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Abstract
This study examined the association between functional sequence variants (FSVs) of my-
osin heavy chain 3 (MYH3) genotypes and collagen content in a Landrace and Jeju native 
pig (JNP) crossbred population. Four muscles (Musculus longissimus dorsi, Musculus semi-
membranosus, Musculus triceps brachii, and Musculus biceps femoris) were used for the 
analysis of meat collagen content, and the same animals were genotyped for the FSVs of the 
MYH3 gene by using PCR-RFLP (polymerase chain reaction-restriction fragment length poly-
morphism). Three FSVs of MYH3 genotypes were identified and had genotype frequencies 
of 0.358, 0.551, and 0.091 for QQ, Qq, and qq, respectively. QQ animals for the FSVs of the 
MYH3 genotypes showed higher collagen content in their M. longissimus dorsi (p < 0.001), 
M. semimembranosus (p < 0.001), M. triceps brachii (p < 0.001), and M. biceps femoris (p < 
0.001) than qq homozygous animals. After the validation of this result in other independent 
populations, the FSVs of MYH3 genotypes can be a valuable genetic marker for improving 
collagen content in porcine muscles and can also be applied to increase the amount of colla-
gen for biomedical purposes.
Keywords: Collagen content, Genotype, Muscle, pig, Myosin heavy chain 3

INTRODUCTION
Native pig breeds are very important for the conservation and sustainable improvement of valuable 
economic traits in the future [1]. Native pigs in Korea, especially Jeju native pigs ( JNP), have been 
extensively studied for crossbreeding with commercial pig breeds such as Landrace and Duroc and for 
quantitative trait locus (QTL) and genome-wide association study (GWAS) for identifying genetic 
markers of economic traits. The coat color of JNP is black, and the feed efficiency and growth rate of 
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JNP are low. However, JNP has excellent meat quality characteristics, such as a solid fat structure, 
red meat color (a*), and high intramuscular fat (IMF) content, compared with commercial pig 
breeds, including Landrace [2].

Collagen is a major substrate protein in connective tissues such as skin, tendon, bone, and blood 
vessels in animals [3,4]. Collagen is a lightweight protein that exists in epithelial cells and is widely 
distributed in multicellular animals such as invertebrates and vertebrates [5]. Collagen can form 
insoluble fibers with high tensile strength and has a triple hypochondrobar structure consisting 
of three identical polypeptide chains. Collagen is also the most abundant protein in vertebrates 
and makes up approximately 25% of the total protein in vertebrates [6]. Collagen comprises 
approximately 70% of the bones of organisms, approximately 50% of the cartilage connecting 
bones with bones in joints, approximately 70% of the dermis under the skin, and most vessels [7]. 
Collagen fibers exist in other forms between the perimysium and endomysium and are mainly 
composed of thick bundles of collagen in the perimysium and a fine network structure in the 
endomysium. Fibers depend on the type and area of collagen in the muscle, and collagen content’s 
quantitative and chemical composition changes over time [8]. Collagen is classified according to its 
composition. Type I is the most abundant and strongest type of collagen found in the human body. 
It consists of eosinophilic fibers that form tendons, ligaments, organs, and skin. Type I collagen 
helps form bones and can be found in the gastrointestinal tract. In addition, collagen plays a major 
role in healing wounds, giving skin elasticity, and maintaining tissues. Type II collagen is mainly 
found in connective tissues and plays a role in forming cartilage. The health of the joints depends 
on cartilage composed of Type II collagen, which helps prevent various arthritis symptoms. Type 
III collagen is the main component of the reticular fiber and the extracellular matrix that makes up 
organs and skin. Collagen is found mainly in the Type I form and plays a role in skin elasticity and 
hardness. In addition, collagen forms blood vessels and tissues in the heart, so a deficiency in Type 
III collagen increases the risk of vascular rupture and premature death. Type IV collagen plays an 
important role in forming the basal lamina found in endothelial cells that form tissues surrounding 
organs, muscles, and fats, which cushion and protect tissues in the space between the top and 
bottom layers of the skin. The basal plate is necessary for the function of various nerves and blood 
vessels, so it constitutes most of the digestive organs and respiratory surfaces in the body. Type V 
collagen is needed to make up the cell surface as well as female placental tissue and hair strands 
[9,10].

Collagen protein, a byproduct of meat production, is an important ingredient in food products 
such as casings. In addition, collagen is used in the production of cosmetics and is widely used as 
a healing aid following plastic surgery, bone reconstruction, and various dental and orthopedic 
surgeries. Collagen is used for cosmetic purposes to treat wrinkles and skin aging, as well as in 
vaccines and vitamins [11]. In addition, collagen has attracted attention from pharmaceutical and 
biomaterial-based packaging industries, as it can be used to encapsulate and form edible films [3]. 
Commercial collagen used for biomedical applications is extracted mainly from the skin of pigs 
and cattle. However, the outbreak of prion diseases, such as bovine spongiform encephalopathy, has 
resulted in anxiety among users of collagen derived from cattle. Interest in safer sources of collagen, 
such as pigs, has greatly increased [12]. 

