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Abstract
This study estimated the heritabilities (h2) and genetic and phenotypic correlations between 
reproductive traits, including calving interval (CI), age at first calving (AFC), gestation length 
(GL), number of artificial inseminations per conception (NAIPC), and carcass traits, including 
carcass weight (CWT), eye muscle area (EMA), backfat thickness (BF), and marbling score 
(MS) in Korean Hanwoo cows. In addition, the accuracy of genomic predictions of breeding 
values was evaluated by applying the genomic best linear unbiased prediction (GBLUP) and 
the weighted GBLUP (WGBLUP) method. The phenotypic data for reproductive and carcass 
traits were collected from 1,544 Hanwoo cows, and all animals were genotyped using Illu-
mina Bovine 50K single nucleotide polymorphism (SNP) chip. The genetic parameters were 
estimated using a multi-trait animal model using the MTG2 program. The estimated h2 for CI, 
AFC, GL, NAIPC, CWT, EMA, BF, and MS were 0.10, 0.13, 0.17, 0.11, 0.37, 0.35, 0.27, and 
0.45, respectively, according to the GBLUP model. The GBLUP accuracy estimates ranged 
from 0.51 to 0.74, while the WGBLUP accuracy estimates for the traits under study ranged 
from 0.51 to 0.79. Strong and favorable genetic correlations were observed between GL 
and NAIPC (0.61), CWT and EMA (0.60), NAIPC and CWT (0.49), AFC and CWT (0.48), CI 
and GL (0.36), BF and MS (0.35), NAIPC and EMA (0.35), CI and BF (0.30), EMA and MS 
(0.28), CI and AFC (0.26), AFC and EMA (0.24), and AFC and BF (0.21). The present study 
identified low to moderate positive genetic correlations between reproductive and CWT traits, 
suggesting that a heavier body weight may lead to a longer CI, AFC, GL, and NAIPC. The 
moderately positive genetic correlation between CWT and AFC, and NAIPC, with a pheno-
typic correlation of nearly zero, suggesting that the genotype-environment interactions are 
more likely to be responsible for the phenotypic manifestation of these traits. As a result, the 
inclusion of these traits by breeders as selection criteria may present a good opportunity for 
developing a selection index to increase the response to the selection and identification of 
candidate animals, which can result in significantly increased profitability of production sys-
tems.
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INTRODUCTION
Hanwoo is one of the oldest autochthonous cattle breeds in the world. Up to the 1960s, it was used 
primarily for farming on the Korean peninsula [1]. The Hanwoo has steadily been converted by 
Korean farmers from agricultural animals to beef cattle since the 1960s. The meat of choice in recent 
years has been locally raised Korean cattle, and it is priced accordingly. Hanwoo beef is renowned 
for its thick marbling, flavorful beefiness, and somewhat sweet flavor. It is also healthier than meat 
from other cattle breeds because it contains more omega-3 fatty acids with less cholesterol [2].

Reproduction traits play a vital role in the beef cattle industry as they directly influence the 
efficiency and profitability of production systems. Key reproductive traits, such as calving interval 
(CI), age at first calving (AFC), gestation length (GL), and number of artificial inseminations per 
conception (NAIPC), are of great importance in beef cattle breeding programs. These traits not 
only affect the reproductive performance of individual animals but also have significant impacts 
on overall herd productivity and management. A shorter calving interval enables more frequent 
calf production, leading to increased productivity and potential economic gains. It also facilitates 
efficient management practices such as grouping calves for marketing and optimizing nutrition 
management. AFC influences lifetime productivity and profitability, as early maturing females have 
an extended reproductive lifespan, resulting in a higher cumulative number of calves produced. 
Achieving optimal a AFC maximizes heifer utilization and minimizes costs associated with delayed 
breeding. GL, influencing reproductive efficiency and overall management, demands accurate 
knowledge for optimal calving planning, timely calving assistance, postpartum care. Furthermore, 
comprehending the genetic control of GL informs breeding strategies to achieve desired calving 
seasons and synchronization protocols. The NAIPC is crucial for reproductive success, with higher 
conception rates and fewer inseminations reducing costs while expediting genetic progress through 
more efficient use of superior sires. Improving fertility and reducing artificial inseminations enhance 
reproductive performance and drive increased profitability in beef cattle operations [3]. Challenges 
such as low reproductive capacity and infertility can result in extended durations between calvings, 
requiring additional interventions such as extra inseminations, increased veterinary attention, and 
hormonal treatments [4]. These interventions can disrupt current and subsequent lactations, leading 
to decreased productivity. 

In cow breeding systems, the breed, sex, class, and location affect reproduction differently [5]. 
The outstanding performance of male and female reproduction is a requirement for effective beef 
production techniques. Successfully incorporating reproductive features into genetic improvement 
projects requires advances in analysis techniques and whole-herd reporting [5]. The estimated 
breeding value (EBV) and the reliability of anticipated breeding values (EBVs) are critical for 
selecting superior offspring to replace the present generation. The reliability of EBVs can be 
influenced by several factors, including selection intensity, pedigree errors, and generation interval [6]. 
According to the most recent studies, reproduction should be prioritized in a traditional cow-calf 
operation to maximize profitability. Even in a fully integrated cattle farm, reproduction necessitates 
an equal emphasis on attributes related to consumption and output. Genomic selection can give a 
large boost to the existing rates of genetic gain for beef by enhancing the accuracy of reproductive 
traits. The problem for cattle breeding is to improve the genetic variations identified by genomic 
estimations for those aspects of high genetic value that have less precision at the time of selection. 
The accuracy of genomic selection is currently poorer in beef cattle than in dairy cattle because of 
the relatively limited sample size with phenotypes and genotypes used to refine genomic prediction 
equations. For common heritable features, such as female reproductive traits, additional genotyped 
and phenotyped animals are needed to improve the accuracy of genomic predictions in beef cattle.
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The Korean beef sector is seeing increased demand for genetically improving carcass qualities. 
The key qualities in the Hanwoo breeding program that were chosen and included in a selection 
index to boost the profitability of the meat industry were the carcass weight (CWT), back fat 
thickness (BF), eye muscle area (EMA), and marbling score (MS).

