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Abstract
The growing demands of sustainable, efficient, and welfare-conscious pig husbandry have 
necessitated the adoption of advanced technologies. Among these, RGB imaging and 
machine vision technology may offer a promising solution for early disease detection and 
proactive disease management in advanced pig husbandry practices. This review explores 
innovative applications for monitoring disease symptoms by assessing features that direct-
ly or indirectly indicate disease risk, as well as for tracking body weight and overall health. 
Machine vision and image processing algorithms enable for the real-time detection of subtle 
changes in pig appearance and behavior that may signify potential health issues. Key indica-
tors include skin lesions, inflammation, ocular and nasal discharge, and deviations in posture 
and gait, each of which can be detected non-invasively using RGB cameras. Moreover, when 
integrated with thermal imaging, RGB systems can detect fever, a reliable indicator of infec-
tion, while behavioral monitoring systems can track abnormal posture, reduced activity, and 
altered feeding and drinking habits, which are often precursors to illness. The technology also 
facilitates the analysis of respiratory symptoms, such as coughing or sneezing (enabling early 
identification of respiratory diseases, one of the most significant challenges in pig farming), 
and the assessment of fecal consistency and color (providing valuable insights into digestive 
health). Early detection of disease or poor health supports proactive interventions, reducing 
mortality and improving treatment outcomes. Beyond direct symptom monitoring, RGB imag-
ing and machine vision can indirectly assess disease risk by monitoring body weight, feeding 
behavior, and environmental factors such as overcrowding and temperature. However, further 
research is needed to refine the accuracy and robustness of algorithms in diverse farming 
environments. Ultimately, integrating RGB-based machine vision into existing farm manage-
ment systems could provide continuous, automated surveillance, generating real-time alerts 

Received: Oct 16, 2024
Revised: Nov 15, 2024
Accepted: Nov 18, 2024

*Corresponding author
Sun-Ok Chung
Department of Agricultural Machinery 
Engineering, Graduate School, 
Chungnam National University, 
Daejeon 34134, Korea.
Tel: +82-42-821-6712
E-mail: sochung@cnu.ac.kr

Copyright © 2025 Korean Society of 
Animal Sciences and Technology.
This is an Open Access article 
distributed under the terms of the 
Creative Commons Attribution 
Non-Commercial License (http://
creativecommons.org/licenses/by-
nc/4.0/) which permits unrestricted 
non-commercial use, distribution, and 
reproduction in any medium, provided 
the original work is properly cited.

ORCID
Md Nasim Reza 
https://orcid.org/0000-0002-7793-400X
Kyu-Ho Lee 
https://orcid.org/0000-0002-3186-8975
Eliezel Habineza 
https://orcid.org/0000-0003-0364-420X
Samsuzzaman 
https://orcid.org/0009-0006-3976-8975
Hyunjin Kyoung 
https://orcid.org/0000-0001-5742-5374

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


RGB machine vision for pig health monitoring and management

18  |  https://www.ejast.org https://doi.org/10.5187/jast.2024.e111

INTRODUCTION
Pig production plays a significant role in global meat production, with pork being one of the most 
consumed meats worldwide [1]. Indeed, according to the Food and Agriculture Organization 
(FAO), pork accounts for approximately 38% of global meat production [2]. The demand for pork 
is expected to increase further, driven by population growth, urbanization, and rising incomes in 
developing countries [3]. However, the pig industry faces several challenges, including disease 
outbreaks, environmental concerns, and the need for sustainable production practices.

Modern pig farms are crucial for meeting the increasing demand for pork, but their larger 
scales of operation pose challenges for breeders, including shorter monitoring periods for each pig 
[4]. Identifying health issues and improving living conditions for vulnerable pigs is essential for 
maintaining their welfare [5]. Respiratory and digestive diseases are significant concerns, leading 
to reduced productivity and profits if not managed effectively through proper prevention strategies 
and veterinary care [6]. Disease outbreaks can have devastating economic effects on pig farms and 
threaten food security [7]. Traditional disease monitoring methods depend heavily on observation, 
which can be labor-intensive, time-consuming, and susceptible to subjectivity and human error. 
Furthermore, close visual observation may stress animals [8–10] and may not be reliably effective in 
detecting early signs of disease or identifying individuals that require medical attention [11]. 

Driven by rapid scientific and technological progress, significant advances have been made in 
integrating information technology with agriculture and livestock industries [12]. In particular, 
the incorporation of machine vision sensing has elevated this integration to new levels: the use 
of machine vision and RGB imaging technology in agriculture and livestock has seen significant 
growth due to the increasing availability of affordable and high-resolution cameras, coupled 
with advances in image processing algorithms [13]. These technologies have the potential to 
revolutionize the health management of pigs by providing real-time, non-invasive, and automated 
monitoring of behavior, health, and environmental conditions [11].

Machine vision, RGB imaging, and artificial intelligence (AI) equip computers with the 
remarkable ability to extract and organize meaningful information from digital images and videos. 
In essence, machine vision attempts to replicate the sophisticated visual perception of humans and 
animals, while RGB imaging—a fundamental pillar of machine vision—involves capturing visual 
data within the visible light spectrum, encompassing the red, green, and blue color channels [14]. 
Various image processing approaches, such as segmentation and extraction, aid in the automatic 
detection of diseases and visual symptoms, facilitating pig farm management [6]. Their primary 
focus is on individual identification using properties like color, texture, and shape, aiding in assessing 
body size, weight, and posture [15]. Furthermore, recent research has utilized advanced technologies 
like object detection [16], support vector machines (SVMs) [17], and convolutional neural network 
(CNN)-based methods [18,19] to identify sick pigs and their symptoms. 

These methods have been utilized to enhance pig monitoring and health management on farms 
as early detection through single-image or video analysis enables farmers to intervene quickly, 
improving animal welfare and minimizing the spread of disease. Studies have shown that early 
intervention significantly reduces mortality rates and improves treatment efficacy, contributing to 
enhanced productivity [19]. Moreover, machine vision and RGB imaging can be used to monitor 
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environmental conditions (e.g., temperature, humidity, and air quality), which can have a significant 
impact on pig health. By integrating data from various sensors and cameras, a comprehensive 
picture of the farm environment can be obtained, enabling more effective management of housing 
conditions. However, several challenges need to be addressed in order to fully realize this potential. 
The objective of this review was to provide an overview of the current state of the art in machine 
vision and RGB imaging for pig disease monitoring and health management.

