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Abstract
This study investigated the effects of applying cellulase and starch on the fermentation char-
acteristics and microbial communities of Napier grass silage after ensiling for 30 d. Three 
groups were studied: No additives (control); added cellulase (Group 1); and added cellulase 
and starch (Group 2). The results showed that the addition of cellulase and starch decreased 
the crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF) and pH 
significantly (p < 0.05) and increased water-soluble carbohydrate (WSC) content (p < 0.05). 
The addition of additives in two treated groups exerted a positive effect on the lactic acid (LA) 
content, lactic acid bacteria (LAB) population, and lactic acid / acetic acid (LA/AA) ratio, even 
the changes were not significant (p > 0.05). Calculation of Flieg’s scores indicated that cellu-
lase application increased silage quality to some extent, while the application of cellulase and 
starch together significantly improved fermentation (p < 0.05). Compared with the control, 
both additive groups showed increased microbial diversity after ensiling with an abundance of 
favorable bacteria including Firmicutes and Weissella, and the bacteria including Proteobac-
teria, Bacteroidetes, Acinetobacter increased as well. For alpha diversity analysis, the com-
bined application of cellulase and starch in Group 2 gave significant increases in all indices (p 
< 0.05). The study demonstrated that the application of cellulase and starch can increase the 
quality of Napier grass preserved as silage.
Keywords: Napier grass, Cellulase, Starch, Microbial community, Silage quality

INTRODUCTION
With the rapid development of the livestock industry, demand for feed resources is increasing annually. 
Good quality digestible forage has high nutritional value and is an essential part of the ruminant diet. It 
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can also be conserved to feed livestock during periods of shortage caused by limited pasture growth 
or inadequate conditions. However, efficient forage utilization can be compromised due to its high 
cellulose content, which is not easily degraded by rumen microbes. Thus, methods that improve 
forage utilization may help to alleviate feed resource shortages. Napier grass (Pennisetum purpureum 
Schum.) is a monocot grass that is widely cultivated and utilized in tropical and subtropical regions 
as a potential biofuel and forage crop. It is typically consumed as forage by ruminants as green 
chop, hay and silage; silage and hay are the two most common forms of forage preservation. In 
Southern China, especially Guangdong province, haymaking is restricted by unfavorable climatic 
conditions (high air moisture content, local precipitation, etc.). Consequently, ensiling has been 
widely proved to be an appropriate method for Napier grass preservation post-harvest [1,2]. Napier 
grass has a dry matter (DM) biomass productivity of ~40 ton per hectare per year according to Li 
et al. [3]. However, the short-term consumption of Napier grass by livestock cannot be sustained 
due to its high growth rate and yield. Most tropical and subtropical grasses are difficult to ensile 
because of their low water-soluble carbohydrate (WSC) and high lignocellulosic contents [4]. 
Hence, supplementation with enzymes including cellulase which allows cell wall hydrolysis into 
fermentable substrates during ensiling was shown to be beneficial to lactic acid bacteria (LAB) 
growth by releasing glucose [5]. This enhanced fiber degradation and improved fermentation quality 
by reducing the pH [6]. Furthermore, supplementation with starch could provide an additional 
source of glucose to improve fermentation quality and accelerate the ensiling process.

Recent studies of Napier grass silage have mainly focused on fermentation characteristics arising 
from the use of various conventional additives such as LAB inoculants and cellulase [7,8]. Others 
have studied changes in the microbial communities of different forage species during ensiling 
[9,10]. However, there is little information available in southern China concerning the use of starch 
in silage and its effects on microbial communities, particularly during the ensiling of Napier grass. 
This study may provide a deeper insight into silage fermentation and provide a scientific basis for 
the development methods to regulate the production of high-quality silage from Napier grass. 
Hence the objective of this study was to investigate the effects of added cellulase and starch on the 
fermentation characteristics and microbial communities of Napier grass after ensiling for 30 d. 