The genetic architecture of economically significant traits has been investigated regularly across 
many cattle populations since genotyping tools and enhanced genetic evaluation methodology 
emerged. Genome-wide association analyses have recently been used to find single nucleotide 
polymorphisms (SNPs) associated with reproduction traits in cows [7].

The correlations generally indicate how closely two traits are related [8]. A deeper knowledge of 
the common biological pathways and the causation linkages between two traits may be achieved 
by the genetic correlation, which explains the genetic relationship between two traits [9]. A 
strong correlation between two variables indicates their strong relationships and vice versa [10]. 
Typically, the correlation of the breeding values of traits is used to define the genetic correlation 
[11]. The genes contributing to the traits are typically co-inherited when two traits are significantly 
genetically connected. The phenotypic and genetic correlations are powerful tools for predicting 
how one trait would respond to selection due to selection on another [8]. When selecting for overall 
merit incorporating multiple traits, the genetic correlation reflects the degree to which two traits are 
affected by the same genes or genes present within the same chromosome. According to calculations 
of the genetic correlation between two traits, selection for one trait may indirectly affect the genetic 
response for the other trait [12]. The pleiotropy of genes is the leading cause of the correlation, but 
linkage disequilibrium can also play a role [11]. A thorough understanding of the genetic variation 
of economically significant reproduction and production traits and precise estimation of genetic and 
phenotypic correlations of economically significant traits are also necessary for establishing effective 
genetic improvement programs [13]. Nevertheless, the genetic and phenotypic relationships 
between the reproductive and carcass traits of Korean Hanwoo cattle are poorly understood. The 
genetic parameters, genomic prediction accuracy, and correlations (phenotypic and genetic) among 
reproductive and carcass traits in Hanwoo cows were calculated to achieve these goals.

MATERIALS AND METHODS
Animal phenotypes
The data were collected using an existing database from 1,544 Hanwoo cows born between 2007 
and 2020 and slaughtered between 2018 and 2022 and were part of nine (9) local livestock farms 
spread over the Gyeongsangbuk-do region in South Korea. All cows were slaughtered between 
24 and 178 months of age. The analysis included reproductive traits, such as CI, AFC, GL, and 
the NAIPC, as well as the carcass traits like CWT, EMA, BF, and MS. The Animal Care and Use 
Committee’s permission was not required for this study because all the data were obtained from the 
existing database. After a quality assessment, the remaining data included the values for CI ranging 
from 242 to 601 days, AFC between 499 and 999 days, GL between 252 and 337 days, CWT 
between 160 and 541 kg, EMA between 22 and 131 cm2, BF between 2 and 39 mm, and MS 
scores between 1 and 9. The records of animals with a NAIPC above four were eliminated from the 
dataset. The Korean carcass grading procedure by the National Livestock Cooperatives Federation 
was used to record the phenotypic data for carcass traits, including CWT, EMA, BF, and MS. The 
CWT was measured on samples taken after 24 hours postmortem at the end of refrigeration. EMA 
was measured using a dot-grid method with a cross-sectional slice between the 13th rib and the 
1st lumbar vertebrae perpendicular to the vertebral column, where BF was also measured. A visual 
assessment of the MS was conducted using a categorical system of nine levels, based on the Korean 
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Livestock Products Grading Guideline, ranging from 1 (no marbling) to 9 (high marbling). The 
details of phenotypic distribution information for the studied animals are presented in Fig. 1.

Genotypic data
The 1,544 Hanwoo cows used in this study were genotyped using Illumina Bovine 50K SNP 
Chip (Illumina, San Diego, CA, USA), in which 52,116 SNPs were embedded. The blood samples 
collected by veterinarians were used to obtain the DNA. SNPs located on sex chromosomes 
and with unknown and duplicate positions were removed for further quality control (QC) 
procedures. Several QC thresholds were set to remove poor-quality SNPs for further analysis. 
SNPs were discarded from the analysis when the SNP call rate was less than 90%, individuals 
with a genotyping call rate less than 90%, and minor allele frequency (MAF) was less than 1% 
(monomorphic). The genotype frequency significantly deviated (p < 0.000001) from Hardy–
Weinberg Equilibrium (HWE). The identity-by-state (IBS) test was performed to determine if 
there were similar individuals or genotyping errors in the datasets. The pair of individuals showing 
a similarity rate > 99% indicates an identical animal or error in genotyping. The entire QC process 
and IBS test were performed through PLINK v1.9 [14]. Furthermore, the missing alleles were 
imputed using Beagle v5.4 software [15]. After IBS and QC, 1,526 animals with genotypes of 
41,445 SNPs were available for further analysis.

