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Abstract
Tenderness and taste characteristics of meat are the key determinants of the meat choices 
of consumers. This review summarizes the contemporary research on the molecular mech-
anisms by which postmortem aging of meat improves the tenderness and taste characteris-
tics. The fundamental mechanism by which postmortem aging improves the tenderness of 
meat involves the operation of the calpain system due to apoptosis, resulting in proteolytic 
enzyme-induced degradation of cytoskeletal myofibrillar proteins. The improvement of taste 
characteristics by postmortem aging is mainly explained by the increase in the content of 
taste-related peptides, free amino acids, and nucleotides produced by increased hydrolysis 
activity. This review improves our understanding of the published research on tenderness 
and taste characteristics of meat and provides insights to improve these attributes of meat 
through postmortem aging.
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INTRODUCTION
The sensory properties such as taste, flavor, and tenderness are among the most important determinants 
of meat purchase by consumers [1–3]. Several studies have shown that consumers are willing to pay 
more for better-quality meat [4–6]. Post-slaughter aging is an essential process to enhance the sensory 
properties of meat through the action of proteolytic systems inherent in meat. Industrially, several 
methods are used for the aging of meat to enhance its value. These methods range from traditional 
carcass hanging to storing vacuum-packed meat at refrigerated temperatures for a certain period. In 
general, two techniques are used for meat aging, i.e., dry-aging and wet-aging. Wet-aging has the 
advantage of convenience while dry-aging has the advantage of conferring excellent sensory properties 
[7–9].

Although aging generally improves the sensory properties of meat, the specific conditions for 
maximizing the sensory properties according to the aging method have not been fully established. 
Therefore, it is important to investigate the optimal aging conditions by exploring the rate and extent 
of the aging effect according to the aging method to improve meat quality and value. From that 
perspective, this review summarizes the underlying molecular mechanisms by which aging induces 
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changes in meat quality and discusses the mechanisms and factors for improving the sensory 
properties of aged meat. During aging, the natural enzymes in the meat break down the proteins 
and connective tissue, increasing the tenderness of meat [10,11]. Moreover, during the dry-aging 
process, meat juice is further concentrated in meat and the chemical breakdown of protein and fat 
constituents creates a more intense nutty and meaty flavor [12]. However, the dry-aging process is 
more expensive and time-consuming than the wet-aging process due to high aging shrinkage, trim 
loss, contamination risk, and requirements for aging conditions and space [13,14]. 

The aging process improves both the tenderness the taste characteristics of meat. The 
improvement of the savory taste of meat is largely attributable to the increased content of amino 
acids related to the umami, such as glutamic acid and aspartic acid, caused by proteolysis [15]. With 
the recent advances in omics analysis techniques, several studies have investigated the mechanism of 
the breakdown of meat proteins and the increase of taste-related substances due to aging [16–19]; 
however, the underlying mechanisms are not well characterized. In addition, novel technologies 
or new aging techniques are being developed and applied to enhance the effect of meat aging 
[10,11,20,21]. However, there is a lack of review related to the increase in sensory properties. 
Therefore, this review summarizes the available evidence regarding the molecular mechanism 
of the degradation of proteins and the changes in meat quality and taste characteristics during 
postmortem aging. 

MECHANISM OF POSTMORTEM AGING ON CHANGES IN 
MEAT QUALITY
Several reports have described significant biochemical and biophysical changes during muscle 
conversion to meat, and these changes have a direct effect on meat quality [22–25]. During the 
postmortem aging process, cytoskeletal myofibrillar protein degradation by endogenous proteases 
results in significant improvements in the sensory properties of meat [25]. Meat color, water-
holding capacity (WHC), tenderness, and texture are the major quality attributes of meat [1]. 
Tenderness is the most important attribute influencing beef palatability [25,26] while WHC is 
the most important attribute for the sensory properties of pork [1,27]. Therefore, in this respect, 
improvements in tenderness and WHC have been extensively studied in beef and pork, respectively, 
in relation to the development of aging techniques [11,21]. 

