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Abstract
This study sought to evaluate DNA damage and repair in porcine postovulatory aged oo-
cytes. The DNA damage response, which was assessed by H2A.X expression, increased in 
porcine aged oocytes over time. However, the aged oocytes exhibited a significant decrease 
in the expression of RAD51, which reflects the DNA damage repair capacity. Further experi-
ments suggested that the DNA repair ability was suppressed by the downregulation of genes 
involved in the homologous recombination (HR) and nonhomologous end-joining (NHEJ) 
pathways. The expression levels of the cell cycle checkpoint genes, CHEK1 and CHEK2, 
were upregulated in porcine aged oocytes in response to induced DNA damage. Immunoflu-
orescence results revealed that the expression level of H3K79me2 was significantly lower in 
porcine aged oocytes than in control oocytes. In addition, embryo quality was significantly re-
duced in aged oocytes, as assessed by measuring the cell proliferation capacity. Our results 
provide evidence that DNA damage is increased and the DNA repair ability is suppressed in 
porcine aged oocytes. These findings increase our understanding of the events that occur 
during postovulatory oocyte aging.
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INTRODUCTION
Oocyte aging is associated with a range of morphological, cellular and molecular changes that lead to 
deterioration during the aging period and negatively influence oocyte quality and subsequent embryo 
development in mouse [1–5], human [6,7], pig [8] and bovine [9]. Extensive studies have shown 
the following: The morphological changes in aged oocytes include zona pellucida hardening [10], 
perivitelline space enlargement [11], polar body degeneration or drifting [11] and spontaneous oocyte 
activation [12]. The cellular changes in aged oocytes include partial cortical granule exocytosis [13], 
microfilament loss [14], spindle mispairing [15] and chromosomal aneuploidy [16]. The molecular 
changes in aged oocytes include mitochondrial dysfunction [17,18], activity decreases of mitogen-
activated protein kinase and maturation promoting factor [19], increases in reactive oxygen species 
[20], enhancement of apoptosis [21], alteration of DNA methylation [22] and histone modifications 
[23]. Together, these studies provide very important references for understanding the events that occur 
during oocyte aging in many species.

DNA damage includes DNA single-strand breaks (SSBs) and double-strand breaks (DSBs). The 
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latter are generally recognized as the most important form of DNA damage [24], and should 
activate DNA repair and DNA damage checkpoint mechanisms [25]. DNA damage checkpoint 
mechanisms arrest cell division until all DNA damage is repaired [26]. However, if the damage 
cannot be repaired by the DNA repair mechanisms, the cell can proceed to various outcomes, 
including mutagenesis, cell senescence and apoptosis [27]. There are two main pathways responsible 
for DSB repair: homologous recombination (HR) and nonhomologous end-joining (NHEJ). In 
response to DNA damage, the ATM (ataxia telangiectasia mutated) and ATR (ataxia telangiectasia 
and rad3 related) proteins are responsible for phosphorylating histone H2A.X (H2A.X139ph) at 
the sites of the DNA DSBs [28,29]. The phosphorylation of histone H2A.X is closely linked to 
DNA DSBs repair, because the phosphorylated histone serves as a platform for the accumulation 
of DNA repair proteins involved in the HR (RAD51, MRE11A, BRCA1) or NHEJ (PRKDC, 
XRCC4, DNA ligase IV, 53BP1) pathways, which can colocalize with H2A.X at the sites of DNA 
DSBs [30,31]. 

Recently, a growing body of scientific evidence has suggested that aging is linked to the DNA 
damage response and DNA damage repair ability. For instance, increased DNA damage and 
reduced DNA damage repair in rhesus monkey granulosa cells [32] and human oocytes [33] has 
been associated with ovarian aging. Compared with the existing knowledge regarding somatic cells 
or oocytes derived from aged ovaries (reproductive or maternal aging), however, relatively little is 
known about the DNA damage and repair responses in postovulatory aged oocytes (postovulatory 
aging). A recent study that used H2A.X staining to investigate DNA damage in mice postovulatory 
aged oocytes found that the DNA damage level was significantly increased in mice aged oocytes 
[34]. However, the underlying molecular mechanisms have not been fully elucidated.