HEALTH MONITORING AND VISUAL SYMPTOMS OF PIG 
DISEASES
Recognizing diseases and other health issues in pigs primarily relies on visual symptoms (e.g., 
lethargy, reduced appetite, shivering, and weight loss), but detecting sickly individuals within larger 
groups can be challenging, especially for less experienced farm workers. For example, respiratory 
diseases can be categorized based on their rapid spread and severity or their prolonged presence 
among a large population of pigs [20]; while the severity varies, visual symptoms often start with 
the respiratory system itself and become manifest through sneezing, snuffling, and nasal discharge, 
which are indicators of irritation, or through eye issues like tear staining [21]. In severe cases, 
facial deformity can occur, with pigs exhibiting twisting or shortening of the snout [22]. In piglets, 
stunted growth could also be a sign of respiratory illness [23]. Early detection through these visual 
symptoms is crucial for prompt intervention and improved pig health.

Digestive diseases often manifest through more general symptoms, such as diarrhea, vomiting, 
and abdominal discomfort. Severe conditions like stomach ulcers present as dark, coffee-like stool 
[24]. Diarrhea poses the greatest threat, particularly to weaned pigs, and is accompanied by weight 
loss, teeth grinding, hunching, and bloating [25]. Other symptoms include high temperature, neck 
swelling, depression, vomiting, reluctance to feed, darkened skin over swollen areas, jowl swelling, 
lethargy, coma, convulsions, coughing, and jaundice [6]. The primary cause of piglet crushing and 
overlaying is the size difference between the mother pig and the newborn piglet, often when the 
mother lies down to rest or nurse [26]. However, it can also result from the mother’s illness or 
behavioral issues, causing her to neglect or inadvertently harm the piglets. Insufficient segregation 
between piglets and larger pigs on the farm exacerbates the problem, leading to noticeable instances 
of crushing [27]; piglets can also be crushed due to various factors, including disease, hunger, 
hypoglycemia, splay legs, joint issues, and other related conditions [28]. Each of these risks could be 
predicted by visual cues and are thus potential targets for machine vision-based interventions.

Behavior patterns of pigs and environmental factors on the farm can contribute, including 
inadequate pig and litter separation, excessive straw bedding affecting piglet mobility, poor rail or 
crate design, and insufficient temperature and lighting [27]. The sound of a screaming piglet may 
indicate crushing, with dead piglets often found under the mother or exhibiting injuries consistent 
with being crushed [29]. Lame or squealing piglets, congenital tremors, splayed limbs, and limited 
mobility suggest crushing if accompanied by distressed piglet sounds [30]. 

In summary, there are numerous common visual cues of illness in pigs, including fractured 
bones, bruises, bleeding, decreased viability in newborns, scratches from piglet teeth on the udder 
indicating mastitis or agalactia, immobility, ear and tail bites, lameness in sows, and behavioral issues 
in gilts such as savaging [31]. In piglets, failure may manifest through hunger, hypoglycemia, joint 
issues, weakness at birth, and exposure to cold temperatures [32]. Since visual changes are often the 
earliest indicators of health problems, RGB imaging provides a non-invasive and proactive method 
for monitoring pig populations, enabling early detection and intervention to minimize losses and 
improve pig welfare.
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RGB IMAGING: MACHINE VISION, SENSORS, AND DATA 
PROCESSING
Machine vision aims to replicate human vision capabilities using algorithms and machines, with the 
core goal of enabling computers to interpret and extract meaningful insights from digital images 
or videos. This process involves several stages, as shown in Fig. 1. The first step, image acquisition, 
captures visual data using cameras or sensors—such as RGB or infrared sensors—which translate 
real-world information into digital pixel grids. In animal health monitoring, infrared sensors often 
complement RGB cameras by detecting temperature changes that could indicate fever [8].

Once images are captured, pre-processing techniques such as filtering, noise reduction, color 
correction, and histogram equalization are applied to improve image quality and remove irrelevant 
detail. Pre-processing is particularly important in pig health monitoring to enhance features like 
skin lesions or abnormal tissue growth, which might otherwise go unnoticed [5]. Following pre-
processing, feature extraction identifies distinctive patterns (e.g., edges, corners, textures, and colors) 
that are crucial for analysis and recognition. For example, changes in pig skin color or texture may 
indicate conditions like dermatitis or other infections. The extracted features are then transformed 
into suitable formats for processing and analysis. In the object detection and recognition phase, 
algorithms such as CNNs are often employed to locate and classify objects, including identifying 
individual pigs and detecting behavioral anomalies [5]. The image understanding step provides 
contextual information about the visual data, such as tracking pig movements or monitoring 
interactions between animals. Finally, machine learning and deep learning techniques further 
enhance system performance by automating feature extraction and enabling predictive analysis 
based on the visual data. These methods allow for early detection of health issues in pigs, improving 
the accuracy and timeliness of interventions [8].

RGB imaging is a foundational technique used in digital photography, machine vision, and 
image processing. Each pixel in an RGB image is represented by the three primary color channels, 
where the intensity of each channel determines the color of a pixel, enabling a vast array of colors to 
be created through combination. Fig. 2 shows the electromagnetic radiation spectrum, highlighting 

Fig. 1. A schematic showing the fundamental processing steps in machine vision from initial image 
acquisition through to final image interpretation and analysis.



https://doi.org/10.5187/jast.2024.e111 https://www.ejast.org  |  21

Reza et al.

the visible spectrum band. Following the principle of additive color mixing, varying intensities of 
red, green, and blue light produce different colors, with full illumination resulting in white light 
and an absence in all channels yielding black. The color gamut, defining the range of representable 
colors in an RGB color space, varies among devices and technologies, influencing perceived color 
accuracy. Manipulating the intensity of each channel enables diverse color effects and adjustments. 
Color filtering techniques are often implemented to selectively capture specific wavelengths of light, 
enhancing image quality and discerning between colors. Besides RGB, alternative color spaces (e.g., 
CMYK, HSL, and HSV) offer different methods for color representation and manipulation, which 
are tailored for specific applications in imaging and machine vision.