Tenderizing mechanism of postmortem aging
Proteolysis is a major factor in improving meat quality traits such as tenderness and WHC 
[26,27]. Several factors influence the rate and extent of proteolysis such as species, breed, animal 
age, diet, individual muscle, marbling content, and aging method [17,28–31]. The effect of aging 
on the tenderness of beef has long been studied, and many theories have emerged, such as those 
related to calpain, calcium ion, and cathepsin [32]. Among these theories, the calpain system has 
received much attention and is considered a major cause of proteolysis during postmortem storage. 
Proteolysis of myofibrillar proteins has been reported to be the main cause of improvement in meat 
tenderness during postmortem storage [33]. Specifically, the weakening of Z-disks and degradation 
of desmin, titin, troponin-T, and nebulin increase the fragility of myofibrils [34–36]. As shown in 
Fig. 1, the mechanism by which the calpain system affects meat tenderness is summarized into 
four points. First, calpain weakens the interactions between myofilaments and the Z-disk with 
the breakdown of titin and nebulin and fractures the I-band and Z-disk in myofibrils, loosening 
the microstructure of myofibers [35]. Second, the calpain breaks down costamere and desmin, 
deranging the orderly structure of myofibrils or the integrity between myofibrils and peripheral 
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muscles [37]. Third, calpain plays a decisive role in the degradation of tropomyosin, weakening the 
bond between thick and thin filaments [38]. Fourth, calpain degrades troponin-T, a tropomyosin-
binding subunit, weakening the structure of thin actin filaments [39]. 

In general, there is a rapid change in tenderness between 3 and 7 days postmortem, after which 
the rate of change in tenderness slows significantly [36,40]. However, in the case of beef produced 
from innate tough muscles or old cattle muscles, some reports suggest that tenderness may gradually 
improve up to 28 days postmortem [8,41–43]. The aging-induced improvement in tenderness is 
attributable to the decrease in mechanical strength of the intramuscular connective tissue due to 
proteolysis caused by endogenous enzymes [10,44–46]. This decrease in mechanical strength is 
mainly caused by an increase in collagen solubility and dissociation of the structural integrity of 
muscle connective tissue [15,47,48]. The strength and structural integrity of collagen fibrils, usually 
stabilized by proteoglycan, degrade with the progression of postmortem aging. This leads to further 
exposure of the active sites of potential degradative enzymes, such as lysosomal glycosidase or 
β-glucuronidase, further weakening the structural integrity and making the meat tender [15]. 

Recent studies have further clarified the tenderizing mechanism of postmortem aging. A 
schematic illustration of the newly proposed muscle aging mechanisms is presented in Fig. 
2. Tenderizing of postmortem muscle is driven by the calpain system, which depends on the 
concentration of Ca2+ in the sarcoplasm [49], and the increase in Ca2+ concentration in postmortem 
muscle is due to apoptosis [50]. Postmortem aging generates reactive oxygen species (ROS) 