MATERIALS AND METHODS
Silage preparation
Napier grass was cultivated in 2020 in an experimental trials field of VTR Bio-Tech (Doumen 
District, Zhuhai, Guangdong, China), located at 22°8ʹ19ʺ N, 113°14ʹ6ʺ E, and an average sea level 
of −7 m. This experimental area was within the subtropical marine climate zone, and the soil type 
was Alfisols (as defined by the United States Department of Agriculture); annual mean temperature 
was 22.3℃; average annual precipitation was 2,061.9 mm; average annual wind speed was 3.0 m/
s; and average annual humidity 78.7%. The grass was harvested at the mature growth stage in April 
prior to chopping into lengths of 1–2 cm. The chemical composition of the raw material before 
ensiling is shown in Table 1. The chopped Napier grass was divided into 3 groups: no additive 
(control); added cellulase (Group 1); and added cellulase and starch (Group 2). Cellulase was 
from Guangdong VTR Bio-Tech and soluble starch (food ingredient grade) was purchased from 
Guangzhou Chemical Reagent Factory (Guangzhou, China). Cellulase and starch were dissolved 
in distilled water as appropriate and applied evenly to the chopped Napier grass by spraying at levels 
of 120 U/g and 2% fresh matter respectively; an equivalent volume of distilled water was applied to 
the control group. After mixing thoroughly, three silos were prepared for each group and each group 
was ensiled in triplicate at room temperature using 0.5 L laboratory scale glass silos (8 cm diameter 
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× 16 cm height) sealed with lids. At day 30, the nine laboratory silos were opened, 300 g of silage 
was collected and sub-samples were treated as follows: samples for chemical composition analysis 
were oven-dried and ground subsequently prior to been tested, and the detail methods utilized 
were described as below; fresh samples for fermentation characteristics, microbial population and 
community analysis were collected and stored at −80℃ until required. 

Chemical composition analysis
At day 30, the sub-samples of silage were oven-dried at 65℃ for 72 h and the DM contents 
calculated. Dried samples were ground and passed through a 1 mm mesh sieve and stored in sealed 
vinyl bags prior to chemical composition analysis. Crude protein (CP) was determined by the 
Kjeldahl method according to the procedure of the Association of Official Analytical Chemists 
(AOAC, 1990) [11] using a K9860 Kjeldahl Analyzer (Hanon Advanced Technology Group, 
Jinan, China). Acid detergent fiber (ADF) and neutral detergent fiber (NDF) were measured 
by the method of Van Soest [12] using an ANKOM 2000 Automated Fiber Analyzer (Ankom 
Technologies, Fairport, NY, USA). WSC content was measured using a modified anthrone 
procedure [13]. Concentrations of ash before and after fermentation were measured using AOAC 
method [11]. 

Fermentation characteristics
Silage acidity was determined using an AB 150 pH meter (Fisher Scientific International, 
Pittsburgh, PA, USA). Ammonia nitrogen (NH3-N) was analyzed by the phenol-hypochlorite 
reaction method [14]. Flieg’s score was calculated from the formula given by Zhang et al. [15]. 
Lactic acid (LA) was determined by a high performance liquid chromatography (HPLC) system 
(Agilent HPLC 1260, Agilent Technologies, Santa Clara, CA, US) equipped with a UV detector 
(column: Agilent Hi-Plex H; mobile phase: 5 mmol/l H2SO4; flow rate: 0.7 ml/min; temperature: 
55℃); acetic acid (AA), propionic acid (PA) and butyric acid (BA) were measured by gas 
chromatography (GC), the instrumental conditions were described according to Zhao et al. [16]. 

Microbial population analysis
Microbial populations were determined via the spread-plate method [17]. Samples (10 g) were 
homogenized in sterile conical flasks with sterile water (90 mL) and shaken for 30 minutes at room 
temperature. Serial dilutions (1 ml of 10−4 to 10−7) were inoculated on the agar surface, spread evenly 

Table 1. Chemical composition of Napier grass before and after ensiling

Item
DM CP ADF NDF WSC Ash

g / kg g / kg DM
Before ensiling

Raw material 244.10 142.26 348.32 689.65 70.11 115.68

After ensiling

Control1) 193.29 125.84a 364.06a 625.46a 26.72b 124.85

Group 1 202.81 125.37a 345.60ab 585.25ab 36.86b 123.33

Group2 203.38 117.54b 324.72b 551.37b 55.07a 122.94

SEM 3.170 1.623 6.611 12.351 4.502 0.740

p-value 0.395 0.030 0.018 0.015 0.003 0.602
1)Control, no additives; Group 1, added cellulase; Group 2, added cellulase and starch.
a,bMeans within a column with different superscripts differ (p < 0.05).
DM, dry matter; CP, crude protein; ADF, acid detergent fiber; NDF, neutral detergent fiber; WSC, water-soluble carbohydrate. 
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and counted after incubation. LAB were incubated on De Man, Rogosa and Sharpe agar at 37℃ 

under anaerobic conditions and enumerated after 48 h. Escherichia coli were incubated on violet red 
bile agar and enumerated after 18 to 24 h at 37℃ under aerobic conditions. Viable mold and yeast 
were incubated on potato dextrose agar and enumerated after 48 to 72 h at 28℃ under aerobic 
conditions. The microbial population data were collected as colony forming units (CFU) and 
transformed to a logarithmic scale on a fresh matter basis. 

