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Abstract
The suppressive effect of monensin as an ionophore-feed additive on enteric methane (CH4) 
emission and renewable methanogenesis were evaluated. To clarify the suppressive effect 
of monensin a respiratory trial with head cage was performed using Holstein-Friesian steers. 
Steers were offered high concentrate diets (80% concentrate and 20% hay) ad libitum with or 
without monensin, galacto-oligosaccharides (GOS) or L-cysteine. Steers that received mon-
ensin containing diet had significantly (p < 0.01) lower enteric CH4 emissions as well as those 
that received GOS containing diet (p < 0.05) compared to steers fed control diets. Thermo-
philic digesters at 55℃ that received manure from steers fed on monensin diets had a delay 
in the initial CH4 production. Monensin is a strong inhibitor of enteric methanogenesis, but has 
a negative impact on biogas energy production at short retention times. Effects of the activity 
of coprophagous insects on CH4 and nitrous oxide (N2O) emissions from cattle dung pats 
were assessed in anaerobic in vitro continuous gas quantification system modified to aerobic 
quantification device. The CH4 emission from dungs with adults of Caccobius jessoensis Har-
old (dung beetle) and the larvae of the fly Neomyia cornicina (Fabricius) were compared with 
that from control dung without insect. The cumulative CH4 emission rate from dung with dung 
insects decreased at 42.2% in dung beetles and 77.8% in fly larvae compared to that from 
control dung without insects. However, the cumulative N2O emission rate increased 23.4% in 
dung beetles even though it reduced 88.6% in fly larvae compared to dung without copropha-
gous insects. It was suggested that the antibacterial efficacy of ionophores supplemented as 
a growth promoter still continued even in the digested slurry, consequently, possible environ-
mental contamination with the antibiotics might be active to put the negative impact to land 
ecosystem involved in greenhouse gas mitigation when the digested slurry was applied to the 
fields as liquid manure.
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INTRODUCTION
Methane (CH4) is the second significant greenhouse gas (GHG) succeeded to carbon dioxide 
(CO2) emitted from human activities [1]. However, CH4 is one of the most important GHG 
along with nitrous oxide (N2O) attributable to animal agriculture. According to the newest value 
cited in the report of IPCC/AR4-Working Group 1 [2], total CH4 emission of anthropogenic 
sources accounts 428 teragram (Tg) year−1and ruminant animals emit 189 Tg year−1. Chynoweth 
[3] presumed that roughly 76% of the emission can be estimated to be derived from rumen 
fermentation in ruminants and the rest 24% from manure handling system. Mitigation of belching 
CH4 emission derived from rumen fermentation of ruminant livestock is the most important 
targeted strategies of world livestock industries in developed and developing countries towards 
Paris Agreement. Polyether ionophore antibiotics such as monensin, salinomycin, lasalocid have 
been known to reduce rumen methanogenesis when they have been fed as a feed additive [4]. So 
far, many manipulators which have potential abilities to mitigate CH4 have been proposed for 
ruminant feed additives as alternatives of ionophores which have tended to be prohibited as growth 
promotors due to the emergence of resistant bacteria [5]. However, firstly, in the feed and feeding 
industries polyether-based ionophores such as monensin, salinomycin and lasalocid have been used 
world widely to be able to reduce the production cost due to the improvement of feed efficiency as 
growth promotors rather than ruminal CH4 inhibiter in the world ruminant livestock production. 
In general, these ionophores cannot be absorbed by digestive tract of animals and then they cannot 
migrate to livestock products, thus it seems unlikely that the migration problems of the ionophores 
would appear in animal and human health. However, unabsorbed ionophores excreted to feces 
might have a negative impact on land ecosystem when they have been still active in the manures at 
fertilization.

According to the data of FAOSTAT (http://www.fao.org/faostat/en/#data/RL) [6], world 
land area under permanent meadows and pastures account for nearly 3.3 billion ha year−1 and 67% 
of agriculture land. Additionally, Table 1 shows that world cattle manure left on pasture in 2016 
account for 8.6 Tg year−1 from dairy cattle and 35.9 Tg year−1 from non-dairy cattle in nitrogen (N) 
basis. Cattle dung left on pasture emit CH4 and N2O other than CO2 as anthropogenic sources of 
GHG [7–12]. Studies on GHG emission from cattle dung have focused on field surveys of GHG 
emission during dung composting in livestock barns and its inhibition [13–17].