Here, we used the porcine oocyte as a model to investigate the involvement of DNA damage 
and repair in the function of postovulatory aging oocytes. To this end, we evaluated: 1) the levels of 
H2A.X and RAD51 proteins, which reflect the damage response and repair capacity, respectively; 
2) the mRNA expression levels of genes involved in the HR (ATR, ATM, MRE11A, RAD51 and 
RAD52) and NHEJ (XRCC4, XRCC5, XRCC6, PRKDC and LIG4) pathways of DNA repair; 3) 
the mRNA abundance of genes involved in cell cycle control (CHK1 and CHK2); 4) the level of 
H3K79me2 in aged oocytes; and 5) the embryonic developmental capacity of porcine aged oocytes.

MATERIALS AND METHODS
Chemicals/reagents and animal ethics statement
All utilized chemicals and reagents were obtained from Sigma (St. Louis, MO, USA) unless 
otherwise stated. All animal experiments were approved by the Institutional Animal Care and Use 
Committee (IACUC) of Chung Nam National University, Korea (202003A-CNU-002). 

Oocyte collection
Porcine ovaries were obtained from a local abattoir and transported to the laboratory in 
physiological saline at 35℃ within 2 h of collection. Follicular contents were aspirated from antral 
follicles (3 to 6 mm in diameter) visible on the ovarian surface using an 18-gauge needle attached 
to a 10-ml disposable syringe. Cumulus oocyte complexes (COCs) were collected and washed two 
or three times in phosphate-buffered saline (PBS) (Gibco, USA) containing 0.1% polyvinyl alcohol 
(PVA). Only oocytes with a uniform ooplasm and compact cumulus cell mass were used for in vitro 
maturation. 
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In vitro maturation (IVM) and in vitro aging (IVA) of porcine oocytes
For IVM, the COCs were washed three times and groups of about 50~60 COCs were matured 
in 500 μL maturation medium (tissue culture medium [TCM] 199 containing 10% porcine 
follicular fluid, 3.5 mM D-glucose, 0.57 mM L-cysteine, 0.91 mM sodium pyruvate, 75 μg/mL 
penicillin, 50 μg/mL streptomycin, 10 ng/mL epidermal growth factor, 10 IU/mL pregnant mare 
serum gonadotropin, 10 IU/mL human chorionic gonadotropin) in each well of a four-well multi 
dish in saturated-humidity air containing 5% CO2 at 38.5℃ for 44 h. For IVA, oocyte aging was 
performed as described previously [35]. In brief, the matured porcine oocytes were cultured in 
the same medium and condition for an extended period of 24 h (IVA 24 h) or 48 h (IVA 48 h) 
to mimic postovulatory oocyte aging. After oocyte IVM or IVA, we removed cumulus cells from 
COCs by pipetting or vortexing them in 0.1% hyaluronidase solution. Survival of oocytes was 
investigated under a stereomicroscope based on oocyte morphology. Only oocytes with integrated 
oolemma and zona pellucida and a polar body were used for experiments, whereas those with lysis 
of the oolemma or damage to the zona pellucida or cytoplasmic fragmentation were considered to 
discard. 

Embryo production by parthenogenetic activation (PA)
For PA, the oocytes were subjected to electrical activation. Cumulus cell-free oocytes were washed 
three times and then equilibrated in an activation solution containing 0.3 M D-mannitol, 0.1 
mM MgSO4, 0.05 mM CaCl2 and 0.01% PVA. The oocytes were placed between the platinum 
electrodes in activation solution, and activation was induced with two direct current pulses of 1.1 
kV/cm for 30 μs, using an Electro Cell Manipulator 2001 (BTX, San Diego, CA, USA). After 
electric stimulation, the oocytes were cultured in porcine zygote medium-3 containing 3 mg/mL 
bovine serum albumin (BSA) and 7.5 μg/mL cytochalasin B (CB) for 5 h (to inhibit extrusion of 
the second polar body) at 38.5℃ in a humid 5% CO2 atmosphere. After 5 h incubation with CB, 
the embryos were transferred to CB-free culture medium for further culture.