Fig. 1. Schematic illustration of the sites of muscle microstructure collapse due to the activity of muscle 
proteolytic enzyme calpain during aging. (1) Calpain breaks down the titin connecting myosin filament 
and Z-disk to loosen the I-band and Z-disk structures of myofibril. (2) Degradation of costamere and desmin 
by calpain destroys the orderly structure of myofibers and/or the integrity between myofibrils and peripheral 
muscles. (3) Calpain plays a crucial role in the degradation of tropomyosin, thus weakening the interaction 
between myosin filaments and actin filaments. (4) Calpain breaks down troponin-T, a troponin subunit that binds 
to tropomyosin, weakening the structure of actin filaments.
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which induce oxidative stress and apoptosis [51]. Some of the apoptotic proteins released from 
mitochondria in response to ROS participate in regulating apoptosis [52]. These apoptotic enzymes 
participate in the early stages of muscle aging, leading to the degradation of titin and nebulin, as 
well as regulation of the Ca2+-activated enzyme system [53–55]. Activation of apoptotic enzymes 
such as caspase-3 by denitrification induces apoptosis for myofibril fragmentation, as well as 
direct proteolytic activity against calpastatin [56–58]. Moreover, chaperone proteins such as small 
heat shock proteins (sHSPs) have an anti-apoptotic effect [59]. sHSPs delay the postmortem 
tenderizing process by inhibiting the onset of apoptosis by directly binding to key proteins in the 
apoptotic cascade such as cytochrome c and caspase-3 [60]. On the other hand, calpain is a cysteine 
protease, and the cysteine residue at the active site can be modified by protein S-nitrosylation, 
which consequently affects its autolysis and proteolytic activity [61,62]. Protein S-nitrosylation 
modifies the release channels of Ca2+, affecting the rate of Ca2+ release and resulting in muscle 
contraction and altered moisture distribution in myofibrils [63]. In addition, S-nitrosylation inhibits 
the activity of enzymes such as phosphofructokinase involved in postmortem glycolysis, affecting 
the rate of decline in pH, ultimate pH, and meat quality traits including tenderness [64].

Change in water-holding capacity and meat color during postmortem aging
WHC is one of the most important quality traits of fresh meat because it is closely related to 
meat color, texture, and tenderness [1,11]. An increase in water loss is unavoidable due to the 
occurrence of rigor mortis in the process of conversion from muscle to meat. The formation of 
crosslinks between thick and thin filaments within the myofibrils stiffens the muscle fibers and 
leads to the extrusion of intracellular water from the myofibers [65]. Subsequently, with the 
resolution of rigor and initiation of postmortem aging, intracellular water continues to move to 
the surface of the meat and is observed in the form of a purge or drip. However, long-term aged 

Fig. 2. Schematic illustration of tenderizing mechanism by postmortem aging. (1) The calpain system 
activated by Ca2+ plays a leading role in the process of muscle ageing or tenderization. (2) The apoptotic 
enzymes participate in the early stages of muscle aging to degrade cytoskeletal myofibrillar proteins such as 
titin and nebulin and regulate the Ca2+ activating enzyme system. (3) Cysteine residues at the calpain active site 
are modified by protein S-nitrosylation, affecting autolysis and proteolytic activity. (4) The activity of enzymes 
involved in postmortem glycolysis such as phosphofructokinase, can be inhibited by S-nitrosylation and affects 
the quality of aged meat. 
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meat often shows improved WHC due to the degradation of proteins. Postmortem proteolysis 
of structural/cytoskeleton proteins, including desmin, titin, nebulin, and integrin, is associated 
with the improvement of WHC [66–68]. Changes in the microstructure of muscle fibers during 
postmortem aging are believed to improve WHC. First, during postmortem aging, degradation 
of costamere linkages reduces myofibril shrinkage, resulting in more space within muscle fibers to 
retain water [65,68,69]. In addition, the so-called ‘sponge effect’ occurs wherein the myofibrillar 
proteins break down and disturb the drip channels, resulting in water trapping within the myofiber 
[70]. This is the likely underlying mechanism by which aging beef improves the juiciness of steak 
[8,71,72].  