Insects are responsible for pollinating 80% wild plants and providing food resources to 60% 
birds other than controlling pests as predatory insects instead of chemical pesticides and preventing 
desertification by entomological soil rehabilitation as the vital roles in land ecosystem. Especially, 
many dung-feeding insects (coprophagous insects) inhabit cattle dung pats in pasture lands. In 
these various coprophagous insects, dung beetles and fly larvae play an important role contributing 
to disappear cattle dung from the fields through their feeding behavior and moving in dung [18–
20]. Dung beetles especially decompose coarse dung fibers and return nitrogen and water in dung 
to the soil through their behavior to bury dung in the soil [21–27]. Meanwhile, fly larvae actively 
move within dung and feed dung to incorporate its N components into the body, thereby N content 
in dung will decrease [28].

For cattle dung pats in pastures, only GHG emission from dung pats and the concentration 
[7, 29–31] and loss of N and ammonia by volatile gases related to dung beetle activities have been 
reported [32,33]. Penttila et al. [34] recently reported that dung beetles increase CO2 and N2O 
emission from cattle dung pats but decrease CH4 emission. So far, the relationship between the 
activity of insects living in dung and GHG emission remains to be elucidated. However, recently, 
Iwasa et al. [35] have quantitatively demonstrated the contribution of coprophagous insects to 
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mitigate GHG emitted from dung pats left on the dairy cattle pastures using in vitro continuous 
gas quantification system.

The present review deals with environmental impacts of ionophore-feed additives on the 
methanogenesis in rumen and anaerobic digester and entomological approach to assess the global 
mitigation potentials of coprophagous insects on CH4 and N2O emission from cattle pasture.

Effect of monensin containing diet on rumen CH4 emission and anaerobic fermen-
tation of manure in steers
In an attempt to seek safe manipulators of CH4 emission, we tried to clarify the effects of galacto-
oligosaccharides (GOS) and L-cysteine vs. monensin on rumen CH4 emission and renewable 
CH4 production from anaerobic fermentation of manures [17,36]. As experimental animals four 
Holstein-Friesian steers (291 ± 11 kg) were fed on high concentrate diet (20% mixed hay and 80% 
concentrates) with or without 200 g GOS, L-cysteine as a hydrochloride (1.156 g kg−1 concentrate) 
or monensin (30 g kg−1 concentrate), and assigned according to 4 × 4 Latin Square Design. Rumen 
CH4 emission were determined using open-circuit ventilated-hood respiratory system for indirect 
calorimetry equipped with infrared CH4 analyzer (VIA-300, Horiba, Japan) [37].

Table 2 shows daily amount of rumen CH4 emitted from experimental steers. Control steers 
without supplements was emitted 98.1 L d−1. CH4 emission in steers fed on monensin diet was 
17.8% lower (p < 0.05) than those fed control diet. For mitigating effect of monensin on enteric 
CH4 emission, it is widely indicated that the inhibition of rumen methanogenesis by monensin is 
not due to a specific toxic action on the methanogenic archaea such as hydrogen peroxide (H2O2) 

Table 1. Cattle manure left on pasture in the world [6]
N Head

(Milion)
N

(Tg year−1)
N

(kg head−1year−1)
N2O

(Gg year−1)
N2O

(g head−1year−1)
N2O

(g head−1day−1)
Dairy cattle

Stock 274

Manure N left on pasture 8.59 31.38

Manure N left on pasture that leaches 2.58 9.41

Manure N left on pasture that volatilises 1.72 6.28

Emmision of N2O1) 327.4 1,195.6 3.3

Direct emmision of N2O 270.0 986.1 2.7

Indirect emmision of N2O 57.4 209.5 0.6

N2O leaches2) 30.4 110.9 0.3

N2O volatilises3) 27.0 98.6 0.3

Non-dairy cattle

Stock 1,201

Manure left on pasture 35.89 29.88

Manure left on pasture that leaches 10.77 39.22

Manure left on pasture that volatilises 7.18 26.21

Emmision of N2O1) 1,367.6 1,138.6 3.1

Direct emmision of N2O 1,127.9 939.1 2.9

Indirect emmision of N2O 239.7 199.6 0.5

N2O leaches2) 126.9 105.6 0.3

N2O volatilises3) 112.7 93.8 0.3
1)N2O from manure left on pasture.
2)N2O that leahes from manure left on pasture.
3)N2O that volatilises from manure left on pasture.
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produced by Lactobacillus plantarum TUA1490l [38]. Rather, the indirect actions were more likely 
the population change related to the decrease in ciliate protozoa and shortage of available hydrogen 
from formate or acrylate pathway in the rumen [39–41], Recent studies have suggested that rumen 
microbiome will adapt to monensin over time [42], though Gram-positive bacteria are reduced via 
disruption of the ion-flux mechanism in the short-term [43,44]. Consequently, the mitigating effect 
of dietary monensin on CH4 emission will be disappeared by long-term feeding.