Statistical analysis
Genomic best linear unbiased prediction (GBLUP)
The dataset fit for an animal model with a genomic relationship matrix (GRM) was performed to 
obtain the breeding values, including 1,103 complete records of all eight traits. The birth year and 
birth season were combined into one composite fixed effect. The fixed covariate of age at slaughter 
was also fitted with traits. The additive genetic effect of the animal was fitted as a random genetic 
component in the model. The genomic estimated breeding values (GEBV) were predicted using 
MTG2 v2.2 computer program [16]. The multi-trait animal model was implemented as follows [17]: 

where y represents the vector of phenotypic records (trait) for an n-animal sample; Xb is the fixed 
effects [18]; Zu is the overall marker loci which are assumed to equal the vector of breeding values 
(a); e is the vector of random residual effect which is assumed to be normally distributed with N (0, 

2
eIσ ). In addition, var(u) = 2

uGσ  where 2
uGσ  is the genetic variance, and G denotes the GRM, which was 

constructed using the following equation [17]:

where the marker matrix M has dimensions of n × m; n is the number of individuals; m is the 
number of markers used. The element of the P matrix was calculated using the formula, Pi  = 2 (Pi – 
0.5), where Pi represents the MAF of the marker at locus i. (M−P) represents the incidence matrix (Z) 
for markers.

The GRM was constructed using the genome-wide complex trait analysis (GCTA) tools 
developed by Yang et al. [19], which effectively retains the genomic relationship between animals 
[17].
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Fig. 1. Phenotypic distribution. (A) Reproductive traits and (B) Carcass traits in Hanwoo cows. The red 
dashed lines indicate the mean of the trait. CI, calving interval; AFC, age at first calving; GL, gestation length; 
NAIPC, number of artificial inseminations per conception; CWT, carcass weight; EMA, eye muscle area; BF, 
backfat thickness; MS, marbling score.

A

B
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Weighted genomic best linear unbiased prediction (WGBLUP)
The WGBLUP model and inferences were the same as the above-described GBLUP technique, 
which had a different way of constructing the matrix G. The G-matrix above was developed 
assuming that each SNP explains the same proportion of genetic variance [20]. Wang et al. [21] 
introduced the WGBLUP method and used the weighted G (G*) for significant SNPs with 
comparatively substantial effects. This GRM G* was constructed as follows [17]:

( )
1

2 1
n

i i
i

ZDZG
p p

′

=

=
−∑

where Z, pi, and n are the same as GBLUP, and D is the diagonal matrix in the WGBLUP 
technique, and its values were determined by the weights derived from the SNP solutions discussed 
by Wang et al. [21]. Following Strandén and Garrick [22], the following can be derived:

where û is the vector of estimated SNP effects, and ĝ is a vector of GEBV from only genotyped 
individuals. The weight for SNP i in this study was calculated as 2

iu . Constructing an algorithm for 
predicting D from GBLUP is possible using the above equation. The algorithm was as follows for 
the iterative steps of the WGBLUP, as stated by Wang et al. [21]: 
ⅰ. Set t = 0, D(t) = I, where t is the iteration number, and I denotes the identity matrix.
ⅱ. �The construct matrix Gt = ZD(t)Zλ, where t is the iteration number; The incidence matrix Z 

equals the matrix M minus matrix P, in which M is n ⅹ m where n is the number of individuals 
and m is the number of markers used, and P represents to 2pi.

ⅲ. Compute genomic EBV (GEBV, ĝ) utilizing the GBLUP method.
ⅳ. Calculate SNP effects of all SNP as 		           .
ⅴ. Calculate SNP weight as		            , where i is the ith SNP [23].
ⅵ. Normalize matrix 	            .

ⅶ. Construct the matrix G(t+1) = ZD(t+1)Z’λ.
ⅷ. t = t+1.
ⅸ. Exit or loop to steps iii or iv.

Breeding values were predicted using BLUPF90+ software [24], while the calculation of SNP 
effects for WGBLUP was performed using the postGSf90 software [25].

Estimation of variance components and heritability
The total phenotypic variance (
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Estimation of genomic estimated breeding value
The GEBV of an animal i was calculated after estimating the marker effects using the following 
formula below:

where m is the number of markers;  is the individual i genotype at marker loci ĝj;  is the allele 
substitution effect at locus marker j.

Estimation of the model accuracy
The following formula was used to estimate the GEBV accuracy for an animal i [26]:

where 21i
g

PEVAccuracy
σ

= −
 is the additive genetic variance of each trait, and PEV is the predicted error variance of 

the GEBV for each animal. The inverse of the coefficient matrix of the mixed model equation, as 
previously defined [17], can be used to calculate each PEV estimate in each individual. For each 
animal and trait, this study first calculated the standard error of prediction (or the square root of 
PEV), which was transformed into an estimate of the PEV. The only other element in the equation 
is the additive genetic variance or 21i

g

PEVAccuracy
σ

= −
. Each trait was calculated individually using the restricted 

maximum likelihood (REML) method from the same dataset.

Genetic and phenotypic correlation
The genetic and phenotypic (co)variances were estimated using pairwise bivariate animal model 
implemented in MTG2 v2.22 software. The animal model for the analysis of two traits or bivariate 
analysis is written as [27]:

where, y1 and y2 represents the observation vectors corresponding to individuals for traits 1 and 2. The 
vectors b1 and b2 denotes the fixed effects for traits 1 and 2, while u1 and u2 are vectors representing the 
additive genetic effects for traits 1 and 2, respectively. The e1 and e2 are the vectors of residual effects for 
traits 1 and 2. X and Z are the incidence matrices related to effects b and u, respectively.

