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Abstract
Pig breeding management directly contributes to the profitability of pig farms, and pregnancy 
diagnosis is an important factor in breeding management. Therefore, the need to diagnose 
pregnancy in sows is emphasized, and various studies have been conducted in this area. 
We propose a computer-aided diagnosis system to assist livestock farmers to diagnose sow 
pregnancy through ultrasound. Methods for diagnosing pregnancy in sows through ultra-
sound include the Doppler method, which measures the heart rate and pulse status, and the 
echo method, which diagnoses by amplitude depth technique. We propose a method that 
uses deep learning algorithms on ultrasonography, which is part of the echo method. As deep 
learning-based classification algorithms, Inception-v4, Xception, and EfficientNetV2 were 
used and compared to find the optimal algorithm for pregnancy diagnosis in sows. Gaussian 
and speckle noises were added to the ultrasound images according to the characteristics of 
the ultrasonography, which is easily affected by noise from the surrounding environments. 
Both the original and noise added ultrasound images of sows were tested together to deter-
mine the suitability of the proposed method on farms. The pregnancy diagnosis performance 
on the original ultrasound images achieved 0.99 in accuracy in the highest case and on the 
ultrasound images with noises, the performance achieved 0.98 in accuracy. The diagnosis 
performance achieved 0.96 in accuracy even when the intensity of noise was strong, proving 
its robustness against noise.
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INTRODUCTION
The management of pig reproduction is an important factor that is directly related to the success or 
failure of pig farms [1–3]. Therefore, methods for diagnosing pregnancy in sows have a significant 
impact on reproductive management and are essential in pig farming [4–6]. It can increase pig 
reproduction by shortening the non-pregnant condition of sows and increasing the number of 
births. Pregnancy diagnosis of sows can be confirmed through observations for return of estrus, 
vaginal biopsy, serum analysis, hormone measurement, and ultrasound detection methods [7–9]. 
However, if the sow shows no clear signs of pregnancy, the manager who is inexperienced or lacks 
the time and labor may not notice the pregnancy until the due date. In such cases, the pregnant sows 
cannot receive proper treatment for pregnancy and miscarriages can occur in stressful situations 
[10]. These issues increase the feed, management, and labor costs, which has a major adverse effect 
on profitability. Therefore, as mentioned before, the pregnancy diagnosis of sows has a great effect 
on reproduction and determines the success or failure of pig farms. As the necessity of diagnosing 
the pregnancy of sows is emphasized, many institutions and organizations have conducted research 
and a variety of methods are used to diagnose the pregnancy of sows [11]. Cameron [12] made a 
detailed description of the reproductive tract of the sow as felt by rectal examination. Lin et al. [13] 
showed the expression of αV and β3 integrin subunits in the endometrium during implantation 
in pigs. Zhou et al. [14] hypothesized that circulating exosome-derived miRNAs might be used to 
differentiate the pregnancy status as early as several days after insemination in pigs and successfully 
identified circulating exosomal miRNA profiles in the serum of pigs in early pregnancy. Kauffold 
and Althouse [15] reviewed an update on the current status of B-mode ultrasonography in pig 
reproduction and how this technology can be of value when used in pig production medicine. Also, 
Kauffold et al. [16] provided an overview of the principles and clinical uses of ultrasonography 
(RTU) for application to address swine reproductive performance. Kousenidis et al. [17] studied 
the ultrasonic typification of sows to develop a methodology for pregnancy diagnosis and suggested 
that detailed real-time ultrasonic scanning, can help predict litter size and the precise management 
of pregnant sows.

In this study, we developed a computer-aided diagnosis (CADx) method to diagnose the 
pregnancy of sows using ultrasound images, which has advantages over other methods mentioned 
above in terms of simplicity, low cost, and high accuracy.  CADx is expected to provide additional 
information to pig farmers by showing the diagnostic result of artificial intelligence to assist 
the farmer in making a diagnosis decision of the image. We compared the accuracy of three 
computerized classification approaches with two types of noise: Gaussian and speckle. Of the 
three computerized classification approaches selected, the Inception model is one of the most 
used convolution neural network (CNN) models, Xception is based on Inception with depthwise 
separable convolution, and EfficientNet is a model that achieved state-of-the-art (SOTA) 
performance on image classification tasks with much few parameters. We added the Gaussian 
and speckle noises because ultrasound images are usually corrupted by them. Although the issues 
that we could explore in one study are only a small fraction of those involved in the entire CADx 
process of sow pregnancy diagnosis, it is expected that this study will provide useful information for 
the design of a robust CADx system that uses ultrasound images. 

