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Abstract

Background: Ribonuclease (RNase) is one of the few toxic proteins that are present constantly in snake venoms of
all types. However, to date this RNase is still poorly studied in comparison not only with other toxic proteins of snake
venom, but also with the enzymes of RNase group. The objective of this paper was to investigate some properties of
RNase from venom of Vietnam cobra Naja atra.

Methods: Kinetic methods and gel filtration chromatography were used to investigate RNase from venom of Vietnam
cobra.

Results: RNase from venom of Vietnam cobra Naja atra has some characteristic properties. This RNase is a thermostable
enzyme and has high conformational stability. This is the only acidic enzyme of the RNase A superfamily exhibiting a high
catalytic activity in the pH range of 1–4, with pHopt = 2.58 ± 0.35. Its activity is considerably reduced with increasing ionic
strength of reaction mixture. Venom proteins are separated by gel filtration into four peaks with ribonucleolytic activity,
which is abnormally distributed among the isoforms: only a small part of the RNase activity is present in fractions of
proteins with molecular weights of 12–15 kDa and more than 30 kDa, but most of the enzyme activity is detected in
fractions of polypeptides, having molecular weights of less than 9 kDa, that is unexpected.

Conclusions: RNase from the venom of Vietnam cobra is a unique member of RNase A superfamily according to its
acidic optimum pH (pHopt = 2.58 ± 0.35) and extremely low molecular weights of its major isoforms (approximately
8.95 kDa for RNase III and 5.93 kDa for RNase IV).

Keywords: Acidic optimum pH, Conformational stability, Gel filtration, Ionic strength, Isoforms, Thermostability, Venom
RNase, Vietnam cobra
Background
Since ancient times snake venom has been consid-
ered as the precious medicinal source. Not by
chance that the symbol of medicine in all over the
world is the image of a snake releasing venom.
Today we know that snake venom is the source, very
rich in biologically active substances, such as toxins,
proteins, enzymes and toxic peptides. Snake venom
affects many organs and organ systems in the body
such as the nervous system, blood and cardiovascu-
lar system, respiratory and muscular systems... Snake
venom is used to treat various diseases, including
cardiovascular diseases [1], hypertension [2] and
osteoarthritis [3]. The venom of some snakes showed
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anti-cancer effects and is used to develop anti-cancer
drugs [4–7].
Snake venom is a biological fluid having the highest

RNase activity [8]. RNase is one of the toxic enzymes
that are permanently present in snake venoms of all
kinds [9, 10]. However, up to now snake venom RNase
is little studied in comparison not only with the enzymes
of RNase group, but also with the other proteins of
snake venoms. Probably this is the reason that so far we
still do not understand the role of this enzyme in the
toxic action of the snake venoms in general.
Moreover, snake venom RNase is a secreted

enzyme, so this RNase belongs to the RNase A super-
family. At present has been known that the RNase A
superfamily is a large family of secreted RNases in
vertebrates from amphibians to mammals, including
species Homo sapiens with RNase A (an enzyme from
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bovine pancreas) as a prototype [11, 12]. In the last
time the main function of the enzymes of RNase A
superfamily is thought to be involved in the host
defense system. Many members of this superfamily
possess antimicrobial [13–19], antiviral [20–23], cytotoxic
[24–29] and other biological actions [26, 30–32], as ob-
served for the most of RNases of the RNase A superfamily
in human [33–35] and for RNases of this superfamily in
other organisms [13, 19, 26, 36, 37]. From this context, we
believe that the permanent presence of RNase in snake
venoms of all kinds is not accidental; and the fact that
snake venom is a biological fluid having very high ribonu-
cleolytic activity may reflect a certain role of this enzyme
in the toxic effects of snake venom.
In this work, the results of studying some properties

of RNase from the venom of Vietnam cobra will be pre-
sented. Information about these properties may help to
understand the role of RNase in general toxic effects of
snake venom.