The genetic (rg), and phenotypic (rp) correlations were estimated using the following formula:
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In addition, the coefficient of the genetic variation (CVg) was calculated as the square root of the 
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RESULTS AND DISCUSSION
Phenotypes and genotypes
Table 1 lists the summary statistics (mean, maximum, minimum, standard deviations, and 
phenotypic coefficient of variation) of the studied traits of 1,103 animals consisting of the Hanwoo 
population. The mean values for CI, AFC, GL, NAIPC, CWT, EMA, BF, and MS in this study 
were 378.43 days, 741.19 days, 286.45 days, 1.29, 374.86 kg, 87.81 cm2, 13.49 mm and 4.08, 
respectively. NAIPC (49.35%) showed the highest phenotypic variability. On the other hand, the 
phenotypic variability was lower in the GL among the reproductive traits and in the CWT among 
the carcass traits. The mean values for the reproductive traits are lower than those published earlier 
[28–32] and higher than in other studies [33,34]. Noticeable differences in the sample sizes among 
studies were found, which might explain some of the variations of estimation in the present study 
and other reports. A longer calving interval is often related to lower fertility due to an undesirable 
conception rate. A recent report [35] found that the average values for CWT, EMA, BF, and MS 
were 447 kg, 93.75 cm2, 12.80 mm, and 4.89, respectively, in the Hanwoo steer population. Another 
experiment on the Hanwoo population conducted over a period from 1989 to 2015 reported that 
the average for CWT, EMA, BF, and MS at approximately 24 months of slaughter age was 343.96 
kg, 78.90 cm2, 8.71 mm, and 3.33, respectively [36].

A set of 41,445 common SNPs was selected after the QC test, which covered 79.52% of 
initial SNPs on all 29 Bos taurus autosomes (BTA). The markers were unsteadily distributed with 
substantial over-representation on certain chromosomes. BTA 1 contains the highest number of 
SNP markers (2,614), covering a length of 52.10 Mb, while BTA 28 had the lowest number of 
SNPs (714). Finally, Table 2 lists the SNP information after the IBS test and QC procedure.

Heritability estimation
The h2 and variance components were estimated with standard errors for all reproductive and 
carcass traits using the markers and phenotypic information, as presented in Table 3. The estimates 
of h2 for CI, AFC, GL, NAIPC, CWT, EMA, BF, and MS were 0.10 ± 0.05, 0.13 ± 0.05, 0.17 ± 
0.06, 0.11 ± 0.04, 0.37 ± 0.07, 0.35 ± 0.07, 0.27 ± 0.06, and 0.45 ± 0.07, respectively. The average h2 
values for the carcass and reproductive traits were estimated to be 0.13 and 0.36, respectively. Higher 
h2 values were observed in the GL among the reproductive traits and MS among the carcass traits. 

Table 1. Descriptive statistics of the reproductive and carcass traits
Traits N Mean SD Max Min CV (%)

CI (days) 1,103 378.43 53.82 601 242 14.22

AFC (days) 1,103 741.19 73.86 999 499 9.97

GL (days) 1,103 286.45 6.72 337 252 2.35

NAIPC (1-4) 1,103 1.29 0.64 4 1 49.35

CWT (kg) 1,103 374.86 49.93 541 160 13.32

EMA (cm2) 1,103 87.81 12.81 131 22 14.58

BF (mm) 1,103 13.49 5.84 39 2 43.28

MS (1–9) 1,103 4.08 1.93 9 1 47.31
N, number of individuals; CV, coefficient of variation; CI, calving interval; AFC, age at first calving; GL, gestation length; NAIPC, number of artificial inseminations per conception; 
CWT, carcass weight; EMA, eye muscle area; BF, backfat thickness; MS, marbling score.

% 100g
gCV

x
σ

= ×



Genetic correlations and prediction for Hanwoo reproductive and carcass traits

690  |  https://www.ejast.org https://doi.org/10.5187/jast.2023.e75

For the reproductive traits in this study, the estimated h2 values were in the range of low h2. The 
observed low h2 estimates were comparable to previously reported estimates in other beef breeds. 
Lopez et al. [34] reported low h2 estimates for a CI of 0.01, GL of 0.14 in Hanwoo cattle, and high 
h2 estimates for an AFC of 0.08 in the same breed. In Japanese Black (Wagyu) cattle, h2 estimates 
of 0.049 [31] and 0.047 [37] for CI, 0.215 [37], and 0.158 [31] for AFC, and 0.020 for NAIPC [31] 
were described. Yagüe et al. [32] reported estimated h2 of 0.085, 0.037, and 0.071 for CI, GL, and 
NAIPC, respectively. Several studies reported the estimates of heritability h2 for CI was 0.222 in 
Jersey × Red Sindhi [38], 0.105 [39], and 0.02 [40] in Nelore cattle, and 0.09 in Brahman-Angus 
cattle [41]. Alejandro et al. [42] reported a higher h2 of 0.20 for AFC in Simmental cattle. 