MATERIALS AND METHODS
Ultrasound images of pregnant and non-pregnant sows were collected by experts and used as 
the dataset for training and performance evaluation of pregnancy diagnosis using deep learning 
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algorithms. In consideration of use in various environments in pig farms, ultrasound images 
containing noise were generated and were used together with the other images in the performance 
evaluation. To find the optimal method for diagnosing sow pregnancy, we compared the 
performance of several classification algorithms.

Dataset 
A data set was collected from the files of sows that had undergone ultrasound imaging in the 
hog barn of the National Institute of Animal Science (NIAS) located in Cheonan, with the 
approval of the Institutional Animal Care and Use Committee (IACUC) of Rural Development 
Administration (approval No. NIAS-2021-538). All ultrasound images were acquired by trained 
experts using a MyLab™OmegaVET (Esaote) ultrasonic device and a convex array ultrasound 
transducer AC2541 (Esaote) with 1.0–8.0 MHz frequency range. We acquired ultrasound images 
of 5,292 pregnant and 5,367 non-pregnant from 44 sows. Among them, 29 sows were at least 23 
days pregnant and 15 sows were not pregnant. The images of pregnant sows were confirmed by the 
experts. The ultrasound images were collected in GEN-M format in 4.0–6.0 MHz frequency range 
with general resolution and middle penetration. The collected ultrasound images were extracted 
as 860 × 808 resolution Bitmap Image format with lossless and uncompressed characteristics to 
minimize feature loss. 

The 5,292 ultrasound images of pregnant sows were divided into 4,241 images (88 with invisible 
embryonic sacs)  for training and 1,051 images (14 with invisible embryonic sacs) for performance 
evaluation. It is difficult for even experts to accurately identify pregnancy in images with invisible 
embryonic sacs. Of the 5,367 ultrasound images of non-pregnant sows, 4,231 images we used for 
training and 1,136 images were used for performance evaluation. Overall, the training set consisted 
of 4,241 images of pregnant and 4,231 images of non-pregnant sows, and the test set (Dataset-A) 
consisted of 1,051 images of pregnant and 1,136 images of non-pregnant sows. And part of the 
test set (Dataset-A) in which the embryonic sac was not visible was composed as the other test set 
(Dataset-B). The specifications of the images are shown in Fig. 1.

Generating ultrasound images with speckle and Gaussian noises 
 Noise is an unwanted phenomenon that is ubiquitous in digital ultrasound images. It can appear 
in different forms and distributions such as speckle and Gaussian. Diagnosis of pregnancy in sows 
using an ultrasound device can be performed in various situations depending on the surrounding 
environments [18].  Speckle noise is a type of noise that is multiplicative and independent. It is 
the result of interference between returning light from rough surfaces and the aperture creating 
a granular shape pattern in the camera sensor. This type of noise affects both the resolution and 
contrast in ultrasound images. Gaussian noise is another type of noise that is also additive and 
independent. It can be the product of sources such as amplifiers, shot noise and film grain noise, 
among others [19]. The configuration of ultrasonic devices and probes used in all pig farms is the 
same as that of this study. In addition, the frequency used to diagnose pregnancy depends on the 
physical characteristics of the sow; the ultrasound image can contain Gaussian noise and speckle 
noise depending on the surrounding environment. Therefore, we added these two noises to the 
ultrasound images to make them similar to the noise that occurs in typical farm situations [20,21]. 
Speckle noise 0.7 (variance) and Gaussian noise 0.02 (zero mean and variance 0.02) were added 
to 1,051 ultrasound images of pregnant sows and 1,136 non-pregnant sows used for the test, 
and speckle noise 0.4 and Gaussian noise 0.01 were applied in the same way. The number of test 
images with noises is the same as original and noise images were not used in the training stage.  The 
ultrasound images with noise for the test are shown in Fig. 2. Ultrasound images with noises were 
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used together with the original images for performance evaluation so that the deep learning-based 
classification algorithm can show robustness in various environments.