RGB imaging technologies using cameras and sensors
Precision livestock farming utilizes intelligent technology for comprehensive monitoring of 
individual animals in farms, addressing a critical challenge in disease monitoring and prevention. 
Early disease detection is essential for averting large-scale outbreaks and economic losses. Cameras 
have become widely available and affordable for scientific purposes over the past two decades. 
The predominant image sensor devices in use are standard digital and surveillance cameras, which 
capture visible light spectra for generating color and grayscale images [33]. Camera sensors have 
the advantage of offering more rapid data capture compared to other sensor types in pig farms 
[34]. Various types of cameras (including charge-coupled device [CCD], infrared, depth, and 3D 
cameras) are used for animal monitoring and surveillance, each providing unique information [34]. 
More complex arrays of images—such as three-dimensional (3D), multispectral, and hyperspectral 
image cameras—are also available but tend to be costly. Each imaging technology suits particular 
applications. However, the current review primarily focuses on RGB cameras, which are extensively 
utilized in various studies conducted on pig farms. Automated identification of diseases and 
behaviors is crucial, with cameras playing an increasingly vital role in observing abnormal behaviors. 
Traditional farm inspections are inadequate for monitoring individual pigs effectively, considering 
factors like radiation, floor type, growth stage, and health status [35]. Fig. 3 and Table 1 show the 
common RGB cameras used in the pig farm for disease symptom detection and behavior and 
activity monitoring.

Image acquisition is the initial step in image-based analysis and involves obtaining numeric 
information through cameras [33,36]. Analyzing pig behaviors via image processing enables 
accurate real-time recording without disrupting their normal activities [37]. CCD cameras 
detect object pixels in red, green, and blue bands, converting them into parameters like grey, 

Fig. 2. An illustration of electromagnetic bands ranging from radio waves to gamma rays, highlighting the visible light spectrum.
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Fig. 3. Various commercial RGB imaging sensors used in pig farms for disease symptom detection and behavior and activity monitoring. (A) 
Raspberry Pi camera module V2, (B) Mi 360 webcam, (C) EXview HAD CCD, (D) Microsoft Kinect v1, (E) Microsoft Kinect v2, (F) VIVOTEK IB836BA-HF3, 
(g) Hikevision DS-2CD2142FWD-I, (H) Microsoft OEM Life Cam, (I) Intel RealSense, (J) FL3-U3-88S2C-C (K) IFM O3D313, (L) IPC-HFW1230S-S4, (M) TOF 
640, (N) Hero 4, and (O) Nikon D5100.

Table 1. Commonly used type of RGB cameras used in farming environments for disease symptom detection and, behavior and activity monitoring 
of pigs

Camera model Sensor type Frame size (pixel) Frame rate (fps) Manufacturer
Camera Module v2 Sony IMX 219 PQ 3,280 × 2,464 30, 60 Raspberry Pi Foundation, Cambridge, UK

HQ Camera Sony IMX477 4,056 × 3,040 30, 60 Raspberry Pi Foundation, Cambridge, UK

Mi 360 webcam MJSXJ05CM 1,920 × 1,080 25 Xiaomi Inc., Beijing, China

EXview HAD CCD Sony RF293 640 × 480 Sony Corporation, Tokyo, Japan

Microsoft Kinect v1 Structured light 640 × 480 30 Microsoft Corporation, Washington, USA

Microsoft Kinect v2 Time of Flight (ToF) 1,920 × 1,080 30 Microsoft Corporation, Washington, USA

VIVOTEK IB836BA-HF3 1/2.7” Progressive CMOS 1,920 × 1,080 30 Vivitek Inc., Taipei, Taiwan

DS-2CD2142FWD-I 1/3” Progressive Scan CMOS 2,688 × 1,520 30, 60 Hikvision, Zhejiang, China

Microsoft OEM Life Cam Size-Unspecified CMOS 1,920 × 1,080 30 Microsoft Corporation, Washington, USA

Intel RealSense Rolling Shutter 1,920 × 1,080 30 Intel Corporation, Santa Clara, CA, USA

FL3-U3-88S2C-C 1/2.5” CMOS 4,096 × 2,160 21 Teledyne FLIR, Oregon, USA

IFM O3D313 352 × 264 25 IFM Electronic gmbh, Essen, Germany

IPC-HFW1230S-S4 1/2.7” CMOS 1,920 × 1,080 25, 30 Dahua Technology Co., Ltd, Seoul, Korea

DH-SD1A203T-GN 1/2.8” CMOS 1,920 × 1,080 25, 30 Dahua Technology, Hangzhou, China

TOF 640 IMX586 CMOS 3,000 × 4,000 20 Basler AG, Ahrensburg, Germany

D5100 CMOS 4,928 × 3,264 4 Nikon, Tokyo, Japan

Hero 4 CMOS 3,840 × 2,160 30 GoPro Inc., San Mateo, CA, USA

DCS760 APS-H CCD 3,032 × 2,028 1.5 Kodak, New York, USA
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hue, saturation, and intensity using various image processing algorithms [36]. Video processing 
enhances sound captured in video files and adjusts images accordingly, often using filter algorithms 
for editing purposes [38]. Different software and peripheral devices aid in loading video files 
into the system, allowing users to compile and process images and videos using pre-filters, intra-
filters, and post-filters [39]. Pre-processing of input images involves restoration, augmentation, 
or presentation of real data as required. Segmentation divides the image into constituent parts, 
extracting specific characteristics for further analysis [40]. Segmented images are then fed into 
classifiers or image understanding systems for interpretation and classification. Image classification 
assigns distinct parts or segments of an image to various objects with corresponding labels. An 
image comprehension system must detect relationships between different objects to generate a 
comprehensive description of the image [38].

Factors influencing RGB imaging quality and accuracy
The integration of RGB imaging into pig farms holds promising potential for streamlining 
livestock management practices. From remote health assessments to automated weight estimation, 
camera-based monitoring offers a non-invasive way to gather valuable insights into pig well-being 
and productivity [41]. However, the success of such systems depends on the quality and reliability 
of the captured images. Within the unique environment of a pig farm, several factors combine to 
affect RGB image clarity and, consequently, the accuracy of any analysis derived from the images 
[6]. Lighting conditions wield substantial influence; optimal lighting, whether natural or artificial, 
is crucial for clear and consistent image capture, with variations potentially impacting image 
quality [42]. The choice and positioning of cameras are equally significant; high-resolution cameras 
positioned strategically can mitigate obstacles and ensure comprehensive coverage of the farm [34]. 
Optimizing the camera distance, angle, and height above the ground is crucial, as longer distances 
increase random error while shorter distances enhance accuracy. Adjusting these parameters 
ensures the capture of the entire pen while minimizing the distance to the pigs [43]. Furthermore, 
environmental conditions like fluctuating light levels, dust accumulation, and humidity pose 
significant challenges. Camera setup, including resolution, lens quality, and calibration, plays a 
crucial role [44]. 