Microbial community analysis
Microbial community analysis was used to investigate changes in the diversity of bacteria 
during ensling. Briefly, total genome DNA was extracted from the silage samples using the 
cetyltrimethylammonium bromide method. DNA concentration and purity were monitored on 1% 
agarose gels, and based on this, the DNA was diluted to 1 ng/μL using sterile water. The distinct 
V3-V4 regions of 16S rRNA were amplified and subsequently sequenced on NovaSeq 6000 
platform (Novogene, Beijing, China). After sequencing, effective tags were produced by removing 
the barcodes and primers using “Fast Length Adjustment of Short” reads (FLASH; Version 1.2.7, 
available as open source code at http://ccb.jhu.edu/software/FLASH/) [18] according to the 
“Quantitative Insights Into Microbial Ecology” (QIIME; Version 1.9.1, available at http://qiime.
org/scripts/split_libraries_fastq.html) [19] quality controlled process. The effective tags were then 
clustered into operational taxonomic units (OTUs) at a 97% similarity level. According to the OTU 
results, alpha (Shannon, Simpson, Chao1 and coverage) and beta diversity (Principal component 
analysis [PCA]) were obtained using QIIME and R software (Version 2.15.3; R Foundation for 
Statistical Computing, Vienna, Austria), respectively.  

Statistical analysis
The collected data were analyzed using the general linear model procedure in IBM SPSS Statistics 
for Windows, version 23.0 (IBM, Armonk, NY, USA). Duncan’s test was utilized for multiple 
comparisons and significant differences were declared when p < 0.05. Statistical analysis of 
microbial diversity including OTU analysis, alpha and beta diversity analysis were performed on the 
Novomagic platform (available at http://magic.novogene.com; Novogene, China). 

RESULTS AND DISCUSSION
Effects of additives on the chemical composition of Napier grass silage
The highest DM content was found in Group 2 although this was not significantly different 
from the control (p > 0.05; Table 1). The CP content of Group 2 was significantly lower than the 
control and cellulase treated groups (p = 0.030) which could due to increased protein degradation 
during the ensiling process. Normally, two phases are formed during the protein degradation 
stage of silage fermentation. At the onset of fermentation, plant proteases hydrolyze proteins to 
peptides and amino acids, and these are subsequently degraded into various compounds which 
are metabolized by microbial protease rather than LAB [20,21]. Proteolysis during ensiling is 
affected by various of factors such as pH [22], and the initial DM [23] and WSC contents of 
the forage species [24]. The lower CP content in Group 2 might due to the increased proteolysis 
activities after adding cellulase and starch during fermentation, but the specific synergy mechanism 
among them remained unknown till now. Tao et al. [25] also observed similar results in alfalfa 
when ensiled with sweet sorghum. Previous studies have demonstrated that cellulase application 
to silage materials can improve fermentation quality by decreasing the NDF and ADF contents 
during ensiling [26-28]. A similar trend was observed here with decreased amounts of NDF and 
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ADF, possibly due to the enzymolysis and acid solubilization of cellulose, hemicellulose and lignin 
during fermentation [29]. Compared with the control and Group 1, this decrease was significantly 
greater in Group 2 following the combined addition of cellulase and starch (p < 0.05). Jones et al. 
[30] demonstrated that adding starch to rye silage increased the WSC content by 3%–4% after 
ensiling, thus improving the silage quality. Here, the residual WSC content of Group 2 was higher 
than Group 1 and the control (p < 0.05); an increase was also detected in Group 1, possibly due 
to the hydrolysis of starch during ensiling, although the effect was not significant (p > 0.05). No 
significant differences were found in ash contents of the three groups, however, when compared to 
raw materials prior to ensiling, the three groups showed numerically increases. It was in line with 
the results of Rahjerdi et al. [31] on amaranth-corn combination silage. 