Classification algorithms using deep learning
 To develop a method to diagnose pregnancy in sows that can be used in real-time in various 
environments with high processing speed and low computational cost,  we decided to use a 

Fig. 1. Ultrasound images of sows.

Fig. 2. Ultrasound images with gaussian and speckle noise.
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deep learning-based classification algorithm [22]. It has high accuracy based on neural network 
structure and a high processing speed with no position calculation, so it is considered ideal for 
diagnosing pregnancy in real-time. To select an optimal classification algorithm for sow ultrasound 
image pregnancy detection, various deep learning-based classification algorithms known for high 
performance were used. Inception-v4, Xception, and EfficientNetV2 classification algorithms were 
all used to train the ultrasound images and generate trained weights. Performance evaluation and 
comparison for the original ultrasound images and the noise ultrasound images were performed to 
select the optimal algorithm.

 The inception model is one of the most used CNN models since the release of TensorFlow [23]. 
The core of the inception model is in the Conv layer called the inception module. Conventional 
Conv layers usually use data composed of width, height, and channels. Width and height decrease 
through max-pooling according to the progress of the network model, and the channel progresses 
in the direction of increasing. The inception model uses the form of 1 × 1 Conv to make the filter 
1 × 1, and it is performed in the direction of decreasing channels. Through this, a fully connected 
computation of the channel called network-in-network is performed, and a compression effect of 
reducing the dimension can be achieved. Therefore, 1 × 1 Conv structure of Inception was able to 
increase the accuracy and reduce the amount of computation. Inception-v2 has a change on the 
existing inception module. To reduce the amount of computation, module A with factorizing was 
applied by changing 5 × 5 Conv to two 3x3 Conv, and module B with asymmetric factorization 
was made. To reduce the grid size of the feature map, module C was created by combining pooling 
to Conv structure and Conv to pooling structure in parallel, and these replaced the existing 
inception module. Inception-v3 has the same structure as Inception-v2, and various techniques 
such as RMSProp, Label Smoothing, Factorized 7-7, and BN-auxiliary are applied to increase 
performance. In the Inception-v4 used in our proposed study, the modules that change the grid are 
distinguished from the structure of Inception-v3. Along with the inception module A-B-C, the 
reduction module A-B, which reduces the size of the grid, has been added and improves accuracy. 
The structure of Inception-v4 is shown in Fig. 3.

 Xception is based on Inception, but it is a model to which the concept of modified depthwise 
separable convolution is applied [24]. Xception went further from the existing inception module 
and aimed to completely separate cross-channel correlations and spatial correlations. Therefore, 
as shown in Fig. 4 correlation between channels was mapped through 1 × 1 Conv in the existing 
inception module, and then spatial correlation was mapped for all output channels. Through this, 
Xception was able to show high classification accuracy when compared to Inception-v3, which has 
a similar scale and is used as a pretrain for various encoders due to its simple concept and structure 
and high performance.

 EfficientNetV1 is a model that achieved SOTA performance in 2019 with good performance 
with much fewer parameters than other image classification tasks [25]. The performance of 
CNN tends to be proportional to the scale of the model, and many studies have been conducted 
to improve the performance by increasing the model. There are three methods of scaling up: 
deepening the network depth, increasing the channel width, and increasing the resolution of the 
input image. EfficientNetV1 found the optimal combination of these three through automated 
machine learning [26], and suggested a compound scaling method to achieve high performance 
even with a small model. EfficientNetV2 is a model that succeeded in increasing the learning speed 
while maintaining accuracy through progressive learning, which gradually increases the input image 
size while using the existing structure and the non-uniform scaling technique that compensates for 
progressive learning [27]. The basic structure of EfficientNetV2 is shown in Fig. 5. 

Inception-v4, which reduces the complexity of calculations through the inception module, 
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Fig. 3. Network structure of Inception-v4.

Fig. 4. Network structure of Xception.
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achieving fast processing and high accuracy; Xception, which uses the concept of depthwise 
separable on ultrasound image because it is basically one-channel grayscale; and EfficientNetV2, 
which performs classification through optimal combination using automated machine learning 
because frequency bands exist but cannot define accurate image resolution, were selected as the 
ultrasound pregnancy diagnosis algorithms.