Additionally, the inherent characteristics of the pigs themselves—such as their coloration, 
movement, and body positioning—introduce further complexities for image analysis algorithms 
[45]. Allowing pigs to move freely presents challenges in image processing, including reduced 
height repeatability and motion blur, necessitating extra filtering to remove low-quality images [43]. 
Cameras should effectively capture fast movements and changes in posture to provide accurate 
monitoring data in farm conditions [15]. The quality of software tools and image processing 
algorithms is thus critical to facilitate the extraction of meaningful insights from RGB images [8]. 

There is a lack of extensive high-quality datasets and data standards for pig farming data, as 
commercial and biosecurity restrictions make data collection and publication difficult. The extensive 
data storage requirements for high-quality cameras and sensors are a challenge for establishing 
a precision livestock farming system [46]. Furthermore, installation in harsh environments can 
lead to hardware degradation and sensor damage, especially in remote rural areas, making it 
inconvenient for personnel to maintain the devices [44], while skilled farming staff are required to 
operate high-tech devices or systems. Regular maintenance and calibration of cameras are essential 
to sustain optimal performance and ensure reliable data for informed decision-making [47,48]. 
Understanding and mitigating the impact of these factors is essential for unlocking the benefits of 
RGB imaging in pig farm operations.
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Data acquisition and processing algorithm
Data acquisition and processing algorithms for RGB imaging in pig farms are essential 
components for effective monitoring and management. In data acquisition, high-resolution RGB 
cameras are strategically positioned throughout the farm to capture real-time images of the pigs 
and their surroundings [34]. These cameras may be mounted on poles, walls, or other structures 
to provide comprehensive coverage. Optimizing data acquisition involves considering lighting, 
camera placement, and environmental factors like dust and humidity to ensure clear and consistent 
image capture [49]. Once the images are acquired, sophisticated processing algorithms are used 
to extract valuable insights from the RGB data. These algorithms typically involve several steps, 
including image segmentation, feature extraction, and analysis [33]. Fig. 4 shows a schematic of 
RGB image pre-processing, feature extraction, segmentation, and classification techniques for pig 
image data analysis. Image segmentation divides the images into meaningful regions—such as 
individual pigs or different areas of the farm—using techniques like thresholding or clustering [50]. 
Feature extraction then identifies key characteristics within these regions, such as pig count, size, or 
behavior [33]. The extracted features are analyzed to provide insights for farm management. Image 
processing algorithms can track the movement patterns of pigs, detect signs of distress or illness, or 
assess feeding behavior and activity levels [51].

Video denoising is the process of removing noise from a video stream to improve visual clarity; 
it is applied to each frame through spatial, temporal, or spatio-temporal methods [52]. Noise 

Fig. 4. A schematic representation of image pre-processing, feature extraction, segmentation, and classification techniques used for the analysis of 
data in the context of RGB images.
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reduction is crucial in video processing as noise distorts images and impacts the effectiveness of 
subsequent processing steps. Many noise reduction techniques that were originally developed 
for color image processing have been successfully adapted for video applications [53]. Machine 
learning techniques, such as deep learning, may be applied to improve the accuracy and efficiency 
of these analyses by training algorithms on large datasets of annotated images [54]. Throughout the 
data acquisition and processing pipeline, quality control measures are implemented to ensure the 
accuracy and reliability of the results. This may involve regular calibration of cameras, validation of 
algorithm performance against ground truth data, and ongoing refinement of processing techniques 
based on feedback from farm operators [55]. The integration of advanced data acquisition and 
processing algorithms for RGB imaging enables pig farms to gain valuable insights into animal 
behavior, health, and welfare, ultimately supporting more informed decision-making and optimizing 
farm productivity.

APPLICATIONS OF RGB IMAGING FOR PIG DISEASE AND 
HEALTH MANAGEMENT

RGB imaging holds significant promise in the field of pig disease and health management. 
It enables non-invasive monitoring of pig health through various applications. It facilitates the 
detection of skin conditions, respiratory problems, and lameness by analyzing visual cues on the 
body. For vulnerable piglets, RGB imaging helps to identify signs of distress or injury, promoting 
quick action to prevent crushing. Moreover, RGB technology enables tracking of individual pigs, 
body condition scoring, and behavioral analysis, supporting precision livestock farming practices. 
This non-invasive and cost-effective approach allows for early disease detection, data-driven 
decision-making, and overall improvements in pig health and welfare. Table 2 shows the overall 
usage of RGB imaging to enhance the early detection, prevention, and management of diseases and 
sickness in pig farming.

Early detection and tracking of disease symptoms
Disease detection is crucial for timely intervention to increase treatment success and reduce 
negative impacts on pig welfare. It helps to mitigate the spread of illness, reduces mortality rates, 
and safeguards both animal and human health. In 2018, several countries—including China, 
Vietnam, Korea, and Laos—experienced significant outbreaks of swine flu, leading to the culling of 
millions of pigs [56]. This devastating event underscored the critical importance of effective disease 
monitoring and early detection measures.

While traditional epidemiological models like susceptible, infectious, and recovered (SIR) 
and susceptible, exposed, infectious, and recovered (SEIR) are effective for short-term outbreak 
prediction, they struggle with complex dynamics and early detection [57]. Furthermore, 

Table 2. Summary of RGB imaging techniques used to improve health monitoring and management practices in pig farming
Application Description Benefits

Disease symptom detection RGB imaging detects visual symptoms such as skin 
lesions, abnormal breathing, and discoloration.

Enables early identification of diseases such as respira-
tory issues, skin infections, and injuries.

Tracking disease progression Continuous imaging tracks changes in symptoms over 
time, helping monitor recovery or deterioration.

Assists in evaluating the effectiveness of treatments and 
adjusting interventions accordingly.

Behavior and activity monitoring Monitors activity levels, locomotion patterns, and behav-
ioral changes (e.g., tail biting, lameness).

Identifies signs of stress, aggression, or health-related 
issues, improving welfare and reducing injury risks.

Body weight & condition monitoring Estimates body weight, fat distribution, and overall condi-
tion by analyzing body size, shape, and dimensions.