However, the relationship of juiciness of aged meat with tenderness and WHC has not yet been 
clearly identified. Several studies have shown a positive correlation between sensory tenderness 
and juiciness [73,74]. Therefore, the improved juiciness of aged meat is likely attributable to the 
synergistic effect due to the increase in sensory tenderness [10]. Many sensory studies and consumer 
surveys have reported a positive correlation between tenderness and juiciness of meat; however, 
the coefficient of determination (R2) was not high enough and varied depending on the species or 
muscles [75]. Thus, although there is less correlation between objective shear force measurements 
and sensory tenderness of cooked meat, a positive correlation between sensory tenderness and 
juiciness can be inferred. In this respect, some studies have proposed the so-called ‘halo effect’ 
whereby improved tenderness increases the perception of juiciness, and vice versa [76,77]. Indeed, 
there is an increase in WHC associated with the swelling of myofibers during postmortem 
aging, but this does not lead to lower cooking loss [78]. This is because aged meat not only causes 
pronounced shrinkage of myofibers during cooking but also exhibits a significant decrease in 
myofibrillar water after cooking. The water lost during cooking is higher in meat aged for at least 
3–6 days than unaged meat, but this depends on the aging period [79–81]. Compared to un-aged 
meat, the increase in cooking loss in aged meat varies depending on the pre-rigor temperature 
conditions of muscles and sarcomere length [82]. In aged meat, weakened protein structure appears 
to be unable to retain or trap water during cooking because the swelling of muscle fibers is limited 
due to the degradation of myofibrillar and cytoskeletal proteins [83]. However, even if the cooking 
loss of aged meat is high, a recent study showed that juiciness is improved at the same time as the 
early activation of calpain-2, suggesting that postmortem proteolysis may play a role in improving 
the juiciness of aged meat [84].

The meat color, color stability, and WHC of meat undergo significant changes during 
postmortem aging. The surface redness of aged meat is initially improved compared to non-aged 
meat or relatively short-term aged meat [27,85]. The temporary improvement in the redness of 
the aged meat surface is due to a decrease in oxygen consumption of respiratory enzymes within 
mitochondria. However, with the prolongation of the aging period, the oxidative stability of the 
myoglobin or lipid eventually deteriorates. Extended aging period under lighting conditions of meat 
retailers accelerates surface discoloration and promotes off-flavor generation [86,87,88]. Even if 
aging improves the eating quality of meat, discoloration due to metmyoglobin and darkening due to 
surface dehydration as a result of extended aging will inevitably cause economic losses [89,90]. The 
negative effect of extended aging on meat color and oxidative stability is due to the accumulation 
of pro-oxidants (heme and non-heme iron) and the depletion of endogenous reducing compounds 
(NAD+, α-Tocopherol, and β-Carotene) or antioxidants (acylcarnitines, nucleotides, nucleosides, 
and glucuronides) [91,92,93].



Aging mechanism for improving the tenderness and taste of meat

1156  |  https://www.ejast.org https://doi.org/10.5187/jast.2023.e110

CHANGES IN TASTE CHARACTERISTICS OF MEAT DUE 
TO AGING
Postmortem aging causes a significant increase in meat flavor. This phenomenon is related to the 
reducing sugars, the release of free amino acids and peptides, and the increase in the content of 
inosine monophosphate (IMP), guanosine monophosphate (GMP), inosine, and hypoxanthine 
due to the breakdown of ribonucleotides [94–96]. In addition, flavor enhancement in aged beef is 
associated with the production of other flavor-related volatile compounds such as n-aldehydes (e.g., 
pentanal and hexanal) and ketones, which also contain lipid oxidation-related products [10,12,97]. 
These flavor precursors interact with each other throughout the cooking process, generating 
new flavor components [12]. Therefore, the development of meat flavor can be considered as a 
dynamically evolving process, as illustrated in Fig. 3.

Mechanism of improvement in meat flavor during postmortem aging
The improvement of meat taste characteristics during aging is mainly due to hydrolysis activity. In 
addition, the activity of various hydrolases such as calpain, which fragments the muscle structure, 
and cathepsin, which is involved in the production of taste peptides, also plays an important 
role in improving taste characteristics [95]. During the longer aging period, more taste-related 
peptides and free amino acids are broken down due to the enzymatic activity in meat. Among 
them, aliphatic amino acids are related to the sweetness of meat while Cys and Met, containing a 
sulfur atom, and Glu and Asp are associated with the umami taste [98]. Furthermore, during aging, 
carbohydrates are broken down into sugars, enhancing the sweetness of meat, and fats and fat-like 
membrane molecules are broken down into aromatic fatty acids. All these end-products produced 
during postmortem aging contribute to the intensity of meat aroma, nut-like flavor, and umami 
taste of cooked aged meat [98,99].  