The h2 estimates for carcass traits in this study differ considerably from those obtained in previous 
studies by Naserkheil et al. [43]. They reported the h2 values for CWT, EMA, BF, and MS of 0.28, 
0.46, 0.57, and 0.59, respectively, using the pedigree-based GBLUP method. Another report on 

Table 2. SNP statistics after QC for Hanwoo autosomes

BTA No. of  SNPs
before QC

No. of SNPs
after QC

Remove
frequency

Average
distance (kb)

Standard
deviation (kb)

Min
distance (kb)

Max
distance (kb)

Total
distance (Mb)

1 3,221 2,614 0.23 60.50 54.60 0.05 936.23 52.10

2 2,756 2,181 0.26 62.70 68.00 0.08 1,087.31 84.73

3 2,579 2,038 0.27 59.50 62.30 0.01 863.15 42.65

4 2,477 1,932 0.28 62.10 53.20 0.03 507.93 83.84

5 2,154 1,662 0.30 72.90 70.60 0.04 818.54 113.01

6 3,157 2,526 0.25 47.10 56.80 0.03 1,601.81 83.13

7 2,478 2,020 0.23 55.70 66.30 0.13 1,177.03 63.54

8 2,243 1,776 0.26 63.70 54.20 0.08 547.23 51.10

9 2,073 1,623 0.28 65.00 62.70 0.45 642.76 62.10

10 2,355 1,872 0.26 55.70 92.80 0.07 ,3259.34 118.98

11 2,179 1,717 0.27 62.50 58.90 0.13 833.19 121.14

12 1,650 1,252 0.32 72.60 120.60 0.24 2,470.22 46.18

13 1,681 1,331 0.26 63.00 55.20 0.07 715.70 65.16

14 2,266 1,806 0.25 46.10 46.50 0.01 505.77 157.88

15 1,665 1,312 0.27 64.60 64.90 0.01 969.41 45.33

16 1,598 1,241 0.29 65.70 70.20 0.18 1,360.52 74.85

17 1,567 1,229 0.28 61.00 65.50 0.16 1,301.14 136.66

18 1,301 1,041 0.25 62.70 63.10 0.51 966.71 71.10

19 1,377 1,120 0.23 56.80 53.30 0.73 586.98 107.18

20 1,568 1,237 0.27 57.90 52.00 0.47 559.10 90.83

21 1,397 1,149 0.22 61.90 70.30 0.49 1,322.35 112.38

22 1,209 969 0.25 63.20 52.80 0.09 494.16 61.22

23 1,124 924 0.22 56.40 53.80 0.32 488.53 81.41

24 1,229 1,000 0.23 62.20 52.90 0.06 454.80 50.95

25 937 783 0.20 54.50 45.50 0.07 332.62 120.01

26 1,030 825 0.25 61.80 47.50 0.28 394.54 105.46

27 917 745 0.23 60.90 60.20 0.15 587.19 121.08

28 902 714 0.26 64.80 56.70 0.02 555.53 104.17

29 1,026 806 0.27 63.50 65.40 0.03 1,060.19 71.59

Total 52,116 41,445 0.26
(Average)

60.93
(Average)

61.96
(Average)

0.17
(Average)

944.83
(Average) 2,499.76

SNP, single nucleotide polymorphism; QC, quality control; BTA, Bos taurus autosomes; kb, kilobases; Mb, megabases.
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the genetic analysis of carcass traits for Hanwoo beef cattle on 6,092 animals from 2005 to 2017 
showed corresponding h2 values of CWT as 0.35±0.04, 0.43±0.05, 0.48±0.05, and 0.56±0.05, 
respectively, using a pedigree-based GBLUP model [35].

h2 estimates based on the 50K SNP Chip for CWT, EMA, BF, and MS in this present study 
agreed with those observed by Srivastava et al. [44] for a population of 7,324 Korean Hanwoo 
cattle. On the other hand, Lopez et al. [45] suggested that the estimated h2 with 50K SNP panel in 
Korean Hanwoo cattle for carcass traits was medium to high, ranging from 0.32 to 0.40 based on 
GRM.

According to CVg, the results showed significant additive genetic variation for NAIPC (15.50%), 
BF (22.34), and MS (31.58%), compared to relatively lower additive genetic variation for the other 
traits (0.96% to 8.59%). The evolvability of a trait is determined by its genetic variability [46], which 
impacts how easily traits can be altered by breeding. In other words, the predicted genetic gain for 
NAIPC, BF, and MS will be higher than other traits (using the standardized scale).

The low h2 estimate observed in our study can be attributed to several factors that warrant 
further discussion. Firstly, it is important to highlight that in our study, the h2 was calculated using 
markers and phenotypic information without access to pedigree records. The absence of pedigree 
information can impact the accuracy of h2 estimates, as pedigree records play a crucial role in 
capturing true genetic relationships among individuals. Studies that utilized pedigree information or 
a complete dataset of individuals have reported higher h2 estimates for carcass traits. Moreover, our 
study was limited by a relatively small sample size, and this factor can also influence the estimation 
of h2. A reduced sample size may result in diminished statistical power to accurately detect genetic 
effects. Given these limitations, it is expected that the h2 estimates for carcass traits in our study 
would be lower compared to investigations with pedigree information and larger sample sizes. 
Furthermore, there may be differences in the slaughter age of the animals, such as the number of 
records, the breed, differences in the fixed effects, and the statistical models used for analyses, which 
could account for the disparity between the estimates of this study and those of previous studies. In 
addition, the differences in h2 can be explained by the varying genotype-environment interactions. 
However, despite these challenges, our study provides valuable insights into the h2 of carcass traits 
using marker-based methods and highlights the need for more comprehensive studies with larger 
sample sizes and pedigree information to obtain more accurate h2 estimates. 