General immunofluorescence staining
Immunofluorescence staining was performed as described previously [36]. Briefly, oocytes were 
washed in PBS-PVA and then fixed in 4% paraformaldehyde for 30 min. After being permeabilized 
with 0.5% (v/v) Triton X 100 in PBS-PVA for 30 min, they were blocked with 3% BSA for 1 
h. Samples were washed in PBS containing 0.5% BSA and 0.1% gelatin (PBG), and incubated 
overnight at 4℃ with primary antibodies. The samples were washed in PBG and then reacted with 
secondary antibodies in the dark for 1 h. After being washed with PBG, the samples were mounted 
on glass slides using VECTASHIELD mounting medium with 4’,6-diamidino-2-phenylindole 
(DAPI) (Vector Laboratories, Burlingame, CA, USA) and viewed under a Zeiss laser-scanning 
confocal microscope (LSM5 Live, Carl Zeiss, Oberkochen, Baden-Württemberg, Germany). 
Negative control embryos were processed as described above, except that no primary antibody was 
added. The utilized primary antibodies recognized H2A.X (Merck KGaA, Darmstadt, Germany), 
RAD51 (Santa Cruz Biotechnology,  Dallas, TX, USA), H3K79me2 (Abcam, Cambridge, 
UK), and H3 (Active Motif, Carlsbad, CA, USA). The utilized secondary antibodies were goat 
anti-mouse IgG-R (Santa Cruz Biotechnology), goat anti-mouse IgG-FITC (Santa Cruz 
Biotechnology), or donkey anti-rabbit FITC (Abcam).

5-ethynyl-2’-deoxyuridine (EdU) labeling
EdU staining was performed using a Click-iT EdU Imaging kit (Invitrogen, Eugene, OR, USA). 
The provided manufacturer’s instructions are normally intended for use in cell culture, but the 
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protocol was adapted for porcine embryos as follows. Briefly, porcine blastocysts were collected 
and incubated in EdU (10 μM) solution for 3 h, and then fixed in 4% paraformaldehyde for 15 
min. After being washed with 3% BSA, samples were permeabilized with 0.5% Triton X-100 for 
20 min. The samples were again washed with 3% BSA and then reacted with a Click-iT reaction 
cocktail containing Click-iT reaction buffer, CuSO4, reaction buffer additive and Alexa Fluor 488 
azide for 30 min in the dark. After EdU detection, the samples were washed and mounted on glass 
slides using VECTASHIELD mounting medium containing DAPI. Images were captured using a 
Zeiss laser-scanning confocal microscope.

RNA isolation and real-time quantitative polymerase chain reaction (PCR)
Total RNA was extracted from each sample (200 oocytes) using an RNeasy Mini Kit (Qiagen, 
Valencia, CA, USA) and an RNase-Free DNase Set (Qiagen) in accordance with the manufacturer’s 
instructions. cDNA was synthesized from the isolated total RNA using a TOPscript™ RT 
DryMIX kit (Enzynomics, Daejeon, Korea). Quantitative real-time PCR was performed using 
a TOPreal™ qPCR 2X PreMIX (SYBR Green with low ROX) kit (Enzynomics) on a CFX96 
Touch Real-Time PCR Detection System (Bio-Rad, St. Ingbert, Germany). PCR controls run 
with no template were performed for each primer pair. Finally, the relative mRNA expression levels 
of each gene were analyzed using the 2-△△Ct method [37]. The primer sequences used for real-time 
PCR are presented in Table 1. 

