation period

and a 5 d withdrawal period [10, 20]. Cecal fluid was
collected at 0 h on d 0 and 8, and again on d 9 at 0, 3, 6,
9, 12, 15, 18, and 21 h. Whole cecal contents (100 mL)
were collected, pH recorded (Oakton pH 110 Advanced
Portable Meter (Vernon Hills, IL), subsampled (15 mL),
and immediately frozen for later analysis of opportunis-
tic bacteria. On d nine, after pH was recorded, contents
were filtered through eight layers of cheesecloth into a
15 mL collection tube and immediately frozen for later
analysis of VFA and ammonia concentrations. Cecal
NH3 concentrations were determined by the phenol-
hypochlorite procedure [21]. VFA concentrations were
determined [22] using a Shimadzu GC-2010 gas chro-
matograph (Shimadzu Scientific Instruments, Inc.,
Columbia, MD) and internal standards made with 2-
ethyl butyrate [22].
Blood was also collected via jugular venipuncture on

d 0 and 8 into a vacutainer serum separator tube and a
7.5% Ethylenediaminetetraacetic acid (EDTA) tube
(Coviden, Mansfield, MA) for chemistry panel analysis,
and complete blood count analysis, respectively.

Statistical analysis
The bacterial concentrations from in vitro experiment
were analyzed as a completely randomized design
using the MIXED procedure of SAS (SAS 9.4 Inst.,
Inc., Cary, NC).
For the in vivo experiment, bacterial concentrations,

chemistry panel data, and complete blood count data
were analyzed using the MIXED procedure of SAS (SAS
9.4 Inst., Inc., Cary, NC) using the model for a Latin
square design with a Tukey post-hoc adjustment. Cecal
fermentation data (NH3, pH, and VFA) were analyzed
using the MIXED procedure of SAS for repeated mea-
sures. An autoregressive covariance structure (AR1 of

the MIXED procedure of SAS) was determined to be
most appropriate based on Akaike’s Information Criter-
ion. Comparisons of main effects were determined using
least square means and Fisher’s protected LSD. Calcula-
tion of coefficients for linear orthogonal polynomials
with unequal spacing was done using IML of SAS [23].
Significance was set at (P ≤ 0.05) and tendency was set
at (P ≤ 0.10).

Results
In vitro
The bacteria concentrations for the in vitro study are
summarized in Table 2. Every flask had a pH within the
normal equine cecum pH range of 6.5-7.1 [24]. Concen-
trations of SBEC were significantly lower (P < 0.0001) at
the recommended dose (15) when compared to the 20,
25, and 30 dose treatments. E. coli substrain K-12 concen-
trations increased (P = 0.01) in the 25 and 30 treatments
compared to 15 and 20 treatments. Concentrations of E.
coli general were significantly less (P = 0.03) for 15, 20,
and 30 compared to the 25 treatment.

In vivo
Based on the results of the batch culture, the authors
decided to investigate 15 g, 25 g, and 35 g of 95%
LIPC. SBEC bacterial concentrations increased linearly
(P = 0.008) as LIPC dose increased (Table 3). However,
as the dose of LIPC increased, the concentration of C.
perfringens decreased linearly (P = 0.03).
Cecal fluid pH and ammonia concentration were not

significant among treatments (P = 0.82) and (P = 0.21),
respectively (Table 3). However, ammonia concentrations
decreased numerically in a linear fashion as LIPC dose in-
creased. Valerate was significantly different (P = 0.02)
among treatments with 0 having the greatest concentra-
tion compared to all other treatments. Moreover, valerate
decreased linearly (P = 0.005) as LIPC dose increased. As
LIPC dose increased, butyrate and iso-valerate decreased
linearly (P ≤ 0.03). However, acetate tended to increase
linearly (P < 0.10), as the dose of LIPC increased. Lastly,
increasing doses of LIPC tended (P = 0.10) to linearly in-
crease total VFA concentrations when compared to 0.