Methods
Materials
The dry (lyophilized) venom of cobra the Naja atra
(purchased from Vinh Son Snake farming village,
Vinh Tuong District, Vinh Phuc Province) was used
as a source of RNase. Total RNA from the yeast
Torula (purchased from Sigma) was used as a sub-
strate for the determination of RNase activity. Glycine
from Prolabo, sodium citrate, citric acid, sodium
chloride, sodium hydroxide, hydrochloric acid and
other chemicals are analytically pure.
The initial enzyme solution (E0) was prepared by dis-

solving 2–10 mg or more of snake venom in the appropri-
ate buffer solution, and then centrifuged at 10000 rpm for
10 min to remove the insoluble material.

Methods
Heat treatment
To study the thermostability of the RNase activity in
Vietnam cobra venom, several series of enzyme samples
with concentrations of 2–10 mg/ml of lyophilized venom
were heating in a water bath at different temperatures
from 30 to 100 °C over in the same period of time
(5 min). After thermal treatment, the enzyme samples
were cooled on ice and centrifuged at 10.000 rpm for
10 min to remove the residue of inactivated proteins and
then RNase activity in the supernatant liquids was
determined, as described below.

Determination of the optimum pH
For studying the influence of pH on RNase activity and
determining the optimum pH (pHopt) of the enzyme,
RNA hydrolysis reactions were carried out in 10 mM
Phosphate buffer (P-buffer) at pH 5.8–8.0, in 10 mM
Glycine buffer (G-buffer) at pH 1.5–4.0 and in 10 mM
mixed buffer (M-buffer) at pH 1.0 to 9.5, prepared in the
equal molar ratio (1: 1: 1: 1) from glycine, citrate,
phosphate and tris-HCl.
Study the effect of ionic strength
The influence of ionic strength on RNase activity was
studied by performing RNA hydrolysis at different con-
centrations of G- and M-buffers (from 5 to 100 mM),
NaCl and (NH4)2SO4 (from 0 to 100 mM), MgSO4 (from
0 to 4 mM) and EDTA (from 0 to 10 mM).
Treatment with trypsin
Venom RNase in the enzyme preparation E0 was incubated
with trypsin (at a ratio trуpsin/protein in preparation E0
equal to 1/13) at 25 °C, and then the RNase activity
remaining in the reaction mixture was determined at
various time intervals.
Gel-filtration chromatography
140 mg of the dried venom of Vietnam cobra Naja atra
were separated by a gel-filtration column (ø2.5 × 90 cm)
with Sephadex G50sf as a carrier in 0.1 M ammonium
acetate buffer pH 6.2 at a flow rate of 15 ml/h, the
volume of collected fractions was 5 ml. In the case of
gel-filtration on a Superdex 75 column (ø0.9 × 60 cm),
different amounts of cobra venom (10-50 mg) were used
for fractionation, and the chromatographic process was
carried out in 10 mM citrate buffer pH 5.25 or in 10 mM
phosphate buffer pH 7.4 at a flow rate of 1 ml/min, the
volume of collected fractions was 1 ml. After chromatog-
raphy, the ribonucleolytic activity was determined in all
fractions obtained as described below.
RNase activity assay
RNA hydrolysis reactions were carried out in 10 mM
glycine buffer pH 2.6 at room temperature for 30 s in a
total volume of 1 ml of the reaction mixture [8]. The
hydrolysis reaction is initiated by adding x μl of the
enzyme solution in the (1000 - x) μl of RNA solution
prepared in glycine buffer. RNase activity was evaluated
by the increase in OD260 of the reaction mixture during
the hydrolysis of the RNA substrate. One unit of RNase
activity is defined as the amount of enzyme which
hydrolyzes RNA causing an increase in OD260 value of
the reaction mixture by 1 unit.
Protein determination
The protein content in the fractions of gel filtration was
automatically recorded at a wavelength of 280 nm.