Even in steers fed on GOS diet, CH4 emission was also exhibited 7.4% lower (p < 0.05) than 
those fed also control diet. Consequently, energy retention (% gross energy intake) in steers fed on 
monensin diet tended to be 9.5% higher compared to those fed control diet. This remedial effect 
of monensin on feed efficiency in energy metabolism has been a principal driving force behind 
spread over the world ruminant production as an ionophore supplement, although the incidence of 
resistant bacteria is being currently at issue.

Table 3 shows quantitative evaluation of anaerobic CH4 production from manure collected 
from steers fed on high concentrate diet with or without GOS, L-cysteine or monensin. For 
the anaerobic fermentation, thermophilic (55℃) batch digesters (1 L capacity) filled with 300 g 
inoculums (9.3 g volatile solid [VS]) and 300 g sample (30 g total solids) were used. The digesters 
operated for 50 days. For desulfurization iron oxide was used to capture hydrogen sulfide from 
biogas. Total volume of gas production was measured using wet gas meter. CH4 concentration was 
analyzed by gas chromatograph (GC-8A, Shimadzu, Kyoto, Japan).

Manure composition from steers fed monensin-containing diets had higher (p < 0.01) volatile 
solids and neutral detergent fiber and also higher (p < 0.05) hemicellulose contents than that from 
steers fed on control diets. Progressive CH4 production (L g−1 VS fed [VSf]) in batch digesters 
fed with manure from steers fed monensin-containing diets delayed in initiating CH4 production. 
On day 10 of anaerobic fermentation, monensin-containing digesters produced lower (p < 0.001) 
methane compared to other digesters. Until d 30 the difference between monensin containing 
digesters and other treatments was significant (p < 0.05), though the difference was gradually 
narrowing with time of fermentation. The deactivation with degradation of ionophore antibiotics 
is regarded to be affected by temperature and retention time of anaerobic fermentation. In a global 

Table 2. Rumen CH4 emission in steers fed high concentrate diets (80% DM basis) with or without GOS, 
L-cysteine or monensin

Control GOS L-Cysteine Monensin SEM p-value
CH4 (L d−1) 98.1a 90.8bc 95.9ab 80.6c 3.37 0.003

a–cMeans within a row with different superscripts differ (p < 0.05).
DM, dry matter; GOS, galacto-oligosaccharides.

Table 3. Progressive CH4 yield (L g−1 volatile solids fed) in batch digesters fed manure from steers supplemented with or without (control) GOS, 
L-cysteine or monensin

Day
Treatment

Control GOS L-cysteine Monensin SEM p-value
10 0.187a 0.207a 0.214a 0.061b 0.016 0.001

20 0.230a 0.251a 0.259a 0.091b 0.023 0.010

30 0.252a 0.274a 0.281a 0.145b 0.029 0.034

40 0.266 0.287 0.294 0.174 0.037 0.156

50 0.275 0.295 0.302 0.185 0.039 0.197
a,bMeans within a row with different superscripts differ by the corresponding p-value.
GOS, galacto-oligosaccharides.
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trend mesophilic and thermophilic biogas systems have become widespread. Impact of hyper-
thermophilic fermentation around 60℃ for cattle manure to possible degradation of polyether-
based ionophores has room for further investigation.

Global impact of coprophagous insects on CH4 and N2O emission from dung pads 
of dairy cattle
Freshly passed dang pats were collected on the day of the experiment on the pasture where milking 
cows were grazing on the temperate mixed pasture. Two species coprophagous insects, i. e. adults 
of dung beetles Caccobius jessoensis Harold and fly larvae of Neomyia cornicina (Fabricius), were 
examined in in vitro gas metabolism trials. Both species were commonly found in the temperate 
pasture land and are relatively abundant species. They were collected in the same pasture. Dung 
beetles were collected from cattle dung pats a day before the experiment. For fly larvae and fly eggs 
were collected a day before the experiment, and newly hatched first instar larvae were designated as 
test samples. Fig. 1 shows schematic illustration of vented glass chamber used for this experiment 
which is connected to in vitro continuous gas quantification system and experimental coprophagous 
insects. Since this experiment examined living insects, fresh air was continuously provided to the 
vented glass containers at 0.5mL min−1 by air cylinder. As experimental materials, 1 kg of black 
soil, 1 kg of dung, and the insects were introduced in sequence. Five hundred fly larvae and 30 
adult dung beetles (10 males and 20 females) were introduced. Insect density was determined by 
considering the volume of the container and amount of dung.