Table 1. The information and primer sequence of genes used in this study
Gene Primer sequence (5’→3’) Annealing temp (℃) Accession number

MRE11A F: GGAGGATGTTGTCCTGGCTG
R: AGACGTTCCCGTTCTGCATT

55 XM_003129789.2

PRKDC F: ATTCTTTGTCGGGAGCAGCA
R: CCTAGCTGTGTGGCACATGA

55 XM_001925309.4

RAD51 F: CTTCGGTGGAAGAGGAGAGC
R: CGGTGTGGAATCCAGCTTCT

55 NM_001123181.1

RAD52 F: ATTCAGCAAGGGATGCCCAC
R: TAGGGCAAGGGCGTTTTCTT

55 XM_003358103.2

ATM F: CCGGTGTTTTGGGAGAGTGT
R: CTTCCGACCAAACTCAGCGT

55 NM_001123080.1

ATR F: TGAGCTCCAGTGTTGGCATC
R: GCCAGTTCTCAGTGTGGTCA

55 XM_003132459.3

XRCC4 F: ATGGCTTCACAGGAGCTTCA
R: ATGTTTTCAGCTGGGCTGTG

55 XM_003123760.2

XRCC5 F: CTGGCATCTCGCTGCAATTC
R: GAAAGGAGGGTCCATGGTGG

55 XM_003133649.2

XRCC6 F: ACGGAAGGTGCCCTTTACTG
R: TGCAGCACTGGGTTCTCAAA

55 NM_001190185.1

LIG4 F: AGCTAGACGGCGAACGTATG
R: CCTTCCTGTGGGGAAACTCC

55 XM_003131089.2

CHEK1 F: TGCCCTTTGTGGAAGACTGG 
R: ACTGCAACTGCTTCCTCAGT

55 XM_003130047.2

CHEK2 F: GCCTGTGGTGAGGTGAAACT
R: TGCTGGATCTGCCTCTCTCT

55 NM_001137638.1

ACTB F: GTGGACATCAGGAAGGACCTCTA
R: ATGATCTTGATCTTCATGGTGCT

55 U_07786

GAPDH F: GCCATCACCATCTTCCAGG
R: TCACGCCCATCACAAACAT

55 NM_001206359.1

F, forward; R, reverse. 
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Experimental design
Experiment 1. Examining DNA damage and repair in porcine aged oocytes 
DNA damage was detected by detecting DNA double strands breaks using an antibody against 
H2A.X. Four independent experiments were performed, and total 40 (Control), 42 (IVA 24 h), 46 
(IVA 48 h) oocytes were analyzed. DNA repair was evaluated using an antibody against RAD51. 
Three independent experiments were performed, and total 30 (Control), 30 (IVA 24 h), 30 (IVA 48 
h) oocytes were analyzed in this set of experiment. Fluorescence intensities were analyzed, and the 
background value was subtracted using the ImageJ software.

Experiment 2. Examining transcript levels for DNA repair and cell cycle check-
point-related genes in porcine aged oocytes
Expression levels of genes involved in the HR (ATR, ATM, MRE11A, RAD51 and RAD52) and 
NHEJ (XRCC4, XRCC5, XRCC6, PRKDC and LIG4) pathways for DNA damage repair and cell 
cycle checkpoint (CHEK1 and CHEK2) in porcine aged oocytes were investigated using real-time 
quantitative PCR. Three independent experiments were performed in this set of experiment. Each 
experimental group contains about 200 oocytes were used for total RNA extraction. 

Experiment 3. Examining expression levels of H3K79me2 and H3 in porcine aged oocytes
The expression of H3K79me2 was detected using antibody against H3K79me2. Four independent 
experiments were performed, and total 48 (Control), 52 (IVA 24 h), 52 (IVA 48 h) oocytes were 
analyzed. The expression of H3 was detected using antibody against H3. Three independent 
experiments and total 30 (Control), 30 (IVA 24 h), 30 (IVA 48 h) oocytes were analyzed. 
Immunofluorescence intensities were analyzed, and the background value was subtracted using the 
ImageJ software. 