Table 1 Results of determination of ribonucleolytic activity (A, OD260) remained in the supernatant liquids after centrifugation of the
heat-treated enzyme samples

ToC Ribonucleolytic activity remained after heat treatment

Series 1 Series 2 Series 3 Series 4 Series 5 Series 6

OD260 % OD260 % OD260 % OD260 % OD260 % OD260 %

25 0.165 100.0 0.206 100.0 0.190 100.0 0.166 100.0 0.229 100.0 0.228 100.0

30 0.214 129.3 0.254 123.6 0.239 125.9 0.193 115.9 0.259 113.0 0.250 109.5

40 0.227 137.0 0.270 131.6 0.257 135.0 0.212 127.4 0.279 121.7 0.284 124.6

50 0.239 144.5 0.289 140.7 0.262 137.9 0.224 135.2 0.297 129.2 0.299 131.4

60 0.206 124.2 0.276 134.3 0.254 133.5 0.215 129.4 0.252 109.8 0.274 120.1

70 0.200 121.0 0.241 117.2 0.215 113.2 0.189 113.8 0.221 96.1 0.231 101.4

80 0.174 105.3 0.234 113.6 0.205 107.6 0.176 105.9 0.209 91.0 0.204 89.4

90 0.169 102.4 0.223 108.7 0.203 106.7 0.166 99.9 0.203 88.7 0.198 87.1

100 0.155 93.5 0.212 103.2 0.170 89.4 0.146 88.1 0.197 85.7 0.186 81.6
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Results
Thermostability of the enzyme
In experiments studying the thermostability of RNase ac-
tivity in venom of Vietnam cobra, the enzyme samples
were heat-treated as described in the section Methods.
The results of the determinination of ribonucleolytic activ-
ity remained in the supernatant liquids after centrifugation
of several series of heat-treated enzyme samples, are sum-
marized in Table 1, and the curves, illustrating the
temperature dependence of the relative activity of RNase,
are shown in Fig. 1.
The data in Table 1 and the curves in Fig. 1 showed that

RNase activity in venom of Vietnam cobra N. atra is
highly thermostable. It has the maximum activity after
heating the enzyme solution at 50 °C for 5 min and in this
case the RNase activity was increased by about 29–45%.
Moreover, after boiling for 5 min in a water bath this
Fig. 1 Effect of temperature on the activity of RNase in the venom from
Vietnam cobra. Ribonucleolytic activity of enzyme solutions E0 of six
series with different concentrations of snake venom was determined
after their 5-min heating in a water bath at different temperatures. The
activity of initial enzyme solutions E0 before heating was considered to
be 100%
enzyme retained approximately 82–103% of its original
activity.

Effect of pH on the enzyme activity
The effect of pH on the cobra venom RNase was studied
by measuring its enzymatic activity at different pH
values of phosphate, glycine, and mixed buffers. The re-
sults of these experiments are shown in Fig. 2.
The curves in Fig. 2 showed that the venom RNase of

Vietnam cobra had a high catalytic activity in an acid
medium: its activity was high in the pH range from 1.5
to 4.0 in both G- and M-buffers, and was dropped al-
most linearly in P-buffer when pH increased from 5.8 to
8.0. As can be seen in Fig. 2, and according to the results
obtained, the optimum pH (pHopt) for RNase activity of
Vietnam cobra venom varied in a rather wide range:
pHopt = 2.58 ± 0.35.

Effects of ionic strength
In the previous section it was shown that venom RNase
of Vietnam cobra exhibits the highest activity in an
acidic medium, so the effect of ionic strength on the ac-
tivity of this RNase was studied in the pH range from
1.5 to 4.0. The results of the experiment for determining
the activity of RNase at different concentrations of G-
and M-buffers, are summarized in Table 2 and are illus-
trated in Fig. 3.
As seen in Fig. 3, RNase activity in Vietnam cobra

venom is strongly influenced by ionic strength. The en-
zyme had the highest activity at 10 mM concentration of
both G- and M-buffers. In the range of buffer concentra-
tions from 10 to 100 mM, venom RNase activity is almost
linearly decreased with increasing buffer concentration.
Moreover, at 100 mM concentration of these buffers, the
enzyme retained 10.5% and 51% of its activity, respectively
(i.e., the enzyme activity was 10.5 and 51% of its maximum
activity in the corresponding buffers).