Reduces the need for manual weighing, allows real-time 
tracking of growth and ensure optimal feeding strategies.
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conventional disease monitoring methods often involve frequent testing of genetic materials, 
which can be impractical, time-consuming, and costly [34]. As an alternative, correlating physical 
indicators provides a viable solution for ongoing surveillance. By observing and analyzing 
physiological markers (e.g., temperature, respiratory rate, and behavior patterns), farmers can 
achieve early detection of potential health issues, enabling prompt intervention and treatment 
[8,58]. Moreover, non-invasive data collection methods offer a safe approach for both humans and 
animals. Minimizing direct contact between humans and potentially infected animals reduces the 
risk of disease transmission between species. 

Therefore, implementing RGB image-based and machine-learning techniques for non-
invasive disease detection in pig farms is a promising approach [54,59,60]. By utilizing RGB 
cameras or imaging devices installed within the farm environment, continuous monitoring of 
the physical characteristics, behaviors, and activity of pigs can be achieved to diagnose diseases 
and illnesses [34,61]. Captured images can then be processed using machine learning algorithms 
to detect patterns indicative of potential diseases, symptoms, and other health issues. Through 
machine learning, algorithms can be trained to recognize subtle changes in pig behavior, posture, 
or appearance that may signal the presence of disease. This approach enables early detection of 
illnesses, allowing farmers to intervene promptly and prevent the spread of diseases within the pig 
farm.

Monitoring and tracking the daily activities of pigs, including their movements, eating habits, 
drinking patterns, and behavior, have been found to be valuable for detecting potential diseases and 
health issues [36]. Pigs exhibit various behaviors and activity patterns that can serve as indicators 
of their well-being or potential health issues [62]. By monitoring these behaviors and activities, it 
becomes possible to detect deviations from normal behavior that may signify underlying health 
problems [62]. For instance, changes in feeding behavior (e.g., reduced appetite or increased feeding 
frequency) can be indicative of digestive issues or metabolic disorders [63]. Similarly, alterations in 
locomotion patterns (e.g., lameness or reluctance to move) may signal musculoskeletal problems 
or infectious diseases like foot and mouth disease [64]. Additionally, monitoring resting behaviors 
(e.g., prolonged lying down or restlessness) can help to identify pain, discomfort, or respiratory 
distress [65]. Integrating RGB imaging with behavioral observations enables automated monitoring 
of pigs, offering real-time data for early disease detection and health assessment. Advanced 
image processing and machine learning models can identify disease indicators, facilitating timely 
veterinary intervention and improved management practices.

Zhu et al. [66] experimented with a novel approach combining wireless technology and 
image processing to predict the probability of pig illness. Their approach integrated monitoring 
equipment with USB cameras and an advanced moving object detection algorithm, which was 
bolstered by background reduction techniques. Their setup facilitated real-time image capture 
and swift transmission of alarm images and pig locations upon anomaly detection. However, 
the effectiveness of detection might vary based on factors like pig population size and camera 
placement relative to their movement zones. Weixing and Zhilei [67] introduced a real-time 
monitoring system for tracking pig breathing using image-based methods, which captured RGB 
images and utilized Concave–Convex recognition to locate key points along the ventral lines of 
pigs. Using enhanced chain coding, they then calculated the length of the line connecting these 
points, enabling respiratory rate estimation. Their study reported a 6.05% relative error compared 
to manual observation, offering a non-invasive and accurate means for real-time monitoring of 
pig breathing, which is crucial for pig welfare and health management. A machine vision-based 
method was developed in another study [68] to measure respiration rate in group-housed pigs. 
The method utilized an oriented object detector to select the region of interest and analyzed time-



https://doi.org/10.5187/jast.2024.e111 https://www.ejast.org  |  27

Reza et al.

varying features to extract the respiration rate. Testing on videos of group-housed pigs using an 
RGB camera showed a correlation coefficient of 0.92 for pigs wearing belts and 0.95 for controls. 
However, movement may disrupt signal accuracy, limiting its applicability to resting pigs.

Chung et al. [69] introduced an automated method for monitoring the daily activities of 
group-housed pigs using RGB video data, focusing on their circadian rhythm under varying 
light conditions. Their system used a cost-effective video sensor with a resolution of 1280 × 720 
pixels and a frame rate of 30 fps, along with a server. Experimentation on data from two pig farms 
demonstrated the effectiveness of the Gaussian Mixture Model in detecting management issues 
within group-housed pig environments. In a different study [70], a smart system was developed to 
monitor body temperature and motion in real time for early infectious disease detection. The system 
utilized biosensors and accelerometers in ear tags alongside continuous video monitoring. In a study 
involving 10 pigs infected with African swine fever (ASF), the system detected infection onset 
(indicated by elevated body temperature and decreased movement) before or simultaneously with 
other indicators. Video analysis identified reduced movement effectively, offering a cost-effective 
alternative to direct motion measurement. The system provided alerts to the owner following 
changes in body temperature or movement, potentially reducing the need for periodic sampling and 
enhancing the early detection of infections in farms, which in turn could help mitigate economic 
losses and logistical challenges in pig farming. Several image processing methods have been 
applied to the RGB images collected under pig farm conditions to analyze pig activity and disease 
conditions, as illustrated in Fig. 5.

Jorquera-Chavez et al. [5] investigated the remote monitoring of pigs for early symptoms of 
respiratory disease using FLIR Duo Pro R cameras, which integrate high-resolution radiometric 
thermal and 4K visible RGB sensors. Custom MATLAB algorithms processed images, 
focusing on the eye area for infrared thermography and remote heart rate measurement. Two 
algorithms assessed heart rate: one tracking spatial patterns in the eye area and the other using 
photoplethysmography principles. Remote heart and respiration rates correlated positively with 
standard measures (r = 0.61–0.66). Overhead cameras detected physiological changes before clinical 
signs appeared, with differences in eye temperature and heart rate evident two days prior to clinical 
symptoms and significant respiration rate changes occurring the day before. 

Fernández-Carrión et al. [71] proposed a system to monitor pig activity and detect ASF infection 
using RGB video and data processing techniques. Video recordings at 6 fps with a resolution of 
704 × 576 pixels in RGB24 format were analyzed, focusing on the red channel for optimal contrast. 
Animal movements were tracked using the Optical Flow algorithm based on the Horn-Schunck 
methodology, implemented within MATLAB. Motion smoothing was achieved through a simple 
moving average filter, and changes indicative of infection onset were identified using the k-means 
algorithm coupled with the gap criterion algorithm. A gradual decline in pig mobility, statistically 
significant at the 95% confidence level, was observed four days post-infection, with a 10% decrease 
in daily motion even before clinical signs appeared. The study recommended using high-definition 
cameras for improved data quality and accuracy; HD cameras improve data quality and accuracy 
by automatically adjusting contrast and brightness, reducing background noise and blurring. These 
findings highlight the potential of machine vision for continuous monitoring and early illness 
detection in commercial pigs.