Experiment 4. Examining development of porcine aged oocytes after PA
Developmental capacity and cell proliferation potential were investigated using morphology and 
EdU staining. Blastocyst morphology pictures were captured under a stereomicroscope with an 
ocular scale at day 7 of culture, and diameter of blastocyst was measured using the ImageJ software. 
At least three independent experiments were performed for each study. Total 189 (Control), 180 
(IVA 24 h), 193 (IVA 48 h) oocytes were analyzed for embryo development. Total 64 (Control), 
45 (IVA 24 h) blastocysts were analyzed for blastocyst diameter. Total 20 (Control), 15 (IVA 24 
h) blastocysts were analyzed for cell proliferation potential in blastocyst. Because IVA 48 h group 
failed to develop to blastocyst stage, the analyses presented in both diameter and cell proliferation 
potential of blastocyst were not performed for the IVA 48 h group. 

Statistical analysis
Statistical analyses were conducted using SPSS 17.0 (SPSS, Chicago, IL, USA). At least three 
replicates were performed for each experiment. Percentage data were subjected to arcsine 
transformation prior to analysis. All experimental data were compared by one-way ANOVA 
followed by Fisher’s protected least significant difference test or Student’s t-test. The data are 
expressed as the mean ± sem. p < 0.05 was considered significantly different. 

RESULTS 
Increased DNA damage and decreased DNA repair in porcine aged oocytes 
We first assessed the DNA damage response protein, H2A.X139ph, to evaluate the DNA DSB 
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response in porcine aged oocytes. The fluorescence signals of H2A.X139ph (green) could be 
detected in all porcine oocytes (Fig. 1A); however, a higher level of DNA damage response was 
observed in porcine aged oocytes (IVA 24 h and IVA 48 h) than in control oocytes (Fig. 1B). 
To examine the activity of the DNA damage repair response during the oocyte aging period, we 
immunostained for RAD51 in porcine aged oocytes. The fluorescence signals of RAD51 (red) 
could be detected in porcine oocytes (Fig. 1C), and the relative intensities of fluorescence signals 
were significantly lower in aged oocytes than in controls (Fig. 1D). 

Transcript levels for DNA repair-related genes in porcine aged oocytes
To test whether the increased DNA damage in aged oocytes could be related to a deficiency of 
DNA damage repair, we measured the mRNA abundances of genes involved in the HR (ATR, 
ATM, MRE11A, RAD51 and RAD52) and NHEJ (XRCC4, XRCC5, PRKDC, LIG4 and XRCC6) 
pathways of DNA damage repair in porcine aged oocytes. The levels of various genes involved 
in the HR repair pathway were found to be significantly decreased in the IVA 24 h group (ATR, 

Fig. 1. DNA damage and repair in porcine aged oocytes. (A) DNA damage was evaluated by detecting DNA 
double strands breaks using an antibody against H2A.X (green), and DNA was stained with DAPI (red). (B) 
Quantitative analysis of levels of DNA damage (H2A.X fluorescence intensity) in the nuclei of oocytes (including 
polar bodies). (C) DNA damage repair was detected using an antibody against RAD51 (red) and DNA was 
stained with DAPI (blue). (D) Quantitative analysis of DNA damage repair (RAD51 fluorescence intensity) 
in the nuclei of oocytes (including polar bodies). The numbers of embryos tested in each group are shown 
as bars. a–cDifferent letters above the bars indicate statistically significant differences (p < 0.05). Scale bars 
represent 50 μm in A and C. IVA, in vitro aging; DAPI, 4’,6-diamidino-2-phenylindole.
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MRE11A and RAD52) and/or IVA 48 h group (ATR, ATM, MRE11A, RAD51 and RAD52) 
when compared to controls (Fig. 2A). The expression levels of various genes involved in the NHEJ 
pathway were also significant lower in the IVA 24 h group (XRCC4, PRKDC and LIG4) or IVA 48 
h group (XRCC4, XRCC5, PRKDC and LIG4) than in controls (Fig. 2B). However, there was no 
difference in the level of the XRCC6 gene between the control and aged oocyte groups (Fig. 2B).