Fig. 2 pH-dependence of ribonucleolytic activity of cobra venom. P-buf – Phosphate buffer; M-buf – mixed buffer; G-buf – Glycine buffer; E0 –
The initial enzyme solution, prepared from lyophilized venom; E0,f – The initial enzyme solution, prepared from fresh venom; Et – The heat-treated
(boiled in the water bath for 5 min) enzyme solution E0
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On the other hand, It is known that NaCl and
(NH4)2SO4 are the salts most commonly used in iso-
lation and purification of enzymes and many enzymes
require divalent metal ions for their catalysis. There-
fore, the effects of these salts, EDTA and MgSO4 on
the RNase activity of Vietnam cobra venom are
assessed by measuring the enzyme activity in the
presence of these substances. The results of these
experiments are shown in Fig. 4.
As seen in Fig. 4, cobra venom RNase activity is

strongly influenced by NaCl and (NH4)2SO4: the
activity of this enzyme is rapidly reduced with
increasing salt concentration. At 100 mM concentra-
tion of NaCl, the RNase activity is only 28% com-
pared to its activity in the absence of this salt,
whereas at ammonium sulfate concentration higher
70 mM the venom RNase lost completely its activity.
In addition, the activity of this RNase is also consid-
erably reduced in the presence of MgSO4 and EDTA.
Venom RNase activity is remained only about 52.6%
at 4 mM concentration of MgSO4 and 46.7% at
10 mM concentration of EDTA. These data show that
Mg2+ ions are not essential for the catalytic activity
of RNase from Vietnam cobra venom.

Susceptibility of RNase from Vietnam cobra venom to the
proteolytic action of trypsin
Conformational stability is a very important parameter
determining the biological activity of proteins in general
and enzymes in particular. In addition to thermal
stability, another expression of the conformational
Table 2 RNase activity of Vietnam cobra venom at different concen

Buffer Activity Buffer’s concentrations, mM

4 5 10 20

M-buf OD260 - 0.265 0.456 0.407

% - 58.16 100.0 89.34

G-buf OD260 0.506 - 0.588 0.564

% 86.10 - 100.0 95.92
stability of protein molecules is their susceptibility to
proteolytic action of proteinases – hydrolytic enzymes
present in all cells. A curve illustrating the effect of the
proteolytic action of trypsin on the RNase from Vietnam
cobra venom is shown in Fig. 5.
The curve in Fig. 5 showed that the venom RNase

activity is not reduced, but even increased when the
crude enzyme solution E0 is incubated with trypsin for
one day. The enzyme activity began to decrease after a
24-h incubation and RNase still retained about 30% of
its activity after 48 h of incubation with trypsin. These
data indicate that RNase from the venom of Vietnam
cobra is very resistant to the proteolytic action of tryp-
sin. This means that RNase from Vietnam cobra venom
has a very high conformational stability.
Multiple molecular forms and abnormal distribution of
their activity
According to our preliminary data, RNase activity in the
venom of Vietnam cobra N. atra is abnormally high [8].
One of the objectives of this work is to find the factors
behind this phenomenon. To this end, the proteins of the
dried venom of Vietnam cobra are fractionated by gel
filtration on a Sephadex G50sf column (ø2.5 × 90 cm).
The results of this experiment are shown in Fig. 6.
As shown in Fig. 6, when fractionated by gel filtration

on a Sephadex G50sf column, proteins of venom from
Vietnam cobra are divided into four conventional
protein peaks (1–4) and one peak of low-molecular
substances (LMW), as expected.
trations of buffers

30 40 50 60 80 100

0.375 0.313 0.288 0.239 0.190 0.048

82.28 68.68 63.25 52.41 41.58 10.48

0.540 0.530 - 0.470 0.366 0.300

91.84 90.14 - 79.93 62.24 51.02



Fig. 3 Effect of buffer concentration on RNase activity in the venom
of Vietnam cobra. M-buf – mixed buffer; G-buf – Glycine buffer
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Peak 1 consists of components of the venom with mo-
lecular weights above 30 kDa (e.g., trimeric phospholipase
A2, PLA2) and contains traces of RNase activity. Peak 2
corresponds to fractions of PLA2 and has, as expected, a
moderate RNase activity. However, the bulk of the RNase
activity is concentrated in peak 4 corresponding to frac-
tions of Kunitz-type proteinase inhibitors (KTPI), and a
much smaller portion of the activity is localized in the tail
of peak 3, which is the biggest protein peak and corre-
sponds to fractions of three-finger toxins (TFT, including
alpha-neurotoxins and cytotoxins). This distribution of
RNase activity in gel filtration fractions is fundamentally
contrary to the available data in the literature [9, 38], be-
cause according to these data, RNase of snake venom has
a molecular weight of 12–15 kDa and should be contained
in the same fractions as PLA2.
Later we performed a repeated gel filtration of peak