Recently, we reported evidence that a 6-bp deletion (XM_013981330.2: g.−1805_−1810del) 
in 5´-regulatory region of myosin heavy chain 3 (MYH3) is the first functional sequence variant 
(FSV) for red meat color (a∗) and IMF in domestic pigs [2]. We firstly mapped a 488.1-kb critical 
region in porcine chromosome 12 that influences both a* and IMF by a combined linkage-linkage 
disequilibrium analysis in two independent F2 intercross between Korean native pigs (KNPs) and 
Western commercial breeds (i.e., Landrace and Duroc). In this critical region, only the MYH3 
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gene, encoding myosin heavy chain isoform 3, was found to be discriminatingly overexpressed 
in the skeletal muscle of KNPs than in that of Landrace pigs. Subsequently, the MYH3 gene 
was verified as a causal gene for the two traits using transgenic mice, and then detected the 6-bp 
deletion (XM_013981330.2: g.−1805_−1810del) variant in the 5´-promoter region of the MYH3 
gene for which Q allele carriers showed significantly higher values of a* and IMF than q allele 
carriers. Additionally, we demonstrated that this 6-bp deletion variant could abrogate the binding 
of the regulatory myogenic regulatory factors (MRFs, i.e., MYF5, MYOD, MYOG and MRF4) 
and act as a significantly weaker repressor, leading to increased expression of the MYH3 gene in the 
skeletal muscle. Biological mechanism regarding myosin heavy chain and collagen has not well been 
known. Recently, Coelho et al. reported that interaction of discoidin domain receptor 1 (DDR1) 
with myosin motors can contribute to collagen remodeling [13]. However, biological relationship 
between the FSV of MYH3 possessing the domain of myosin motors and collagen content needs 
to be further investigated. Therefore, the aim of this study was to examine the association between 
FSVs located in the 5´-upstreme region of the MYH3 gene and collagen content in crossbred JNP 
and Landrace pigs.

MATERIALS AND METHODS
Ethical approval
All experimental procedures were conducted according to national and institutional guidelines and 
approved by the Ethical Committee of the National Institute of Animal Science, Republic of Korea 
(Approval number: 2017-241).

Animals
A total of 187 animals of the F4 resource population (103 male and 84 female) were established 
by crossing F3 animals derived from intercrossing JNP and Landrace pigs. Animals were raised at 
the experimental farm of the National Institute of Animal Science, Jeju, Korea. They were fed ad 
libitum, and males were not castrated. All F4 experimental animals were slaughtered in the same 
commercial slaughterhouse ( Jeju Livestock cooperatives, Jeju, Korea). The range of slaughter age 
of the pigs used for collagen content analysis was 180-200 days. The Musculus longissimus dorsi, 
Musculus semimembranosus, Musculus triceps brachii and M. biceps femoris from each carcass were used 
for the analysis of collagen content [14].

DNA extraction
Genomic DNA was isolated from blood and muscle using the sucrose-proteinase K method and 
used as a template for polymerase chain reaction (PCR) [15]. The absorbance of the separated 
DNA was measured using a NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific, 
Waltham, MA, USA), and then genomic DNA with an A260/A280 ratio of 1.8 or more was used 
as a template for PCR.

Collagen content
The collagen content was analyzed according to the method described by Choi et al. [16]. After 
4 g of ground meat sample was placed into a triangular flask, 30 mL of a sulfuric acid solution 
was added. The sample was covered with a triangular flask in a dry oven for 16 hours before 
measurement. The hydrolyzable material was put in a 500 mL flask, diluted with distilled water, and 
filtered in a 100 mL triangular flask. 5 mL of the filtered solution was taken and diluted in 100 mL. 
Then, 2 mL of the final diluent was put in a 10 mL test tube, and 1 mL of the oxidizing solution 
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was added. In the blank, 2 mL of distilled water and 1 mL of an oxidation solution were added 
instead of the diluent. samples were incubated at room temperature for 20 minutes, dissolved in 
4-dimethyl-aminobenzaldehyde (60% w/w) in a color reagent (35 mL perchloric acid), mixed with 
1 mL of 2-propanol 65 mL), covered with a cap, and immediately heated in a constant-temperature 
water bath (60℃) for approximately 15 minutes. The amount of hydroxyproline was measured from 
the standard curve, and the collagen content (%) was calculated by multiplying the hydroxyproline 
content by a constant of 8.