Transcript levels of cell cycle checkpoint-related genes in porcine aged oocytes
The transcript levels of the cell cycle checkpoint genes CHEK1 and CHEK2 were also estimated 
in porcine aged oocytes (Fig. 3). The mRNA level of CHEK1 was significantly higher in aged 
oocytes (both IVA 24 and 48 h) than in controls (Fig. 3A). The expression level of CHEK2 did 
not significantly differ between the IVA 24 h group and the control group, but it was significantly 
increased in the IVA 48 h group compared to the control group (Fig. 3B).

The expression levels of H3K79me2 and H3 in porcine aged oocytes
The expression levels of H3K79me2 and H3 were examined in porcine aged oocytes, as shown 
in Fig. 4. Immunofluorescence revealed that the expression level of H3K79me2 was significantly 
decreased in porcine aged oocytes (IVA 24 h and IVA 48 h) when compared to controls (Figs. 4A 
and B). In contrast, H3 exhibited similar expression levels in the control, IVA 24 h and IVA 48 h 
groups (Figs. 4C and D). 

Fig. 2. Transcript levels for DNA repair-related genes in porcine aged oocytes. (A) Expression levels of 
genes involved in the HR pathway for DNA damage repair in porcine aged oocytes. (B) Expression levels of 
genes involved in the NHEJ pathway for DNA damage repair in porcine aged oocytes. a–cDifferent letters above 
the bars indicate statistically significant differences (p < 0.05). HR, homologous recombination; ATR, ataxia 
telangiectasia and rad3 related; ATM, ataxia telangiectasia mutated; IVA, in vitro aging; NHEJ, nonhomologous 
end-joining. 
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Fig. 3. Transcript levels of cell cycle checkpoint-related genes in porcine aged oocytes. (A) Expression 
level of CHEK1 in porcine aged oocytes. (B) Expression level of CHEK2 in porcine aged oocytes. a,bDifferent 
letters above the bars indicate statistically significant differences (p < 0.05). IVA, in vitro aging.

Fig. 4. The expression levels of H3K79me2 and H3 in porcine aged oocytes. (A) Images of oocytes 
immunostained for H3K79me2 (green). DNA was stained with DAPI (red). (B) Quantitative analysis of 
H3K79me2 in the nuclei of oocytes (including polar bodies). (C) Images of oocytes immunostained for H3 
(red). DNA was stained with DAPI (blue). (D) Quantitative analysis of H3 in the nuclei of oocytes (including 
polar bodies). The numbers of samples tested in each group are shown as bars. a–cDifferent letters above the 
bars indicate statistically significant differences (p < 0.05). Scale bars represent 100 μm in A and C. IVA, in vitro 
aging; DAPI, 4’,6-diamidino-2-phenylindole.
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Poor development of porcine aged oocytes
The embryo development capacity was significantly reduced in the aged oocyte groups compared 
to controls (Fig. 5). Embryos derived from the IVA 24 h group could develop to the blastocyst 
stage, but the rate of blastocyst formation was significantly lower than in the control group (Figs. 
5A and B). Blastocysts derived from the IVA 24 h group also had smaller diameters than those 
derived from control oocytes (Fig. 5C). In contrast, no blastocyst formation was observed among 
the IVA 48 h group, and more than half of the derived embryos arrested at the 2-cell stage by day 
7 of culture (Figs. 5A and B). EdU staining showed that the total cell number (TC), the EdU-
positive (S-phase) cell number and the ratio of EdU-positive cells to TC were significantly lower in 
blastocysts derived from the IVA 24 h group compared to the control values (Figs. 5D and E). 