Table 2 The effects of liposomal-curcumin on bacteria (ng/μL) found in equine cecal fluid, in vitro (24 h)a

Treatment1

Strains 15 20 25 30 SEM P-value

SBEC 5.49E + 09a 1.79E + 11b 5.07E + 13c 2.60E + 12d 2.73E + 07 0.0001

E. coli K-12 7.93E + 03a 1.30E + 04a 2.86E + 06b 3.39E + 06b 7.67E + 05 0.01

E. coli general 1.30E + 02a 9.60E + 01a 2.08E + 04b 4.81E + 03a 4.85E + 01 0.03

C. difficile 2.14E + 03 1.74E + 03 2.15E + 01 1.07 1.33E + 03 0.56

C. perfringens 5.20E-01 1.74E-02 2.06E-01 6.56E + 01 3.20E + 01 0.42
aData are means of 4 jars per replicate. a-dMeans within a row with different superscripts differ significantly (P < 0.05)
1Treatments: 15 g; 20 g; 25 g; 30 g of 95% liposomal-curcumin
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Discussion
In vitro
Previous work, with human subjects, showed E. coli
substrain K-12 possesses curcumin-converting activity,
allowing this substrain to utilize curcumin as a sub-
strate for growth [8]. It is possible that in the current
study, increasing the dosage of LIPC increased the con-
centration of curcumin that E. coli general and K-12
could utilize as a substrate thus, allowing for an in-
crease in these bacterial concentrations.

In vivo
Although increasing the dose of LIPC decreased C. per-
fringens, the observation that increasing the dose also
increases SBEC and C. difficile would suggest that there
may be no additional benefit of dosing LIPC above the
recommended rate and could lead to potential prob-
lems, such as an dysbiosis of the hindgut microbiota
leading to colic, diarrhea, and enterocolitis. In addition,
this would also suggest that the nutraceutical is not
compromised in the stomach or small intestine during
the digestion process before reaching the cecum.
The tendencies to increase acetate and total VFAs

would suggest that a longer dosing period of LIPC might
increase fiber digestibility [25]; however, a decrease in
butyrate may decrease intestinal lining repair. In addition,

when dosing higher than the recommended dose (15 g)
for long periods, caretakers should take caution. The nu-
merical decrease in ammonia and isobuytrate along with a
decrease in isovalerate suggests that rate of protein deg-
radation may decrease when LIPC is administered above
the recommended dose for longer periods.

Conclusion
The utilization of the nutraceutical, liposomal-curcumin,
in an effort to prevent microbial dysbiosis, was thought
to offer a potential therapy to mitigate the adverse side
effects associated with the traditional therapeutic use of
NSAIDs. However, the results of this study would suggest
that liposomal-curcumin at doses above the recommended
rate have the potential to increase the concentration of op-
portunistic bacteria, which would contribute to microbial
dysbiosis rather than mitigate it. These preliminary data
provide some insight of the effects of liposomal-curcumin
on selected opportunistic bacteria. A more comprehensive
and thorough examination of the cecal microbiota is
needed understand the antimicrobial effects of the active
ingredient in liposomal-curcumin on the equine micro-
biota. Additionally, further research is needed to assess
long-term effects of the active ingredient in liposomal-
curcumin on digestion because of the decrease in butyrate
production.

Table 3 Effects of liposomal-curcumin on opportunistic bacteria (ng/uL) found in equine cecal fluid and on cecal fluid
characteristics (9 d)a

Treatment1 P -value

0 15 25 35 SEM TRT2 LIN3

Bacterial strains

SBEC 13.00ab 12.73a 13.68bc 14.12c 0.25 0.02 0.008

E. coli K-12 20.46 19.16 19.73 20.50 1.49 0.20 0.96

E. coli general 32.64 32.77 32.21 33.27 0.37 0.94 0.79

C. difficile 29.61 29.68 30.63 31.15 1.01 0.62 0.25

C. perfringens 49.18 46.36 45.97 43.51 1.36 0.12 0.03

Cecal characteristics

pH 6.71 6.68 6.68 6.67 0.03 0.82 0.38

Ammonia, mg/dL 15.89 15.6 9.94 12.25 2.12 0.21 0.11

Total VFA, mM 51.59 71.15 73.68 65.32 6.14 0.11 0.10

VFA, mol/100 mol

Acetate 35.53 36.64 36.64 40.91 1.98 0.28 0.10

Propionate 49.68 52.75 54.75 50.15 1.96 0.34 0.62

Isobutyrate 3.97 1.67 1.31 0.59 1.90 0.54 0.19

Butyrate 10.63 9.57 8.09 8.46 0.62 0.06 0.01

Isovalerate 0.40 0.13 0.14 0.08 0.09 0.10 0.03

Valerate 0.68a 0.32b 0.28b 0.24b 0.09 0.02 0.005
aData are means of 4 cannulated horses per replicate. a-cMeans within a row with different superscripts differ significantly (P < 0.05)
1Treatments: 0 = control (no nutraceutical); 15 = 15 g; 25 = 25 g; 35 = 35 g of 500 mg/g 95% liposomal-curcumin
2P-value for treatment means
3P-value for linear contrast
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