Fig. 2 shows in vitro continuous gas quantification system (Takasugi MFG, Tokyo, Japan) 
[41] installed infrared CO2 analyzer and infrared CH4 analyzer [38, 45] for seven straight days 
by operating the three containers simultaneously. This gas flows through the individual insectary 
containers separately, and data from each container would not be scrambled. In parallel with the 
measurement with in vitro continuous gas quantification system, exhaust gases from system were 
quantitatively collected in the Tedlar bag every 12 or 24 hours to determine N2O concentration. 
The N2O concentration in the Tedlar bag was analyzed by ECD gas chromatograph (Shimadzu 

Fig. 1. Vented glass chamber connected to in vitro continuous gas quantification system and 
experimental coprophagous insects.
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GC-1024, Kyoto, Japan) equipped with an attachment of direct inlet device system.
Table 4 shows effect of coprophagous insects on cumulative flux of GHG from dung in 

chambers for 7 days. The cumulative CH4 emission from dung was decreased by the feeding 
behavior of coprophagous insects. Each reduction rate of cumulative CH4 emission is 42.2% in 
dung beetles or 77.8% in fly larvae compared to dung without coprophagous insects. Meanwhile, 
the cumulative N2O emission rate increased 23.4% in dung beetles even though it reduced 88.6% 
in fly larvae compared to dung without coprophagous insects. Dung N content collected from 
dairy pasture was analyzed at 2.14% in dry matter (DM) basis and total yearly fecal N was 8.59 
Tg in dairy cattle and 35.89 Tg in non-dairy cattle (Table 1). Hence, approximate yearly total fecal 
DM can be figured out at 401.40 Tg in dairy cattle and 1,677.10 Tg in non-dairy cattle, though 
that is only guide due to the different feeding condition. According to FAOSTAT (Table1) total 
N2O emission from dung left on pasture was 327.4 gigagram (Gg) in dairy cattle and 1.27 Tg in 
non-dairy cattle. Thus, total potential contribution of fly larvae to mitigate N2O can be roughly 
estimated yearly at 290.08 Gg from dairy pasture and 1.12 Tg from non-dairy pasture, For CH4 

emitted from cattle dung left on pasture, statistical evidences have not been reported as references, 
and therefore total CH4 emission has been estimated from dung CH4 without insects in the present 
study (Table 4) and fecal DM calculated using FAOSTAT (Table 1). In this calculation, average 

Fig. 2. In vitro continuous gas quantification system installed infrared CO2 analyzer and infrared CH4 
analyzer [41].

Table 4. Effect of coprophagous insects on cumulative emission of CH3 and N2O from cow dung for 7 
days

Treatment
Cumulative flux (mL)1) mgCO2eq2)

CH4 △% N2O △% CH4 N2O

Dung beetles 2.324 42.3 0.116 23.4 41.5 67.6

Fly larvae 0.893 77.8 0.011 88.3 15.9 6.3

No insects 4.025 – 0.094 – 71.9 54.8
1)Cumulative flux of greenhouse gas (GHG) emitted from dung for 7 days.
2)�Calculated with global warming potential(GWP) values (CH4: 25, N2O: 298) relative to CO2 adapted from IPCC Fifth Assess-
ment 2014 (AR5). GHG, greenhouse gas.
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moisture content of fresh dung in grazing cattle was presumed at 80%. Thus, total CH4 emission 
from dung without insects left on pasture was 300.9 Gg in dairy cattle and 1.26 Tg in non-dairy 
cattle. With respect to the contribution of coprophagous insects to CH4 emission from dung left on 
pasture, the potential mitigating ability of dung beetles can be estimated yearly at 126.98 Gg from 
dairy pasture and 531.72 Gg from non-dairy pasture. In the case of fly larvae dung CH4 emission 
presumed to be mitigated by 234.10 Gg in dairy cattle and 980.28 Gg in non-dairy cattle.

CONCLUSION
It might be difficult to apply statistics of FAOSTAT to results form in vitro study, because the 
global distribution of the coprophagous insects in the different climatic zone must be considered 
based on more detailed investigation. However, it is worth to imagine the impact of roles of 
coprophagous insects in land ecosystem to mitigate CH4 and N2O emitted from cattle dung left 
on pastures. Effects of ionophore antibiotics residues as feed additives on land ecosystem such as 
coprophagous insects involved in GHG mitigation remain to be elucidated.
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