The taste characteristics of aged meat, such as umami intensity or flavor, are not determined by 
any single factor, but rather by the complex interaction between sulfur-containing amino acids, 
aspartic acid, glutamic acid, nucleotide compounds, and β-histidyl dipeptides [98,100]. Moreover, 

Fig. 3. Schematic representation of meat flavor developing reactions from taste-active water-soluble 
precursors. Adapted from Dashdorj et al. [98] with permission of Springer Nature.
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postmortem energy metabolism also affects the taste of meat by causing an increase in sugar 
fragments through the degradation of glycogen content, resulting in an increase in the substrate 
for the Maillard reaction [101]. In addition, prolonging the aging period to > 28 days was found 
to considerably increase the aromatic volatile compounds [59,102]. While it is generally agreed 
that aging improves meat flavor, prolonged aging may adversely affect the flavor. Aging of beef for 
4 days at 4°C desirably improves the sweetness and beefy flavor; however, further prolongation of 
the aging time may increase undesirable taste characteristics such as bitterness and sourness [95]. 
In addition, on prolonged aging, free fatty acids (FFAs) that are easy to oxidize are released, which 
react with proteins and other flavor precursors to negatively affect the aroma and/or flavor of aged 
meat [103]. Therefore, controlling the appropriate aging method is necessary to maximize the 
desirable taste and flavor of aged meat and minimize the off-flavor and off-odor.

Formation of taste-enhancing peptides by aging
Several peptides that are released during proteolysis in aging meat affect the taste characteristics. 
These peptides show different taste characteristics depending on the specific size (i.e., fraction). The 
small peptides (< 5 kDa) that are most noticeable and reproducible during postmortem aging are 
fragments of troponin T, nebulin, pro-collagen, and cipher proteins [104–106]. In particular, 1- to 
5-kDa peptides, so-called Maillard peptides, and 3- to 10-kDa peptides were found to improve the 
flavor and taste intensity of grilled beef [107,108]. In addition, 1- to 10-kDa and 0.5- to 1-kDa 
fractions significantly inhibit the sourness of beef and pork [109,110]. 

In the past few decades, many peptides related to the taste characteristics of meat have been 
reported. The content of oligopeptides increases during the refrigerated aging of meat. Among 
the oligopeptides, glutamic acid especially improves the savory taste of beef [111]. Octapeptide 
(Lys-Gly-Asp-Glu-Glu-Ser-Leu-Ala), called “beefy meaty peptide”, also occurs naturally during 
postmortem aging and is responsible for the delicious taste of beef [112]. In addition, the peptides 
(Glu-Glu, Glu-Val, Ala-Asp-Glu, Ala-Glu-Asp, Asp-Glu-Glu, and Ser-Pro-Glu) found in 
chicken are related to umami intensity, and the peptides (Glu-Asp-Glu, Asp-Glu-Ser, and Ser-
Glu-Glu) found in fish hydrolysates are related to savory taste [113]. The peptide (Ala-Pro-Pro-
Pro-Pro-Ala-Glu-Val-His-Glu-Val) found in pork suppresses sourness [110]. 

On the other hand, there is no clear consensus on the effect of naturally occurring dipeptides 
produced during aging on the taste characteristics. These dipeptides include carnosine, β-alanyl-L-
histidine; anserine, β-alanyl-L-1-methylhistidine; balenine, β-alanyl-L-3-methylhistidine. Some 
studies have found a positive effect of these dipeptides on the taste characteristics of meat [114]. 
However, other reports suggest that anserine and carnosine produce bitterness if the presence of 
glutamic acid oligomers such as Glu-Leu, Pro-Glu, and Val-Glu is not effective in masking the 
bitter taste [115]. In addition, some dipeptides may indirectly affect the taste characteristics of meat. 
For example, carnosine and histidine, including dipeptide anserine, destroy unsaturated aldehydic 
products, reducing the lipid oxidation products and minimizing the rancidity in meat [116].