Inception-v4, Xception and EfficientNetV2 training was done for pregnancy diagnosis in sows. 
The 5,292 ultrasound images of pregnant sows were divided into 4,241 for training and 1,051 for 
testing.  The 5,367 ultrasound images of non-pregnant sows were divided into 4,231 for training 
and 1,136 for testing. The training images were further divided into training and validation at a 
ratio of 8:2. The training the network models was continued until the validation loss converged. All 
training and performance evaluations were performed using Windows 10 x64, CUDA 10.1 with 
cuDNN, and Python 3.7.4 with the following specifications: Intel(R) Xeon(R) W-2133, NVIDIA 
TITAN Xp, and 128 GB RAM.

RESULTS AND DISCUSSION
 The performance of the pregnancy diagnosis in sows was evaluated by weights trained through 
Inception-v4, Xception, and EfficientNetV2. The overall structure of the study is shown in Fig. 
6. The dataset used for the performance evaluation was divided into Dataset-A and Dataset-B. 
Dataset-A consisted of 1,051 ultrasound images of pregnant sows with all situations and visible 
embryonic sacs and 1,136 ultrasound images of non-pregnant sows. Dataset-B which is a subset of 

Fig. 5. Network structure of EfficientNetV2.
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the Dataset-A consisted of 14 ultrasound images of pregnant sows with invisible embryonic sacs 
and 14 ultrasound images of non-pregnant sows. Each of Dataset-A and Dataset-B was divided 
once more into original, NoiseT1 with added speckle noise of variance 0.4  and Gaussian noise 
of zero mean and variance 0.01 into original images and NoiseT2 with added speckle noise of 
variance 0.7 and Gaussian noise of zero mean and variance 0.02 into original images depending on 
the application of noise. Therefore, a total of 6 test datasets were used for performance evaluation: 
Original Dataset-A, Original Dataset-B, NoiseT1 Dataset-A, NoiseT1 Dataset-B, NoiseT2 
Dataset-A, and NoiseT2 Dataset-B. 

The ultrasound images used in the study were organized as shown in Table 1. Ultrasound 
images in Dataset-A and Dataset-B were classified for pregnancy through weights trained using 
Inception-v4, Xception, and EfficientNetV2. A confusion matrix consisting of true positive (TP), 
true negative (TN), false positive (FP), and false negative (FN) was used for evaluation. TP is the 
case in which pregnant is predicted as pregnant, and TN is the case in that the non-pregnant is 
predicted as non-pregnant. FP is the case that non-pregnant is incorrectly predicted as pregnant, 
and FN is the case that pregnant is incorrectly predicted as non-pregnant. We also employed the 
performance metrics of specificity, sensitivity, and accuracy to evaluate the pregnancy diagnosis 
performance. Sensitivity is calculated as TP / (TP+FN) and is the ratio determined as pregnant 

Fig. 6. Proposed ultrasonography-based pregnancy diagnosis in sows.

Table 1. Number of ultrasound images of sows used for training and performance evaluation

Original NoiseT1 
(Gaussian 0.01, Speckle 0.4)

NoiseT2
(Gaussian 0.02, Speckle 0.7)

Pregnant Non-pregnant Pregnant Non-pregnant Pregnant Non-pregnant
Training 4,241 4,231 - - - -

Dataset-A 1,051 1,136 1,051 1,136 1,051 1,136

Dataset-B 14 14 14 14 14 14



https://doi.org/10.5187/jast.2022.e107 https://www.ejast.org  |  373

Chae et al.

in all pregnant, and specificity is calculated as TN / (TP+FP) and is the ratio determined as non-
pregnant in all non-pregnant. Accuracy includes all elements of sensitivity and specificity and can 
confirm the overall pregnancy diagnosis performance.

The results of ultrasound pregnancy diagnosis performance evaluation for Dataset-A are 
shown in Table 2. Xception achieved the highest overall performance. In the original ultrasound 
images result, Xception, EfficientNetV2, and Inception-v4 achieved 0.98, 0.99, and 0.98 
accuracy, respectively. However, when the noise was added, the performance of EfficientNetV2 
and Inception-v4 significantly decreased. The performance of Xception was reduced by 0.02, 
a minor difference from the original. Results for Dataset-B are shown in Table 3: again, 
Xception achieved the highest performance. In the original ultrasound images result, Xception, 
EfficientNetV2, and Inception-v4 achieved 0.89, 0.82, and 0.93 accuracy, respectively. Dataset-B 
was difficult to distinguish even for experts because the embryonic sacs are not visible. However, 
the proposed method achieved high overall performance. When the ultrasound images contain 