4 under the same conditions and found that its own
RNase activity is not scattered on peaks under these
chromatographic conditions, and is again present in
fractions corresponding to Kunitz inhibitors (i.e., at
peak 4), and partly - in the tail of peak 3 (Fig. 6, bot-
tom). Thus, these data can allow suggesting that the
abnormally high RNase activity of venom from
Vietnam cobra is possibly due to a new type RNase,
Fig. 4 Effect of salts and EDTA on the activity of RNase in the venom of Vi
observed in fractions of Kunitz inhibitors with mo-
lecular weight of 6 kDa. Gel Filtration on a Superdex
75 column (ø0.9 × 60 cm) also gave similar results:
RNase from Vietnam cobra venom is separated into 4
isoforms which differed in molecular size (Fig. 7).
These isoforms are denoted as RNase I, II, III and IV,

their molecular weights respectively are >30; 12.94 ± 1.74
(n = 10); 8.95 ± 1.34 (n = 18) and 5.93 ± 0.38 kDa
(n = 18), which were determined from a calibration curve
created with using bovine serum albumin (BSA), ovalbu-
min, trypsin, RNase A and insulin as the standard
proteins. Note: Sometimes the high molecular weight
isoform RNase I is absent and isoform RNase II is often
appeared as the left shoulder of isoform RNase III,
whereas isoforms RNase III and RNase IV are the main
forms and in some experiments we have obtained only
these two isoforms. In the experiment presented in Fig. 7,
the ribonucleolytic activity of the isoforms RNase I, II, III
and IV has the following distribution: 4.5, 19.2, 35.8 and
40.5%, respectively. In general the results of the separation
of snake venom RNase on the Superdex 75 column are
similar to those that are obtained by separation on the
Sephadex G50sf column. These results also reflect the
abnomal distribution of RNase activity from the venom of
Vietnam cobra.

Discussion
From the results presented above, we see that RNase in
Vietnam cobra venom is a thermostable enzyme. This
RNase exhibits the highest catalytic activity after heating
enzyme solution for 5 min at 50 °C (this thermal treat-
ment increases the enzyme activity by 30–45%) and its
activity is reduced insignificantly or almost does not
change when the enzyme solution is boiled in water bath
for 5 min. According to the thermostability, RNase from
Vietnam cobra venom is similar to all other enzymes of
the RNase A superfamily [12], but this enzyme is dif-
fered from RNases in the venoms of cobra Naja oxiana
from Central Asia of former Soviet Union and cobra
Naja naja from region Guntur in India (RNase from
these cobras completely inactivated at 70 °C [39] or
showed the highest activity at 40 °C [40], respectively).
etnam cobra



Fig. 5 Effect of the proteolytic action of trypsin on RNase in the venom
of Vietnam cobra
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If according to thermostability RNase from venom
of Vietnam cobra is similar to other enzymes of the
RNase A superfamily, but this RNase is differed from
all other known members of this superfamily by the
dependence on pH of its ribonucleolytic activity: All
known until today enzymes of the RNase A
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Fig. 7 The elution profile of proteins of Vietnam cobra venom at gel filtration on a Superdex 75 column (left) and calibration curve for determining
molecular weights of the enzyme (right). Standard proteins: 1. Bovine serum albumin (BSA, 67 kDa); 2. Ovalbumin (45 kDa); 3. Trypsin (24 kDa); 4. RNase A
(13.7 kDa); 5. Insulin (5.8 kDa). Conditions of gel filtration: 10 mM phosphate buffer pH 7.4; flow rate 1 ml/min
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cobra venom: In the presence of NaCl at 100 mM
concentration venom RNase retains only 28% of activ-
ity in comparison to its activity in the absence of this
salt, and at ammonium sulfate concentration higher
70 mM the enzyme lost completely its activity. The
activity of Vietnam cobra venom RNase is also con-
siderably reduced in the presence of MgSO4 and
EDTA. The enzyme has the highest activity at 0.5 and
1 mM of MgSO4 and EDTA, respectively; and its ac-
tivity is also almost linearly decreased with increasing
concentration of MgSO4 (from 0.5 mM to 4 mM)
and EDTA (from 1 mM to 10 mM). The activity of
venom RNase is retained only about 52.6% at 4 mM
concentration of MgSO4 in comparison to its activity
in the absence of this salt. This effect of Mg ions is
completely different from the character of their influ-
ence on venom RNase from other sources. In the
same concentration range, Mg2+ is required for the
activity of venom RNase from Indian cobra N. naja
[40] and increases the activity of venom RNase from
cobra N. oxiana in Central Asia of the former Soviet
Union up to 10 times [39]. Thus, Mg2+ ions,
obviously, do not play a role in the catalysis of RNase
from Vietnam cobra venom. This is confirmed by the
fact that the activity of this enzyme is increased by
25% in the presence of EDTA at 1 mM concentration.
However, the enzyme activity is decreased at Mg2+