Studies have investigated the interrelationship between peptides and taste characteristics using 
various model systems. One such study evaluated the taste of synthesized oligopeptides containing 
Phe, Tyr, and Leu and found that hydrophobic residues in the peptides function as a bitter taste 
determinant site. Moreover, the intensity of its bitterness increased when the hydrophobic amino 
acid with the L-configuration was located at the C terminus and the number of hydrophobic 
amino acids at the C-terminal increased [117]. In addition, as a result of identifying amino acid 
compositions and amino acid sequences by separating two peptide fractions from a commercial 
beef extract as a macromolecular meaty flavor enhancer, it was confirmed that two peptides 
were composed of collagen and tropomyosin [118]. These results suggested that collagen and 
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tropomyosin are precursors of the macromolecular meaty flavor enhancer. Studies involving other 
types of meat have identified different strips of amino acids responsible for the unique taste of 
individual meats. This means that the function of small peptides that affect the taste characteristics 
of meat depends on the type of meat (i.e., species or muscles). 

Production of free amino acids during postmortem aging
Free amino acids (FAAs), which are related to improving the taste of meat, show dramatic changes 
during postmortem aging. Many studies have reported concentrated taste-activated compounds 
produced during the aging of meat; of these, FAAs in particular, are cited as a major contributor to 
the taste of aged meat [98]. Dry aging offers a great advantage in this regard as it can promote an 
increase in the FAA content. This increased FAA content directly increases the flavor of the meat. 
In addition, as a Maillard reaction and a Strecker degradation substrate, FAAs react to form aroma-
active components and affect various taste characteristics [119]. For example, glutamine, alanine, 
glycine, methionine, and serine are related to sweetness, while leucine, isoleucine, phenylalanine, 
tyrosine, and valine are related to bitterness. Furthermore, cysteine, methionine, and glutamic acid 
are associated with umami, while aspartic acid and histidine are associated with sourness [120]. 
Some amino acids have more than one taste characteristic. Valine has a combination of bitterness 
and slight sweetness, threonine and lysine have sweetness, slight bitterness, and sourness, and 
aspartic acid has both sourness and sweetness [94, 120]. As shown in Fig. 3, all these water-soluble 
metabolites affect the flavor of cooked meat to some extent as precursors to the Maillard reaction or 
by themselves. 

In general, dry-aging of beef increases the content of FAAs such as leucine, phenylalanine, valine, 
tyrosine, glutamate, and tryptophan compared to wet-aging [119]. In addition, the FAA content 
increases with the decrease in the moisture content of dry-aged beef; however, FAAs such as 
glycine, arginine, and alanine decrease with the decrease in moisture content. Therefore, the increase 
in FAA content in dry-aged beef cannot be entirely explained by the changes in moisture content. 
Rather, the greater content of taste-active compounds in dry-aged beef compared to wet-aged beef 
is likely attributable to the concentration effect of moisture evaporation. Studies have shown that 
the difference in the concentration of metabolites and the rate of protein degradation due to the 
evaporation of moisture can increase the FAA content [120,121].

Two main mechanisms promote the production of FAAs during postmortem aging: proteolytic 
enzyme activity and microbial activity. The proteolytic enzymes that cause hydrolysis of proteins 
include endonucleases (such as calpain and cathepsin) and exonucleases (such as peptidase and 
aminopeptidase) that release amino peptidase C and H from muscles [122–124]. However, 
the endogenous enzymes in dry-aged beef can be inactivated with an extension of the aging 
time. Therefore, further hydrolysis of protein in dry-aged beef may be related to the action of 
microorganisms in the dry-aged process [119]. In a study, dry-aging of beef for 28 days led to a 
significant increase in mold distribution from 1.22% to 11.67%, which improved the flavor and 
tenderness [125]. This is because the growth of mold and yeast during the dry-aging process 
can induce additional proteolysis of dry-aged beef by activating muscle aminopeptidase and/or 
proteolytic enzymes [126,127]. The growth of beneficial molds or fungi during dry-aging of beef 
releases protease and collagenase, and breaks down myofibrillar proteins and connective tissue to 
improve the taste and flavor of meat. 