Table 3. Estimates of heritability, additive genetic variance, residual variance, phenotypic variance, and coefficient of genetic variance for 
reproductive and carcass traits in Hanwoo cows

Traits h2 2
aσ

2 2
2

2 2 2
u u

u e p

h
σ σ

σ σ σ
= =

+

2 2
2

2 2 2
u u

u e p

h
σ σ

σ σ σ
= =

+ CVg (%)
CI 0.10 (0.05)1) 280.41 (143.80) 2,616.93 (170.65) 2,902.65 (127.75) 4.42

AFC 0.13 (0.05) 697.16 (275.85) 4,689.72 (311.90) 5,383.78 (236.91) 3.56

GL 0.17 (0.06) 7.54 (2.58) 37.51 (2.72) 45.44 (2.05) 0.96

NAIPC 0.11 (0.04) 0.04 (0.02) 0.37 (0.02) 0.41 (0.02) 15.50

CWT 0.37 (0.07) 918.70 (185.23) 1,546.92 (152.21) 2,491.93 (118.34) 8.09

EMA 0.35 (0.07) 56.87 (12.19) 105.91 (10.20) 163.64 (7.68) 8.59

BF 0.27 (0.06) 9.08 (2.28) 24.08 (2.06) 33.33 (1.54) 22.34

MS 0.45 (0.07) 1.66 (0.29) 2.07 (0.22) 3.74 (0.18) 31.58
1)The numbers in parentheses are standard errors.

h2, heritability; 
2
aσ , genetic variance; 

2 2
2

2 2 2
u u

u e p

h
σ σ

σ σ σ
= =

+ , residual variance; 

2 2
2

2 2 2
u u

u e p

h
σ σ

σ σ σ
= =

+ , phenotypic variance; CVg, coefficient of genetic variance; CI, calving interval; AFC, age at first calving; GL, gestation 
length; NAIPC, number of artificial inseminations per conception; CWT, carcass weight; EMA, eye muscle area; BF, backfat thickness; MS, marbling score. 
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Estimation of genomic estimated breeding value prediction accuracy
The GEBV accuracy for reproductive and carcass traits in Hanwoo cows was estimated using 
the GBLUP and WGBLUP models with a complete data set. Generally, the predictive accuracy 
for most traits slightly varied between GBLUP and WGBLUP models (Table 4). The accuracy 
of the genomic predictions ranged from 0.51 to 0.60 in reproductive traits and 0.68 to 0.74 in 
carcass traits using the GBLUP model, whereas the accuracy ranged between 0.51 and 0.66 in the 
reproductive traits, and 0.72 and 0.79 in the carcass traits in WGBLUP model, respectively. The 
average accuracy for reproductive traits in the studied population was approximately 0.54 (GBLUP) 
– 0.57 (WGBLUP) and approximately 0.71 (GBLUP) – 0.76 (WGBLUP) for carcass traits. 
The average GEBV accuracy in the WGBLUP indicated more positive changes than GBLUP 
(5.6% in the reproductive traits and 6.7% in the carcass traits) among the GEBV estimates of all 
studied traits. In this study, the WGBLUP showed obvious superiority over the GBLUP method. 
Currently, the genomic selection is applied in beef cattle on a large scale, focusing mainly on the 
carcass traits [20,47].
Some studies have been conducted to evaluate the average prediction accuracy of genomic 
evaluations using GBLUP and ssGBLUP methods for the reproductive traits on different 
populations, such as Canadian Holstein [48] and Nelore cattle [49]. The genomic evaluation 
accuracy for the reproductive traits varied among breeds, the genetic architecture of the traits 
studied, statistical method, effects of SNPs, and the used SNP set. For AFC, Laodim et al. [50] 
reported that the accuracy performance of the ssGBLUP model was 0.297 and between 0.23 
and 0.33 for Thai crossbreed animals and Nelore cattle, respectively, using another three different 
Bayesian statistical methods [51] and appeared to be a lower value compared to the present 
findings.

In Nelore cattle, the average prediction accuracy ranged between 0.38 and 0.42 by GBLUP and 
Bayesian method for the same trait [52], which partially supports our results for AFC accuracy. 
Boddhireddy et al. [53] showed a higher accuracy of prediction in Nelore cattle using the BayesC 
method for reproductive traits, which was 0.64.

Some studies reported the performance of genomic prediction models for various traits in 
different breeds [54–56]. Kim et al. [58] observed high prediction accuracy using 919 Hanwoo 
cattle by the GBLUP method, and the prediction accuracies obtained for CWT, EMA, BF, and 
MS were 0.779, 0.758, 0.766, and 0.791, respectively. On the other hand, the genomic prediction 