Effect of additives on the fermentation characteristics of Napier grass silage
Fermented silage usually shows a decrease in pH (Table 2). Compared with the control, both 
additive groups showed a reduction in pH (p < 0.05). The ratio of NH3-N to total nitrogen is a 
critical index that can indicate the extent of proteolysis during ensiling; NH3-N is produced from 
protein decomposition in fresh ensiling materials by the activity of Clostridium spp. [32]. The 
NH3-N content in silage is an indicator of silage fermentation quality; a high NH3-N content 
indicates a lower fermentation quality. In this study, no significant difference was found between 
all the groups (p = 0.826). LA is the main acid product produced by LAB from sugar substrates 
during ensiling; a higher LA concentration reflects increased conversion efficiency from WSC. 
Compared with the control, the applications of cellulase or cellulase / starch both increased the 
LA concentration of the silage (p < 0.05); the highest value was found in Group 2. Hence, the 
application of cellulase alone, or combined with starch, could facilitate the availability of enough 
substrate for increased LA production by LAB. In addition, added starch, in combination with 
cellulase, improved the quality of the silage. Numerical, but not significant, increases (p > 0.05) 
in AA were also detected in control, Group 1 and Group 2. AA is produced by Enterobacteria 
and heterofermentative LAB and, to some extent, a higher content might relate to increased DM 
loss [33]. PA was only detected in the control group. BA is also an indicator of poor fermentation 
quality, and it can reflect the activity of unfavorable Clostridium spp. during silage fermentation. 
Silage with relatively high BA levels might also be less palatable to livestock [34]. A good-medium 
grade silage might contain 5–10 g/kg DM BA [4,35]. No BA was detected in all the groups of this 
study, indicating that the activity of Clostridium spp. was inhibited during fermentation, rendering 
the silage preserved. According to Jones et al. [36], the ratio of LA to AA can reflect the extent 
of homolactic and heterolactic fermentation during ensiling. The silage treated with additives was 

Table 2. Effects of applying additives on fermentation characteristics of Napier grass silage

Group pH
NH3-N/TN LA AA PA BA LA/AA Flieg’s 

score1) Grade
g /kg DM %

Control2) 4.72a 258.47 15.19 0.76 0.28 ND 20.11 57.01b Average

Group 1 4.49b 272.55 19.49 0.84 ND ND 23.22 64.19b Good

Group 2 4.32c 271.26 23.34 1.01 ND ND 27.67 73.02a Good

SEM 0.062 8.133 1.610 0.063 - - 1.959 2.580 -

p-value 0.002 0.826 0.126 0.287 - - 0.383 0.012 -
1)Flieg’ s scores (0–100) were ranked into five grades: Poor (0–20), Fair (21–40), Average (41–60), Good (61–80), and Excellent (81–100).
2)Control, no additives; Group 1, added cellulase; Group 2, added cellulase and starch.
a-cMeans within a column with different superscripts differ (p < 0.05).
NH3-N, ammonium nitrogen; TN, total nitrogen; LA, lactic acid; AA, acetic acid; PA, propionic acid; BA, butyric acid; DM, dry matter; ND, not detected; -, default.
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dominated by LA rather than AA, indicating that homolactic fermentation was the major pathway. In 
addition, Bolsen [34] showed that silage produced without additives, such as the control in this study, 
may be less palatable to cattle. The silage was be ranked into five grades based on Flieg’s score; the 
cellulase and starch group were ranked as ‘Good’ and the control group was ranked ‘Average’ (Table 2).

Overall, cellulase application improved silage quality while the combination of starch and 
cellulase improved the fermentation characteristics of the Napier grass silage. 

Effects of additives on the microbial population of Napier grass silage
It is known that LAB are the dominant microbes during silage fermentation once anaerobic 
conditions are established and under these conditions, the growth of some undesirable 
microorganisms can be inhibited by bacteriocins produced by certain strains of LAB [37]. So, to 
some extent, higher populations of LAB may lead to improved fermentation quality. The LAB 
populations were elevated in the silage from Group 1 and Group 2 although the differences were 
not significant (p = 0.573). The results suggested that the additions of cellulase and starch may 
promote the growth of LAB during ensiling, but further studies may be required to understand 
the optimum dosage. Spoilage organisms such as Escherichia coli, mold and yeast are additional 
indicators of poor fermentation. Yeast is one of the detrimental microorganisms in silage 
fermentation which can cause secondary fermentation. Mold growth is promoted by aerobic 
exposure, e.g., when silos are not sufficiently sealed, resulting in decreased fermentation quality. 
Table 3 shows that E. coli, mold and yeast were not detected in any group. This could be attributed 
to inhibition of adventitious microbes by the low pH under fermentation conditions. 