ions concentrations higher 1 mM. In our opinion, this
decrease in enzyme activity at concentrations of
EDTA higher 1 mM, is not associated with the loss of Mg2+

ions contained in the molecules of enzyme (if enzyme
preparation has a certain amount of Mg2+), but is
probably due to the effect of EDTA anions on the
structure of the enzyme, thereby leading to a decrease
in RNase activity.
Today we know that some enzymes of the RNase A

superfamily such as RNases from several species of
frogs [24, 27, 37] or bovine seminal RNase
(BS-RNase) [25, 26], possess cytotoxic activity because
these RNases do not interact with ribonuclease inhibi-
tor (RI) in then cytoplasm [44]. These RNases do not
interact with RI because of the small size of their
molecules (in the case of RNases from frogs) or too
large size (in the case of BS-RNase) compared to
RNase A and other enzymes of the RNase A super-
family. RNase from frog R. pipiens has high anti-
cancer activity, acts specifically on tumor cells, but
does not affect normal healthy cells, and therefore it
is called onconase. This RNase has a small size; its
polypeptide chain is about ten amino acid residues
shorter than that of RNase A due to mutations lead-
ing to the loss of amino acids which contact RI, so
onconase does not interact with RI [27, 29, 45].
Moreover, some studies have shown that the higher
conformational stability of RNase, the higher its
cytotoxic activity [46]. A very important feature of
RNase from Vietnam cobra venom is its low
susceptibility to the proteolytic action of trypsin: the
activity of this RNase is not lost, is not reduced, and
is even increased slightly during the first hours of
incubation of enzyme preparation E0 with trypsin at
25 °C (at the ratio of trypsin/protein in the
preparation E0, equal to 1/13), the catalytic activity of
venom RNase started to decline only after 24 h of
incubation. The low susceptibility to the proteolytic
action of trypsin and high thermostability are reliable
indicators of the conformational stability of protein
molecules. These parameters show that RNase from
Vietnam cobra venom has very high conformational
stability. On the other hand, according to the results
of gel filtration chromatography, the main isoforms
of RNase (RNase III and RNase IV) from Vietnam
cobra venom have very low molecular weights, so
they can not interact with RI. These data allow
supposing that two low molecular weight isoforms of
RNase from Vietnam cobra venom may have cyto-
toxic activity. This will be the objective of our
research in the future.
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Conclusions
From the obtained results presented above, it can be
concluded as follows:

1. RNase from Vietnam cobra venom has the highest
catalytic activity in the acidic pH range, with
pHopt = 2.58 ± 0.35.

2. This RNase has very high conformational stability,
which manifests itself in its thermostability and low
susceptibility to the proteolytic action of trypsin.

3. The enzyme does not need ions Mg2+ for catalysis.
Its activity is considerably reduced due to increasing
the ionic strength (concentration of buffer or salts)
in the reaction mixture.

4. This RNase has 4 isoforms (RNase I, II, III and IV),
with molecular weights, respectively, of more than
30, 12.94, 8.95 and 5.93 kDa, of which two low
molecular weight RNases III and IV are the main
isoforms.
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