Polymerase chain reaction amplification and polymorphism determination
A set of primers was designed for the detection of the FSVs in the MYH3 gene using available 
sequence information (XM_013981330.2). PCR was performed using a Maxime PCR Premix 
kit, and reactions included 20 µL of reaction mixture including 100 ng of DNA, 0.5 nmol of 
MYH3 promoter-specific primers (MYH3_1_F, 5’-TGGTCTTTCCTAATTGGTGACAT-3’, 
MYH3_1_R, 5’-AGTTTTGAGCAAGGCTTTTGTT-3’) and distilled water (iNtRON, 
Seongnam, Korea). PCR conditions were as follows: initial heating was at 95℃ for 5 min, followed 
by 35 cycles of 30 s for denaturation at 94℃, 30 s for annealing at 65℃, and 30 s for an extension 
at 72℃, followed by a final extension at 72℃ for 10 min in a Nexus PCR machine (Eppendorf, 
Hamburg, Germany). And the amplicons were digested with the restriction enzyme, HpyCH4IV 
(NEB, Ipswich, MA, USA). The PCR products were separated on 2.5% agarose gels (Lonza, Basel, 
Switzerland) and visualized by UV illumination with a BioFACT 100 bp plus DNA ladder marker 
(BioFACT, Daejeon, Korea) [2]. 

Allelic and genotypic frequencies
The allele frequencies and heterozygosity (he), polymorphic information contents (PIC), and χ2 
values (p-values) for MYH3 FSVs were calculated using the CERVUS 3.0.3 program [17].

Association analysis
Putative outliers were deleted based on the ascertainment of normality using a Ryan-Joiner (RJ) 
evaluation in the MINITAB program (Minitab, State College, PA, USA). An RJ score ≥ 0.99 was 
used to ascertain normality. The following general linear model (GLM) was fitted to the phenotype 
data to estimate the effect of the FSVs of MYH3 on collagen content using MINITAB:

Yijk = µ +sexi + genotypej + b1Xijk + eijk 

where, Yiik is the observed phenotype, μ is the mean value, genotypei represents the FSVs in 
the MYH3 gene (Q/Q, Q/q, and q/q), X is the carcass weight as a covariate, b1 is the regression 
coefficient and eijk is the random residual. We used Tukey’s multiple comparison method to 
separate means and set the significance level at p < 0.05. The percent phenotypic variance of a trait 
explained by the MYH3 FSV was computed by [(VARreduced−VARfull)/VARreduced] × 100, where 
VARreduced and VARfull are the variances of residuals of a GLM without and with genotypes of the 
MYH3 FSV in the models. 

RESULTS AND DISCUSSION
Distribution of functional sequence variants of the myosin heavy chain 3 gene in 
the Landrace and Jeju native pig crossbred population
The FSVs in the MYH3 gene were genotyped using PCR-restriction fragment length 
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polymorphism (RFLP) in the Landrace and JNP crossbred population. Determination of the 
genotype of the FSV of the MYH3 gene was conducted by PCR amplification and subsequent 
HpyCH4IV digestion. The q/q genotype represents the MYH3 homozygous genotype originating 
from Landrace and Duroc pigs; the Q/Q genotype represents the MYH3 homozygous genotype 
originating from JNPs. The results indicated that both the Q and q alleles were segregating, and all 
three genotypes (QQ, Qq, and qq) were identified for the FSVs of MYH3 (Table 1 and 2, Fig.1; Q 
and q are the Landrace and JNP variants, respectively).

These FSVs in the MYH3 gene had allele frequencies of 0.634 and 0.366 for the Q and q alleles, 
respectively. This indicates a higher frequency of the Q allele than the q allele because the favorable 
Q allele was selected for in this population. The FSVs in the MYH3 genotype had frequencies of 
0.358, 0.551, and 0.091 for QQ, Qq, and qq, respectively, indicating more heterozygous animals 
than homozygous animals were observed in this population. However, the chi-square test results 
revealed that the FSVs were not in Hardy–Weinberg equilibrium (p < 0.05), indicating that 
artificial selection was applied to the QQ genotype animals used in this study. These results confirm 
our expectations that the selection pressure was applied to obtain more favorable alleles in the 
population. In addition, the PIC value was found to be 0.357, suggesting that this population 
showed intermediate polymorphism for these FSVs (Table 2). In a previous study to identify this 
causal variant, the Q allele is associated with higher redness value (a*), increased IMF contents, 
higher Type1 muscle fiber area and increased myoglobin content compared to the q allele in the 
Landrace × JNP crossbred pig population [2,18]. Therefore, we can improve the meat quality of JNP 
× Landrace crossbred population via the marker-assisted selection (MAS) of the FSV of MYH3.