Monitoring behavior and activity for disease prevention
Kashiha et al. [72] explored the feasibility of automating the detection of marked pigs within a pen 
for experimental and behavioral research purposes using image processing techniques. The videos 
were captured in MPEG-1 format, with a resolution of 720 × 576 pixels and a frame rate of 25 fps. 
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Image segmentation isolated pig areas, addressing lighting effects through histogram equalization 
and binarization. Binarization involved 2-D Gaussian low-pass filtering and Otsu’s method for 
global thresholding, followed by morphological closing. Ellipse fitting located pigs accurately, and 
pattern recognition algorithms differentiated individuals based on unique paint patterns, achieving 
an 88.7% recognition rate validated by expert visual labeling. However, reliance on individual pig 
marking limits practicality for large-scale commercial applications, and issues like fading paint 
patterns, unclear patterns due to pig movements, and mark invisibility in low-light conditions pose 
challenges. 

Fig. 5. Various image processing techniques applied to RGB images captured in pig farm environments. (A) Image binarization, (B) background 
segmentation, (C) image masking, (D) thresholding of pig image, (E) masking and cropping, (F) color space conversions (RGB, HSV, LAB, YCbCr, xyz, and 
YUV) for feature extraction, (G) Otsu segmentation, (H) histogram equalization, and (I) pig body skeleton analysis. 
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The lying behavior of groups of pigs was investigated [36] in commercial farm settings using 
image processing and Delaunay triangulation. Over 15 days, two pens with 22 growing pigs were 
monitored using top-view CCD cameras. Image processing algorithms were applied to isolate pigs 
from their background, and their x-y coordinates were utilized for ellipse fitting, enabling precise 
localization of each pig. Changes in lying posture and location due to temperature fluctuations were 
accurately detected through analysis of region properties and the Delaunay triangulation perimeter. 
This method holds promise for studying environmental influences on pig behavior, production 
efficiency, and welfare in commercial farms. Pig behavior detection was conducted using various 
image processing fusion methods, as shown in Fig. 6. 

Tu et al. [73] proposed a pig detection algorithm for grey-scale video footage, focusing on 
foreground object segmentation. Their method comprised three stages: updating background 
modeling with texture information, computing pseudo-wavelet coefficients, and generating a 
probability map using a factor graph with a second-order neighborhood system and a loopy belief 
propagation (BP) algorithm. However, computational complexity arose due to factor graphs and 
the BP algorithm. Zhang et al. [55] proposed an effective method for detecting and tracking 
individual pigs in video footage, addressing challenges like variable lighting conditions, similar 
appearance of individual pigs, deformations, and occlusions. The approach combined a CNN-
based detector with a correlation filter-based tracker and used a novel hierarchical data association 
algorithm. By leveraging features from multiple scales in a single-stage prediction network, the 
detector achieved a balance between accuracy and speed. The method defined a tag-box for each pig 
to extract local features for learning and conducted multiple object tracking using correlation filters. 
It handled tracking failures by refining detection hypotheses and correcting drifted tracks through 

Fig. 6. Pig behavior detection and analysis using image processing fusion techniques. (A) Ellipse-based 
segmentation, (B) Delaunay triangulation on pig body, and (C) combination of ellipse and Delaunay triangulation 
for detecting laying patterns.
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re-initialization. Experimental results on a commercial farm dataset demonstrated the robustness 
of the approach, suggesting its potential for long-term individual pig monitoring in complex 
environments. 

Ahrendt et al. [74] presented a real-time machine vision system for tracking pigs in loose-housed 
farms. Utilizing a camera and a personal computer, the system employed a two-step tracking 
algorithm. Preliminary pig segments were identified in each frame using support maps, followed 
by constructing a 5D-Gaussian model encompassing position and shape. Software correction 
for fisheye distortion enabled monitoring of a larger stable area. Developed in MATLAB and 
implemented in C, the system operated in real-time and demonstrated robustness in continuously 
tracking at least three pigs for over 8 minutes without losing track or identity. Lu et al. [75] 
introduced an ellipse-based segmentation algorithm for adhesive piglet images in farm conditions. 
Initially, ellipse fitting established parameter ranges for different age groups. Contours of connected 
components were then extracted and segmented using concave points. Ellipse fitting was applied 
to each contour segment, with additional rules proposed for ellipse merging. Experimental results 
in Matlab showed an accuracy exceeding 86% for piglet counts under 7. This algorithm lays the 
groundwork for piglet weight monitoring systems.

Various methods have been implemented to assess movement patterns in pigs. In one study, color 
video was used to measure 2D locomotion by overlaying multiple images of motion [76], providing 
insights into movement structure and patterns. Video images were captured using a Microsoft 
OEM Life Cam web camera mounted on the ceiling, with a height of 3.2 m. RGB images were 
cropped and converted to grayscale for efficiency. The Otsu method was applied for segmentation, 
producing binary images of pigs. Background noise was filtered out, and a motion filter isolated 
moving pigs. Morphological operations refined the images, and the pigs were repositioned and 
oriented. Head and ear positions were determined using width curves and derivatives. Stacked 
binary images created a movement map with a threshold of 15 frames to ensure significant 
movements were captured. 

In contrast, Stavrakakis et al. [77] used commercial motion capture cameras arranged in an array 
at a distance of 3 m from the pig pens. Coupled with motion capture software, this setup enabled 
the precise tracking of reflective markers on pigs, facilitating accurate measurement of locomotion 
in 3D. For practical applications in commercial settings, a more accessible solution was proposed 
[78] using a single-camera system with a Microsoft Kinect V1 motion sensor, along with the 
Kinect developer toolkit and algorithm for 3D lameness measurement. Kulikov et al. [79] also used 
a single camera to measure the height of pigs, particularly when lying down, demonstrating the 
versatility of camera-based approaches in assessing various aspects of pig behavior and locomotion.