Microbial community of Napier grass silage treated by different additives
Shared operational taxonomic unit analysis
The Venn diagram given in Fig. 1 shows the shared and unique OTUs among the three groups in 
this study. Table 4 shows the respective number of OTUs in each group. A total of 166 OTUs were 
clustered at the 97% similarity level. From the 58 common OTUs, 29, 27 and 52 were unique to 
the control, Group 1 and Group 2 respectively. Compared with the other groups, Group 2 showed 
a numerical increase indicating a higher diversity to some extent after fermentation, although 
this was not statistically significant (p = 0.602). The higher diversity shown by Group 2 might be 
attributed to the addition of cellulase and starch which provided sufficient fermentation substrate to 
promote microbial growth and diversity [38].  

Bacterial community analysis
The relative abundance of bacterial communities in each group at the phylum (a) and genus (b) 
levels are shown in Fig. 2.

Table 3. Effects of applying additives on microbial population of Napier grass silage

Group
LAB E. coli Mold Yeast

Log CFU/g of FM
Control1) 7.96 ND ND ND

Group 1 8.15 ND ND ND

Group 2 8.22 ND ND ND

SEM 0.087 - - -

p-value 0.573 - - -
1)Control, no additives; Group 1, added cellulase; Group 2, added cellulase and starch. 
LAB, lactic acid bacteria; E.coli, Escherichia coli.; CFU,  colony forming units; FM, fresh matte; ND, not detected.
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At the phylum level (Fig. 2A), Firmicutes, Cyanobacteria and Proteobacteria were the dominant 
microbes in three groups, which was consistent with previous studies [39, 40]. Among these, 
Firmicutes were the most abundant bacteria and their population increased numerically (p > 0.05) 
in both additive groups (control, 59.39%; Group 1, 62.34%; Group 2, 64.67%). Firmicutes are 
important acid-producing hydrolytic bacteria that can proliferate under the low pH conditions 
of silage fermentation [41]. The increased abundance of Proteobacteria in both additive groups 
(23.37% and 11.71%, respectively; p < 0.05), compared with the control group (6.13%) indicated a 
favorable shift in the microbial community following the additive applications.

At the genus level, Lactobacillus, unidentified Cyanobacteria, Lactococcus, Weissella and Pantoea 
were identified (Fig. 2B). It is commonly known that Lactobacillus, Lactococcus and Weissella 
are the LAB present during the ensiling of high-quality silage [42,43]. To date, several studies 
have shown that Lactobacillus comprises the main microbial community during ensiling and 
their abundance is closely associated with silage quality [44,45]. Here, Lactobacillus was also the 
predominant community during ensiling, which was in consistent with the results from previous 
studies [41,46,47]. Interestingly, Wang et al. [48] reported that Exiguobacterium was the dominant 
bacteria in silage prepared from Moringa oleifera leaves. However, this result could be due to the 
different silage materials used. Although the abundance of unidentified Cyanobacteria decreased (p 

Fig. 1. Venn analysis of operational taxonomic units (OTUs) for Napier grass silage. Control, no additives; 
Group 1, added cellulase; Group 2, added cellulase and starch.

Table 4. OTUs number and Alpha diversity indices of microbial community for Napier grass silage

Group OTUs 
number

Observed  
species Shannon Simpson Chao1 ACE Goods-

coverage
Control1) 68 195b 3.074b 0.755b 212b 213b 0.999

Group1 67 173b 3.627a 0.868a 199b 202b 0.999

Group2 75 243a 3.585a 0.843a 269a 268a 0.999

SEM 2.603 11.425 0.102 0.020 11.284 10.971 -

p-value 0.399 0.004 0.014 0.017 0.001 0.002 -
1)Control, no additives; Group 1, added cellulase; Group 2, added cellulase and starch.
a,bMeans within a column with different superscripts differ (p < 0.05).
OTUs, operational taxonomic units. 