Changes in taste-related chemicals during postmortem aging
One of the most notable chemicals in relation to changes in taste of aged meat is nucleotides. 
In particular, disodium 5-inosinate (5’-IMP) and disodium 5-guanosinate (5’-GMP), the so-
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called taste nucleotides, have a positive effect on meat taste and umami intensity [128,129]. IMP 
is widely known to improve the flavor and palatability of meat. The IMP content changes during 
postmortem aging. Therefore, changes in meat taste during aging are related to changes in IMP 
content, especially glutamic acid and aspartic acid, which have a synergistic effect on amplifying the 
umami intensity [15,99,130, 131]. In a study, the change in flavor intensity of high-marbling beef 
was consistent with the change in umami intensity [122]. 

The aging method also affects the extent of change in the IMP content. Therefore, the taste 
of meat varies considerably depending on the aging method. The IMP content in beef decreases 
rapidly during dry-aging compared to wet-aging [119,120,128]. Dry-aging increases the activity 
of enzymes related to IMP degradation, reducing IMP content which can negatively affect the 
taste of meat. Furthermore, in dry-aged beef, hypoxanthine produced by further degradation of 
IMP increases the bitterness of meat [119]. On the other hand, low-temperature aging not only 
greatly increases the IMP content but also induces the formation of GMP, resulting in a significant 
increase in the saltness and umami intensity of chicken and pork. However, the changes in IMP 
and GMP in cooked beef were found to be minimal or even undetectable [98].

The content of reducing sugars, which provides a desirable sweetness for meat, is lower in wet-
aged beef than in dry-aged beef [124]. Beef contains reducing sugars, such as glucose, fructose, 
and ribose, which are formed by glycolysis and adenosine triphosphate (ATP) degradation [98]. 
These reducing sugars not only confer sweetness but also react with amino acids to produce volatile 
flavor components. For example, ribose and cysteine form many sulfur compounds by the Maillard 
reaction [98]. Maillard reaction refers to the reaction between a carbonyl compound (such as 
reducing sugars) and an amino compound (such as amino acids or proteins). This reaction produces 
sulfur and nitrogen compounds, such as pyrazine, resulting in the formation of brown or even black 
macromolecular substance melanoid or pseudomelanins [110]. The final product of the Maillard 
reaction varies depending on the substrate and affects the taste of meat. For example, cysteine and 
glucose mainly produce sulfide, while cysteine and glucose produce more pyrazines and furans 
under oxidative conditions [132]. Glutathione and glucose have a meat-like taste if they cause a 
thermal reaction, with or without chicken fat/oxidized chicken fat [133]. With the prolongation 
of the aging period of beef, the content of two sulfur compounds (methyl mercaptan and dimethyl 
disulfide) and one pyrazine (2-methyl pyrazine) showed a significant increase [134]. These sulfur 
compounds and pyrazine have a low odor detection threshold and play an important role in the 
flavor and taste of cooked beef.

CONCLUSION
Many studies have shown that the aging of meat improves both the tenderness of meat and 
the taste characteristics by producing taste-related substances. The fundamental mechanism by 
which aging improves the tenderness of meat involves the operation of the calpain system due to 
apoptosis, resulting in proteolytic enzyme-induced degradation of cytoskeletal myofibrillar proteins. 
The improvement of taste characteristics by aging is mainly explained by an increase in the content 
of taste-related peptides, free amino acids, and nucleotides produced by increased hydrolysis activity. 
However, the method or conditions of aging greatly influence the improvement of the tenderness 
and/or taste characteristics of meat. More robust studies on meat aging are required to obtain 
optimal tenderness and taste of different types of meat.
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