Table 4. Accuracy of the genomic predictions of Hanwoo cows

Traits
GBLUP WGBLUP

Mean SD Max Min Mean SD Max Min
Reproductive traits

CI 0.51 0.04 0.62 0.14 0.56 0.03 0.66 0.43

AFC 0.52 0.04 0.62 0.15 0.55 0.03 0.64 0.42

GL 0.60 0.04 0.69 0.23 0.66 0.03 0.74 0.48

NAIPC 0.53 0.04 0.62 0.16 0.51 0.03 0.62 0.37

Carcass traits

CWT 0.73 0.03 0.79 0.33 0.77 0.02 0.81 0.57

EMA 0.68 0.03 0.75 0.29 0.74 0.02 0.79 0.54

BF 0.68 0.03 0.74 0.29 0.72 0.02 0.79 0.55

MS 0.74 0.03 0.80 0.34 0.79 0.02 0.84 0.61
GBLUP, genomic best linear unbiased prediction; WGBLUP, weighted GBLUP; CI, calving interval; AFC, age at first calving; GL, gestation length; NAIPC, number of artificial insemi-
nations per conception; CWT, carcass weight; EMA, eye muscle area; BF, backfat thickness; MS, marbling score.
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accuracy varied among traits while using GRM constructed on a 50K SNP panel; the genomic 
prediction accuracy for CWT, EMA, BF, and MS were 0.63, 0.58, 0.55, and 0.56, respectively [45]. 
By contrast, lower accuracy was also observed using a 50K SNP chip for Korean Hanwoo cattle in 
the GBLUP method, with EMA, BF, and MS values ranging from 0.27 to 0.30, respectively [1].

Genetic and phenotypic correlation
Table 5 lists the genetic and phenotypic correlations among the reproductive and carcass traits. 
The genetic and phenotypic correlations between traits were analyzed using the genetic and 
phenotypic variance and the covariance of the two traits. The estimates of the genetic correlation 
between reproductive and carcass traits were low to high, ranging from −0.56 ± 0.03 to 0.61 ± 0.03. 
Acccording to Dahliani et al. [59], the correlation values were divided into the following categories: 
very low (0.00 to 0.19), low (0.20 to 0.39), moderate (0.40 to 0.59), strong (0.60 to 0.79), and very 
strong (0.80 to 1.00). Strong positive genetic correlations were found between GL and NAIPC 
(0.61 ± 0.03) and CWT and EMA (0.60 ± 0.02), as represented in Table 5, which were the highest 
correlations among the trait pairs. Furthermore, the strength of the associations between NAIPC 
and CWT (0.49 ± 0.03) and AFC and CWT (0.48 ± 0.03) were moderate and positive. Hence, 
the selection of these traits could be advantageous. This strong positive genetic correlation could be 
due to pleiotropy, wherein a gene or a set of genes influences two traits and results in the genetic 
correlation between these traits [60].

Positive phenotypic (0.05 ± 0.02) and genetic correlations (0.26 ± 0.01) were observed between 
CI and AFC. The genetic associations between CI and AFC were stronger than the phenotypic 
correlations. Shin et al. [61] reported a comparable positive association between these traits in 
Hanwoo cows, which strongly supports the present study. The moderate genetic associations 
between reproductive traits have the same sign as patterns that can be observed phenotypically 
[62,63]. Gutiérrez et al. [64] reported a favorable genetic correlation (0.233) in beef cattle between 
CI and AFC. In contrast to the genetic association, which was only weakly positive (0.10), Lôbo 
[65] discovered a high positive phenotypic correlation between AFC and CI (0.43). In these 
results, AFC appears to be an important characteristic reflecting the reproductive health of cows. 

Table 5. Estimates of the genetic (above the diagonal) and phenotypic (below the diagonal) correlations (standard error in parentheses) among 
reproductive and carcass traits in Hanwoo cows

Trait CI AFC GL NAIPC CWT EMA BF MS
CI 1.00 0.26

(0.01)
0.36

(0.03)
−0.56
(0.03)

0.09
(0.02)

−0.03
(0.03)

0.30
(0.03)

−0.21
(0.03)

AFC 0.05
(0.02)

1.00 −0.41
(0.02)

−0.01
(0.03)

0.48
(0.03)

0.24
(0.03)

0.21
(0.01)

−0.04
(0.03)

GL −0.06
(0.03)

0.04
(0.03)

1.00 0.61
(0.03)

0.04
(0.03)

−0.14
(0.06)

−0.09
(0.08)

0.07
(0.03)

NAIPC −0.03
(0.08)

0.30
(0.02)

0.05
(0.03)

1.00 0.49
(0.03)

0.35
(0.03)

−0.04
(0.05)

−0.15
(0.03)

CWT 0.01
(0.03)

−0.01
(0.03)

0.01
(0.03)

0.04
(0.03)

1.00 0.60
(0.02)

−0.12
(0.03)

0.13
(0.03)

EMA −0.02
(0.01)

0.03
(0.04)

−0.00
(0.02)

0.05
(0.03)

0.66
(0.02)

1.00 −0.18
(0.03)

0.28
(0.03)

BF 0.04
(0.03)

−0.04
(0.03)

0.03
(0.07)

−0.02
(0.01)

0.29
(0.03)

0.09
(0.03)

1.00 0.35
(0.02)

MS −0.01
(0.03)

−0.03
(0.01)

0.07
(0.03)

0.03
(0.03)

0.29
(0.03)

0.33
(0.03)

0.14
(0.03)

1.00

CI, calving interval; AFC, age at first calving; GL, gestation length; NAIPC, number of artificial inseminations per conception; CWT, carcass weight; EMA, eye muscle area; BF, backfat 
thickness; MS, marbling score.
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An improvement in the CI performance would result from the selection for a shorter AFC. Berry 
and Evans [66] estimated a positive genetic association of 0.22, while Lopez et al. [34] reported 
a correlation of 0.52; however, the genetic correlation between AFC and CI was only found to be 
between 0.09 [28] and −0.25 during the first 42 days of the calving season. In contrast, CI with 
AFC was a low negative correlation, which is not an agreement reported elsewhere [67,68]. They 
reported negative correlations between CI and AFC of −0.13 for Brahman cattle and −0.06 for 
Nelore cattle.