Association analysis between functional sequence variantss of myosin heavy 
chain 3 genotypes and collagen content 
The MYH3 gene encodes a portion of myosin, a contractile protein, which is especially fundamental 
to the proper functioning the Sarboomer of striated/skeletal muscle. MYH3 is also recognized 
as an embryonic myosin heavy chain because it was mainly overexpressed in early mammalian 
development [19].

Table 1. Descriptive statistics for FSVs of MYH3 genotypes muscle collagen content was analyzed in a crossbred pig population (Landrace × Jeju 
native pig)

n Mean SE SD Minimum Median Maximum
Musculus longissimus dorsi 187 1.1212 0.018 0.2465 0.6287 1.0956 1.9746

Musculus semimembranosus 187 1.303 0.0204 0.2795 0.7143 1.2614 2.4495

Musculus biceps femoris 187 1.4036 0.0172 0.2358 0.7557 1.3941 1.9506

Musculus triceps brachii 187 1.3258 0.014 0.1914 0.8317 1.3193 1.7922

Carcass weight 178 76.973 0.86 11.47 47.2 77.3 119.2
FSVs, functional sequence variants; MYH3, myosin heavy chain 3.

Table 2. Genotype frequency, allele frequency, and diversity parameters of the FSVs of the MYH3 variant in a crossbred pig population (Landrace × 
Jeju native pig)

FSVs of MYH3 genotype frequency
χ21) Allele frequency Diversity parameter

QQ (67) Qq (103) qq (17) Q q Ho He PIC2)

0.358 0.551 0.091 5.7260.01 0.634 0.366 0.551 0.466 0.357
1)Hardy-Weinberg equilibrium. Degree of freedom: 1.
2)A PIC value < 0.25 indicates low polymorphism, 0.25 ≤ PIC value ≤ 0.5 indicates intermediate polymorphism, and a PIC value > 0.5 indicates high polymorphism.
FSVs, functional sequence variants; MYH3, myosin heavy chain 3; Ho, observed heterozygosity; He, expected heterozygosity; PIC, polymorphic information content.
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In this study, collagen content was measured in four muscles (M. longissimus dorsi, M. 
semimembranosus, M. triceps brachii and M. biceps femoris) in the Landrace and JNP crossbred 
population. Before the association test, a normality test for collagen content was performed using 
the  RJ method [20]. The results showed an RJ score of 0.990 or higher, indicating that the collagen 
content data followed a normal distribution and could be further analyzed (Fig. 2).

Through analysis of the association between collagen content and FSVs of the MYH3 gene, we 
found that individuals with the QQ genotype had higher collagen content than those with the 
qq genotype in M. longissimus dorsi, M. semimembranosus, M. triceps brachii and M. biceps femoris 
muscles (Table 3, p < 0.05, p = 2.00×10−16, p = 6.66×10−16 and p = 3.31×10−5, respectively). 

Pork collagen has been used since the beginning of artificial skin research, primarily to assist in 

Fig. 1. PCR amplification patterns for the polymorphisms of the FSVs in the porcine MYH3 gene. Allele 
Q and q showed on the agarose gel, respectively. M is 100-bp DNA ladder marker. PCR, polymerase chain 
reaction; FSVs, functional sequence variants; MYH3, myosin heavy chain 3.

Fig. 2. Tests of normality by the Ryan-Joiner method. The vertical axis represents the scale of probabilities, 
and the horizontal axis represents the scale of residual data. (A) Musculus longissimus dorsi, (B) Musculus 
semimembranosus, (C) Musculus triceps brachii and (D) Musculus biceps femoris dorsi.
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the treatment of burns and trauma. When a wound occurs on the skin, a temporary protective film 
such as a silicon dressing is attached until the damaged skin recovers. This prevents water leakage 
from the body, absorbs exudate (liquid coming out of the blood when there is inflammation), and 
prevents invasion and infection by bacteria from the outside. Except for the application of a gel, 
the dressing is a porous membrane made using a polyurethane membrane or chitin, a freeze-dried 
product of pig leather, or the like [12]. However, it is applied in limited situations and is expensive. 
When we computed the percent variance of the MYH3 FSV as the effect size, we found that the 
MYH3 FSV explained up to 39.7% of phenotypic variance (Table 3). This amount of effect size 
of MYH3 FSV can be regarded as a good indication that this FSV could be used in the MAS for 
improving collagen content in this JNP × Landrace crossbred population. With the fixation of QQ 
animals, the collagen content in pork can be improved, meaning that consumers can have better 
quality pork and that the pork industry can benefit from increasing the value of nonpreferred pork 
collagen, which can be used for medical purposes. However, it is necessary to conduct additional 
experiments in other independent populations to confirm the effect size of MYH3 FSV before 
executing the MAS for collagen content. Selection for pigs with more collagen may allow this 
research to be applied in the biomedical area and provide profits to farmers. 
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