DISCUSSION 
Oocyte aging is known to negatively influence oocyte quality, embryonic development and 
reproductive outcomes. However, the underlying molecular mechanisms have not been fully 
elucidated. In the present study, we investigated whether the DNA damage response and DNA 
damage repair ability are closely linked to oocyte aging. Our results showed that postovulatory 
oocyte aging increased the DNA damage response and suppressed the DNA damage repair 

Fig. 5. Developmental capacity of porcine aged oocytes. (A) Images of embryos derived from the control, IVA 24 h and IVA 48 h groups. (B) Developmental 
potential of porcine embryos. Because IVA 48 h group failed to develop to blastocyst stage, the analyses presented in panel C, D and E were not performed 
for the IVA 48 h group. (C) Diameter of blastocysts. (D) EdU staining of porcine blastocysts. The green fluorescence shows EdU-positive cells and red 
fluorescence shows all nuclei of blastocysts. (E) TC, EdU-positive cell number and the ratio of the EdU-positive cell number to the TC. The numbers of 
embryos tested in each group are shown as bars. a–dDifferent letters  above the bars indicate statistically significant differences (p < 0.05). Scale bars represent 
500 μm in A and 100 μm in D. IVA, in vitro aging; PA, parthenogenetic activation; TC, total cell number; EdU, 5-ethynyl-2’-deoxyuridine.



https://doi.org/10.5187/jast.2021.e90 https://www.ejast.org  |  993

Lin et al.

capacity in porcine oocytes. The development of therapies that target these signaling pathways 
might help prevent or delay oocyte aging.

Previous reports suggested that an increased DNA damage response and reduced DNA repair 
capacity in rhesus monkey granulosa cells [32] or mouse and human oocytes [33] may contribute 
to ovarian aging. In mouse aged oocytes derived from an in vitro aging model, researchers observed 
a considerable increase in the level of DNA damage in comparison with control oocytes [34]. 
However, the previous studies had notable limitations, such as the use of oocytes or cells from aged 
ovaries or the use of H2A.X staining alone to evaluate the DNA damage response. Here, in a pig 
in vitro oocyte aging model, we first assessed the DNA damage response marker, H2A.X, and the 
repair protein, RAD51, in porcine aged oocytes. The presence of phosphorylated histone H2A.X 
(H2A.X 139ph) foci has been widely used to estimate the occurrence of DNA damage in somatic 
cells [38,39], oocytes [40] and embryos [25,31]. RAD51, a recA homolog that binds the single-
strand DNA generated by the Mre11-Rad50-NBS1 complex, is a key factor for DNA damage 
repair [41]. In the present study, porcine oocytes showed an appreciable H2A.X signal (consistent 
with an active DNA damage response) that increased in intensity as the oocytes aged, indicating 
that the incidence of DNA damage in porcine oocytes increased with the aging time. Conversely, 
the protein expression of RAD51, which reflects the damage repair ability, decreased in aged 
oocytes over time. Our results suggest that oocyte aging increases DNA damage and suppresses the 
DNA damage repair ability in pig.

To further evaluate the influence of oocyte aging on the DNA damage repair ability, we 
investigated the mRNA expression levels of genes involved in the NHEJ (XRCC4, XRCC5, 
XRCC6, PRKDC and LIG4) and HR (ATR, ATM, MRE11A, RAD51 and RAD52) pathways 
in porcine aged oocytes. Our results showed that the relative mRNAs abundance of the genes 
(except XRCC6) involved in the two repair pathways decreased over time in porcine aged oocytes, 
suggesting that these two DNA damage repair pathways are suppressed in this model. However, 
there was no difference in the level of the XRCC6 gene between control and aged oocytes, and it is 
speculated that porcine oocyte aging in vitro suppresses DNA damage repair ability probably not by 
XRCC6 gene product. Consistent with our results, previous studies that examined the relationship 
between DNA damage repair and ovarian aging in human oocytes [24] and rat primordial follicles 
[42] found that the expression levels of some important DNA repair genes (e.g., BRCA1, RAD51 
and MRE11) declined with age. Together, the previous and present results suggest that it may 
be difficult for the DNA damage repair mechanisms to repair aging-induced DNA damage. 
Supplementation of antiaging chemicals Coenzyme Q10 and melatonin could reduce DNA 
damage in mice [34] and bovine [9] aged oocytes by detecting DNA double strands breaks using 
an antibody against H2A.X had been already reported. However, there is little evidence that adding 
antiaging chemicals improves DNA damage repair ability. Future work is needed to examine 
whether the DNA repair ability could be improved by using antiaging treatment in oocytes. 