The calculated weak positive associations between GL and CI also agree with Lopez et al. [34]. 
The phenotypic correlation of 0.04 between GL and AFC is consistent with earlier investigations 
[34]. These outcomes resembled those in Nellore cows, as reported by Ulhôa Magnabosco et al. [69]. 
Oyama et al. [70] also mentioned the genetic relationships between GL and CI of 0.16. Bekele et 
al. [71] reported strong positive genetic correlations between GL and CI in Fogera cattle, 0.72.

The strongest correlation among all the trait pairs in this analysis was obtained between GL and 
NAIPC (0.61 ± 0.03), which showed a significant genetic relationship. On the other hand, the CI 
showed the highest negative correlation with NAIPC (−0.56 ± 0.03) and AFC with GL (−0.41 ± 
0.02). Similar findings have been achieved in Japanese Black cattle by Setiaji and Oikawa [72], who 
reported the positive genetic and phenotypic correlation between NAIPC and GL. NAIPC was 
recorded before conception, and GL represents a heifer’s ability to sustain the pregnancy until the 
day of calving. As a result, the strong genetic link shows that these two traits are related genetically 
and might be influenced by a group of genes. As a result, choosing one of the traits would have a 
significant impact on the other.

This study found that estimates of genetic association between traits ranged widely. The traits 
of Hanwoo cows, CWT and EMA, are highly and positively associated, suggesting that animals 
with a higher EMA will result from selection for increasing the CWT. This correlation estimate 
was similar to that of Park et al. [73] and Choi et al. [74], who used Hanwoo males to report 
values between 0.52 ± 0.08 and 0.55 using similar features. Other Hanwoo research revealed the 
same positive association [35,43,75–77]. The association between CWT and EMA was supported 
by several different studies involving Angus [78–81], Brangus [82,83], Angus–Brahman [84], 
Canadian crossbred cattle [85], Nellore cattle [86], Heriford, Simmental [87], Brazilian Nelore [88], 
Brahman [89,90], and other crossbred cattle [91].

The genetic correlation of BF with CWT (−0.12 ± 0.03) and EMA (−0.18 ± 0.03) was negative, 
which is financially feasible for the beef industry because CWT and EMA will increase if BF 
decreases and make the carcass profitable. Davoli et al. [92] obtained similar results in Large 
White pigs and revealed negative genetic correlations between CWT and BF. In the case of the fat 
content, BF is associated with MS (0.35 ± 0.02), which increases the juiciness of the meat.

According to these findings, the genetic correlation between EMA and MS was determined to 
be positive and fairly moderate (0.28 ± 0.03), similar to the results from other research [74,89,90,93], 
but significantly lower than the estimate of 0.65 published by Hwang et al. [94] in Hanwoo 
population. 

In this study, the findings of the genetic correlation between reproductive and carcass traits 
were moderate to low, or negative. All reproductive traits have moderate to weak positive genetic 
correlations with CWT. MacNeil et al. [95] also reported a lower correlation of GL with CWT, 
which was also close to zero. On the other hand, EMA showed positive genetic correlations 
between AFC (0.24 ± 0.03) and NAIPC (0.35 ± 0.03). Furthermore, BF also showed a weakly 
positive genetic correlation with CI and AFC. The highest positive genetic correlations between the 
reproductive and carcass traits were between NAIPC and CWT (0.49 ± 0.03) and AFC and CWT 
(0.48 ± 0.03). In contrast, negative genetic correlations were found between AFC and MS. Negative 
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results have also been reported [96,97], showing that the AFC can be lowered by increasing the 
meat and fat deposition. Higher subcutaneous fat deposition may signal faster maturation and 
make animals more sexually precocious, but more research is needed. A lower fat content is better 
for reproduction in cows.

These studies showed that the strong phenotypic correlation of 0.66 ± 0.02 between CWT 
and EMA, which was the strongest correlation among all pairs of reproductive and carcass traits, 
followed by the weak positive correlations between EMA and MS, AFC, and NAIPC, between 
CWT and BF, and between CWT and MS which were 0.33, 0.30, 0.29, and 0.29, respectively. In 
the present study, the phenotypic correlation was within the range of estimates made previously for 
Korean Hanwoo [93], Angus [78,79], Brangus [82,83], Angus-Brahman [84], Canadian crossbred 
cattle [85], and Nellore cattle [86].

This study found low to moderate genetic correlations between the attribute of reproductive and 
carcass weight CWT, which may explain why choosing a heavier body weight may result in longer 
CI, AFC, GL, and increased NAIPC. The genotype-environment interaction is a more likely cause 
of the phenotypic manifestation of these traits because of the near-zero phenotypic association and 
the marginally favorable genetic correlation between CWT, AFC, and NAIPC. After producing 
a reference population for carcass and reproductive traits, the application of genomic selection 
would be preferable to address the limitations of this study. These findings on variance components, 
heritability h2 estimates, GEBV accuracy, and correlation coefficients for reproductive and carcass 
traits offer important insights into the genetic merits of Hanwoo cows. They may benefit future 
research on them and their incorporation into the Hanwoo National Evaluation for genomic 
selection.
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