Table 2. Performance evaluation of Dataset-A

Variable
Dataset-A

Sensitivity Specificity Accuracy
Original

Inception-v4 0.9943 0.9622 0.9776

Xception 0.9859 0.9798 0.9827

EfficientNetV2 0.9876 0.9982 0.9931

NoiseT1 (Gaussian 0.01 / Speckle 0.4)

Inception-v4 0.6613 1 0.8372

Xception 0.9914 0.9736 0.9822

EfficientNetV2 0.8554 1 0.9305

NoiseT2 (Gaussian 0.02 / Speckle 0.7)

Inception-v4 0.3949 0.9991 0.7087

Xception 0.9924 0.9393 0.9648

EfficientNetV2 0.5956 1 0.8057

Table 3. Performance evaluation of Dataset-B (embryonic sac is not visible)

Variable
Dataset-B

Sensitivity Specificity Accuracy
Original

Inception-v4 0.8571 1.000 0.9286

Xception 0.7857 1.000 0.8929

EfficientNetV2 0.6429 1.000 0.8214

NoiseT1 (Gaussian 0.01 / Speckle 0.4)

Inception-v4 0.1249 1.000 0.5714

Xception 0.7857 1.000 0.8929

EfficientNetV2 0.2857 1.000 0.6429

NoiseT2 (Gaussian 0.02 / Speckle 0.7)

Inception-v4 0.000 1.000 0.5000

Xception 0.7143 1.000 0.8571

EfficientNetV2 0.1427 1.000 0.5714
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noise, the performance of EfficientNetV2 and Inception-v4 significantly decreased. Although 
the performance of the Xception was also reduced from the original performance, the difference 
was only 0.04. Dataset-B shows a lower sensitivity compared to Dataset-A. This is thought to be 
because the number of images with invisible embryonic sacs is not sufficient for training; they are 
only 88 out of the 4,241 training images. On the other hand, specificity was 1.00 for all models in 
Dataset-B. This is the opposite of the previous case. Non-pregnant was trained using many images, 
but the results were confirmed only using 14 images. Although there was a data imbalance problem 
in Dataset-B, we were able to confirm the unbiased performance through the comparison of three 
classification algorithms.

The classification algorithms used in this study have high performance. When tested with the 
original ultrasound images, they achieved high performance in both Dataset-A and Dataset-B. 
However, when noise was included or the intensity of noise was increased, the performance decrease 
drastically, except for Xception. Xception maps the correlation between channels and then maps 
spatial correlation. It means that the relationship between the channels and spatial are separated 
due to the depthwise separable. Two noises were added to the ultrasound images according to the 
characteristics of the ultrasonography. Xception, which is based on CNN structure is robust against 
noise when extracting spatial features. Furthermore, against speckle noise, which has 3-channels 
unlike 1-channel of ultrasonography, it is presumed that a robust classification was achieved by 
separately extracting the channels and spatial features. As a result, it was found that it is best to use 
the Xception classification algorithm for pregnancy diagnosis using ultrasound images.

CONCLUSION
In this study, ultrasonography-based deep-learning algorithms to diagnose pregnancy in sows 
were proposed. Inception-v4, Xception, and EfficientNetV2 were used for deep learning-based 
classification algorithms. Gaussian and speckle noise with parameters of each 0.01, 0.02, and 0.4, 
0.7, respectively, were added to ultrasound images as these are easily affected by noise from the 
surrounding environments. 

The pregnancy diagnosis algorithms achieved good overall performance. The algorithms 
performed highly on ultrasound images with visible embryonic sacs. Even on ultrasound images 
with invisible embryonic sacs, which are difficult for experts to distinguish,  the algorithms achieved 
accuracies of up to 0.93 . When the embryonic sac was visible in the ultrasound image containing 
noise, the accuracy reached  0.98. For ultrasound images with noise and invisible embryonic 
sacs, accuracy was reduced to 0.89. The Xception algorithm showed robustness against noise and 
achieved overall high performance. For future study, we plan to collect more images with invisible 
embryonic sacs; the current study had only a few of these. Also, this study considered pregnancy of 
at least 23 days; therefore, we plan to include pregnancy between 10 and 23 days.
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