Estimating body weight and condition for health optimization
RGB cameras have become widely adopted in machine vision due to their cost-effectiveness 
and efficiency. Researchers have extensively explored various algorithms aimed at extracting 
livestock body dimensions from 2D images using these cameras. Wu et al. [80] developed a 3D 
reconstruction system comprising six cameras recording RGB images, using stereovision techniques 
to achieve 3D reconstruction of pigs. Similarly, Pezzuolo et al. [81] introduced a structure from 
motion (SfM) photogrammetric approach for 3D reconstruction; their study proposed an analysis 
of pig body 3D SfM characterization across various conditions, including different numbers of 
camera poses and animal movements. The assessment utilized the total reconstructed surface 
as a reference index to quantify the quality of 3D reconstruction; the results demonstrated the 
potential to characterize up to 80% of the total animal area with this method. Fig. 7 shows the 3D 
reconstructed pig point cloud from pig body weight and movement analysis using RGB images.
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However, RGB-based reconstruction methods face significant limitations due to the absence of a 
third dimension, potential distortions, the necessity for calibration procedures, and the requirement 
for multiple cameras. Consequently, their effectiveness has been greatly constrained. A summary of 
pig disease detection and tracking using RGB imaging and image processing algorithms is provided 
in Table 3.

Fig. 7. Detailed representation of 3D reconstruction of pig point cloud from RGB images for body weight 
and movement analysis.

Table 3. Overview of techniques and algorithms used for identifying and tracking pig diseases with RGB imaging
Camera type Detection type Method / algorithm Accuracy Reference

DH-SD1A203T-GN Diseases, tracking Object detector+ time-varying features 92.0 [68]

- Enhanced moving object detection - [66]

- Concave-Convex recognition technique 93.9 [67]

- Gaussian mixture model (GMM) 92–96 [69]

Panasonic WV-BP330 Histogram equalization and binarization 88.7 [72]

- Optical flow and k-means algorithms 95 [71]

FLIR DuoPro R Pattern recognition and photoplethysmography (PPG) 66 [5]

Kinect depth camera filter-based tracker and hierarchical algorithm 89.5 [55]

VIVOTEK & Hikvision Behavior, activity Ellipse fitting, Delaunay triangulation 82 [36]

Monacor TVCCD-140IR Loopy belief propagation (BP) algorithm 93.3 [73]

Elphel NC353L Segmentation and 5D-Gaussian model - [74]

Nikon D90 Ellipse-based segmentation algorithm 86 [75]

Microsoft OEM Life Cam Otsu method, binarization, morphological operation - [76]

Kodak DCS760 Body weight Structure from motion (SfM) [80]

Nikon D5100 Structure from motion (SfM) 80 [81]
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Integrating deep learning and RGB Imaging techniques for enhanced detection and 
monitoring
Detection and tracking of pig diseases through machine learning and RGB imaging represent a 
promising advancement in livestock farming. Machine learning is a branch of AI that focuses on 
the development of algorithms and statistical models that enable computers to learn and improve 
from experience without being explicitly programmed [82]. By utilizing the capabilities of machine 
learning algorithms and RGB imaging technology, farm owners can accurately identify and 
monitor various pig diseases. RGB imaging-based monitoring of livestock struggles with noise and 
data overload from light source variations and image resolution differences. However, studies have 
shown that machine learning can mitigate noise and manage large datasets, improving the accuracy 
and efficiency of livestock monitoring [36]. Commonly used machine learning techniques for 
analyzing RGB image data in pig monitoring include linear discriminant analysis, artificial neural 
networks, and SVMs. However, deep learning—which is a growing field within machine learning, 
with its deeper architecture and superior learning capabilities (particularly through CNNs)—has 
gained growing recognition over recent years [83]. Pig diseases, behavior detection, and tracking 
have been analyzed using various machine learning algorithms, as illustrated in Fig. 8.

Deep learning has been applied to detect and recognize pig behaviors in farm conditions across 
various imaging systems. For instance, Zheng et al. [84] proposed a detection system for pig 
postures utilizing a Kinect v2 sensor and the Faster R–CNN technique with a region proposal 
network and Zeiler and Fergus Net (ZFnet). Using RGB and depth images captured by the camera, 
a program was developed to identify sow postures and locations in bounding boxes. Testing on a 
dataset acquired at 5 fps yielded a detection accuracy of 87.1%. The study authors acknowledged 
that RGB image-based identification was affected by color and illumination variations from factors 
like heat lamps and day-night cycles. Automatic detection from depth images can overcome such 
disturbances. 

Tu et al. [85] introduced PigMS R–CNN, a framework based on mask scoring R–CNN (MS R–
CNN) for segmenting adhesive pig areas in images of pig groups for identification and localization. 
A 101-layer residual network with the feature pyramid network served as the feature extraction 
network. The PigMS R–CNN head network included three branches for regression, classification, 
and segmentation, enabling extraction of location, classification, and segmentation information for 
detected pigs. Results showed an F1 score of 0.9228 with traditional NMS, improving to 0.9374 
with a soft-NMS threshold of 0.7. Ju et al. [86] addressed the segmentation of touching pigs in 
crowded environments using low-contrast images from a Kinect sensor capturing both depth and 
RGB images at 512 × 424 pixels resolution and 30 fps. Initially, the you only look once (YOLO) 
technique, a rapid CNN-based object detection method, was used for segmentation challenges. 
Additionally, possible boundary lines between the touching pigs were identified by analyzing their 
shape. Results demonstrated effectiveness in separating touching pigs in real time with 91.96% 
accuracy, despite the low-contrast images. However, the model could only segment two touching 
pigs, suggesting room for potential future improvement, particularly with the integration of transfer 
learning into the YOLO processing module. 

Faster R–CNN and YOLO were introduced in a different study [87] for the automatic detection 
of pig postures and drinking behaviors in group-housed pigs on commercial farms. A Munkres 
variant of the Hungarian assignment algorithm was applied to maintain pig identity across 
consecutive frames. A Kalman filter was utilized to locate missing tracks and associated pig IDs, 
which were then used to create individual pig profiles. Utilizing a custom data acquisition system, 
a Microsoft Kinect RGB camera recorded videos of the pen floor and behavior at 25 fps with a 
resolution of 640 × 360 pixels. The system accurately detected behavior changes during routine 
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management, achieving a mean average precision of 0.989 for individual behavior identification 
across various conditions, including disruptions in feeding.