Napier grass ensiled with cellulase and starch additives

1308  |  https://www.ejast.org https://doi.org/10.5187/jast.2021.e107

< 0.05) in the Group 1 (13.70%) and Group 2 (23.17%), compared with the control (34.03%), the 
dynamics and mechanisms of these bacteria in silage fermentation are unclear as they have not been 
studied in detail. Group 1 and Group 2 showed small changes in the abundance of Lactobacillus and 
Lactococcus communities. However, for Weissella bacteria, which are obligated heterofermentative 
bacteria that can outcompete Lactobacillus in the latter stage of fermentation [49], both Group 
1 (10.89%) and Group 2 (7.14%) showed increased abundances (p < 0.05) relative to the Control 
(4.05%). These observations were also consistent with the increased LA production and reduced 
pH in Group 1 and Group 2 silage and reflect the positive role of the cellulase and starch during 
the fermentation of Napier grass silage. 

Fig. 2. Relative abundance of microbial community on phylum (a) and genus (b) level for Napier grass 
silage. Control, no additives; Group 1, added cellulase; Group 2, added cellulase and starch. 

A

B
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Alpha diversity
The Shannon and Simpson indices reflect microbial community richness while chao 1 and ACE 
indicate microbial diversity; microbial community richness is inversely associated with diversity, e.g., 
as richness increases, the diversity decreases and vice versa [50]. The alpha diversity indices for each 
group are given in Table 4.

The coverage values for the silage samples were all > 0.999, indicating that the sequencing data 
were sufficiently large to cover the entire profile of the microbial community. The highest observed 
species ranged from 173 to 243, which was greater than values reported elsewhere [49]. However, 
the latter was obtained from the analysis of silage produced from different ensiling materials 
(Neolamarckia cadamba leaves) and fermentation duration. The cellulase treated group (Group 
1) showed significant increases in the Shannon and Simpson indices (p < 0.05) and numerical 
decreases in Chao 1 and ACE (p > 0.05), indicating that added cellulase decreased microbial 
community richness but increased diversity to some extent in the Napier grass silage. The low 
pH value in cellulase treated group caused by higher LA production might be the main factor 
underlying affected microbial diversity [51]. And Zheng et al. [52] also stated that lower microbial 
community richness were related to the disappearance of some epiphytic bacteria due to their lower 
adaptability to the anaerobic condition and acidic environment during ensiling. Interestingly, the 
combined application of cellulase and starch (Group 2) gave significant increases in all indices (p < 
0.05). This could be due to some unknown synergistic effect of cellulase and starch during ensiling 
which altered the diversity of the microbial community. A similar phenomenon was also obtained 
for silage produced from Neolamarckia cadamba leaves [49].  

Beta diversity 
To further evaluate the differences in microbial communities between the samples from different 
groups, beta diversity analysis was performed using PCA (Fig. 3). The contribution of the two 

Fig. 3. Principal component analysis (PCA) of microbial community for Napier grass silage. Control, no 
additives; Group 1, added cellulase; Group 2, added cellulase and starch. 



Napier grass ensiled with cellulase and starch additives

1310  |  https://www.ejast.org https://doi.org/10.5187/jast.2021.e107

principal components to the total variance were 34.15% and 24.39%, respectively. Parvin et al. [53] 
showed that silage samples with different microbial communities tended to separate, while similar 
communities gathered together. Fig. 3 shows that the control, Group 1 and Group 2 formed three 
separate distributions, suggesting that the application of additives exerted an effect on the microbial 
community during ensiling. The three replicate results of the control group distributed more widely 
than the replicates from the additive groups suggesting that the microbial communities in Group 1 
and Group 2 were more stable.

These results demonstrated that both additives exerted a positive effect on the microbial 
communities of Napier grass silage, while the variances may help to explain the differences in silage 
fermentation quality resulting from different treatments. 

CONCLUSIONS
This study showed that the combined application of cellulase and starch to Napier grass decreased 
CP, ADF, NDF and pH, while, WSC, LA, Flieg’ s score and the LAB population increased post-
ensiling. Microbial community analysis showed that both additives improved the abundance of 
favorable microbes such as Firmicutes and Weissella, and the bacteria including Proteobacteria, 
Bacteroidetes, Acinetobacter increased as well. Taking all results above into consideration, added 
cellulase exerted a small positive effect on Napier grass silage quality; while the combined 
application of cellulase and starch increased fermentation quality and the abundance of favorable 
microbial communities. Consequently, these results have demonstrated that the combined 
application of cellulase and starch additives is recommended for high-quality Napier grass silage 
preservation.
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