Cell cycle checkpoint kinase 1 (Chk1) and 2 (Chk2) are well known to be activated by the 
ATM and ATR kinases in response to DNA damage; this leads to cell cycle arrest, which allows 
the cell sufficient time to repair the damaged DNA before it undergoes replication and segregation 
in cleaving cells [25,43,44]. Once the DNA damage repair is complete, the cell cycle checkpoint 
proteins are inactivated and the cell cycle resumes. In the current study, we found that the mRNA 
expression levels of CHEK1 and CHEK2, which encode Chk1 and Chk2, respectively, were 
increased along with the DNA damage response in porcine aged oocytes compared to controls. 
This is in line with previous observations that CHEK1 and CHEK2 are activated in mouse [45] 
and pig [25] embryos that have increased levels of DNA damage. The CHEK1 and CHEK2 genes 
are usually activated to enable the damaged DNA to be repaired. However, we found that the 
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expression levels of DNA damage repair-related proteins and genes were decreased in aged oocytes. 
We speculate that the long-term arrest of aged oocytes at metaphase II stage may allow DNA 
damage accumulate to a level at which the DNA damage repair ability becomes suppressed. 

Epigenetics has recently emerged as another possible determinant of (and potentially a major 
contributor to) the aging phenotype [46]. Generally, changes in histone methylation are related to 
the activation/repression of gene transcription [47]. H3K79me2, which has been suggested as a 
marker of active genes in mammalian cells [48], and is also thought to be associated with the DNA 
damage repair mechanism [49]. Here, we found that the expression level of H3K79me2 in porcine 
oocytes was obviously decreased during in vitro postovulatory aging. We speculate that this may 
be associated with the observed deficiency in the DNA damage repair mechanism of porcine aged 
oocytes. 

Previous studies found that laser microbeam-induced DNA damage in mouse embryos reduced 
the rates of cleavage and blastocyst formation [45], and the incidence of the DNA damage response 
is higher and developmental capacity is lower in late-cleaving porcine embryos than in their early-
cleaving counterparts [25]. The above studies imply that there is a negative relationship between 
DNA damage and embryo development. In the present study, we found that embryos derived from 
aged oocytes have decreased developmental abilities: the IVA 24 h group showed a decreased ability 
to develop to the blastocyst stage, while the IVA 48 h group failed to develop to the blastocyst 
stage, with more than half of the embryos arresting at the 2 cell stage. Thus, we speculated that the 
presence of DNA damage induced by oocyte aging could be one of the reasons causing embryo 
development impaired. Moreover, consistent with previous reports that the kinetics of cleaving 
[25] and blastocyst formation [50] can influence the total cell number in blastocysts, we found that 
blastocysts derived from aged oocytes possess lower total cell and EdU-positive cell numbers than 
controls. Thus, we suggest that oocyte aging suppresses the cell proliferation capacity in porcine 
blastocysts. 

In conclusion, we herein demonstrate that oocyte aging increased the DNA damage response 
in porcine aged oocytes as indicated by upregulation of H2A.X expression. However, the DNA 
damage repair ability was suppressed in porcine aged oocytes matured in vitro, downregulation 
of the RAD51 protein level and the mRNA expression levels of genes involved in both HR and 
NHEJ pathways. The expression levels of the cell cycle checkpoint genes, CHKE1 and CHKE2, 
were upregulated in porcine aged oocytes in response to induced DNA damage. The H3K79me2 
level decreased in porcine oocytes during in vitro postovulatory aging. In addition, postovulatory 
oocyte aging altered the kinetics of both cleavage and blastocyst formation and suppressed the cell 
proliferation capacity in blastocysts. These results provide useful information to help us understand 
the internal events that govern oocyte aging and thus may be targeted to delay oocyte aging.
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