Yang et al. [88] proposed a deep learning technique to automatically recognize nursing 
behaviors in sows from 2D images. They recorded top-view color videos of sows with piglets 
using a commercial camera, with a capture rate of 5 fps and 960 × 540 pixels resolution. Sows 
were segmented using a fully convolutional network (FCN) model with a Visual Geometry 
Group network having 16 layers (VGG16). Temporal features from the training set were then 
fed into an SVM binary classifier with a linear function kernel. Parameters of an additional 
sigmoid function were trained to map the SVM outputs into probabilities. The method achieved 
an accuracy rate of 97.6%, with 90.9% sensitivity and 99.2% specificity. However, challenges were 
observed in extremely uneven light conditions, low light, and persistent massage, affecting real-
world applications. In another study, Yang et al. [89] also addressed sow image segmentation from 

Fig. 8. Monitoring, detection, and tracking of pig diseases and behavior using machine learning 
applications in pig farms. (A) Posture detection and segmentation, (B) detection and tracking, (C) recognition 
of different body parts, (D) detection of disease conditions, and (E) tracking and counting in farm settings using 
RGB image data.
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different backgrounds in top-view 2D images using an FCN based on the VGG16, achieving an 
accuracy of 96.4%. The study indicated the potential of deep learning for accurately segmenting pigs 
from diverse background conditions.

Mazhar et al. [90] explored the application of machine learning techniques in precision pig 
farming. They applied a Random Forest (RF) algorithm in the Boruta package for image analysis 
and a neural network with a K-Nearest Neighbor algorithm for predictive big data analysis. The 
study demonstrated the effectiveness of these methods in enhancing precision farming practices, 
enabling accurate analysis of images and predictive analysis of large datasets. Cowton et al. [91] 
combined a deep CNN object localization method, Faster R–CNN, with the real-time, multi-
object tracking method Deep SORT to create a system that autonomously localized and tracked 
individual pigs. This system enabled the extraction of metrics related to individual pig behaviors 
from RGB sensors within the Microsoft Kinect v2. Pigs could be localized with an accuracy of 
90.1% and tracked individually across video footage with an accuracy of 92%.

Monitoring body weight is crucial for the early detection and management of various diseases 
in pig farming. Changes in body weight can offer valuable insights into potential health issues and 
aid in disease detection. For example, sudden weight loss may signal the presence of diseases such 
as swine fever, respiratory infections, or digestive disorders, while obesity can increase the risk of 
conditions like arthritis, heart disease, and metabolic disorders. Kárpinszky and Dobsinszki [92] 
developed an RGB-based system to estimate daily pig weights, eliminating the need for stressful 
weighing procedures. Tested on a commercial farm with 32 pigs over 100 days, the system identified 
key pig features (e.g., head, shoulder, belly, and rump) using Mask R–CNN, Pretty Contour 
Picker’s, and Multi-Layer Perceptron models. Achieving a rate of 97.4% accuracy compared 
to manual records, the system introduced a convenient web interface for pig management and 
monitoring, aiding informed decision-making in farming operations. Further testing across various 
pig facilities with diverse camera setups, feeders, and lighting conditions, particularly in low-light 
environments. 

Paudel et al. [93] compared the prediction of pig weight using a weight-to-volume correlation 
and a PointNet-based 3D deep learning model. An Intel Real-Sense camera was used to capture 
3D images and point cloud data from pigs in a holding pen, which underwent pre-processing to 
remove background scenes before input into the deep learning architecture for training and testing. 
Despite noisy training data, the deep learning model exceeded volume correlation with 94.2% 
accuracy on unseen point clouds, even for larger pig sizes. The model accurately detected individual 
pig weights and had the potential to predict the weights of multiple pigs simultaneously, addressing 
challenges such as free movement and adverse conditions. Wang et al. [94] introduced a rapid 
estimation technique of pig body size using a YOLOv5 model with MobilenetV3 integration and 
incorporating a lightweight object detection network as the feature extraction network, along with 
an attention mechanism. A depth camera captured the pig’s backside information at a fixed height, 
enabling calculation of the body height. A gradient-boosting regression algorithm established the 
body size prediction model based on the Euclidean distance between these key measurement points 
and actual body size data. The result demonstrated an accuracy of 98% for the body size estimation 
using the model. Other studies have also demonstrated pig body weight estimation using RGB 
imaging. A summary of pig disease detection and tracking using RGB imaging and machine 
learning algorithms is presented in Table 4.

Furthermore, machine learning algorithms can be continuously refined and improved as more 
data are collected, leading to more accurate and reliable disease detection systems over time. Overall, 
the integration of image-based technology with machine learning holds great promise for non-
invasive disease detection in pig farms, ultimately contributing to improvements in animal welfare 
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and farm productivity.
In commercial pig farming, RGB sensors enhance management practices by enabling real-time 

behavior monitoring, feeding management, environmental regulation, and health surveillance. 
These sensors track pig activity and food consumption and monitor environmental conditions 
(e.g., temperature and humidity) to ensure optimal living environments. Additionally, RGB 
sensors assist in detecting illness or injury through machine vision algorithms. Table 5 highlights 
various commercial products used for behavior monitoring, disease detection, and body weight 
measurement in pig farming.

Pig Guard (Serket, Amsterdam, the Netherlands) is an AI-powered livestock management 
software that uses camera vision to monitor pig behavior, detect early signs of illness, and manage 
feeding and treatment. In partnership with Hikvision (China), it tracks movements, feeding, 
and aggression in real time, offering alerts to improve herd health and farm management. Yingzi 
Technology (Guangzhou, China) developed a pig facial recognition system with 98% accuracy, 

Table 4. Summary of pig disease detection and tracking using RGB imaging and machine learning algorithms
Camera type Detection type Method / algorithm Accuracy Reference

FL3-U3-88S2C-C

Diseases, posture, and tracking

PigMS R–CNN 93.0 [85]

Kinect v2 Faster R–CNN 87.1 [84]

Kinect v2 YOLO 91.96 [86]

Kinect RGB Faster R–CNN, YOLO 98.9 [87]

DS-2CD1321D-I FCN+VGG16 97.6 [88]

DS-2CD1321D-I FCN+VGG16 96.4 [89]

IFM O3D313
Locomotion

RF + KNN – [90]

Kinect v2 Faster R–CNN+ Deep SORT 90.1 [91]

Dahua IPC-HFW1230S-S4

Body weight

Mask R–CNN, PCP, MLP 97.4 [92]

Intel Real Sense D435 PointNet 94.2 [93]

Basler TOF 640 YOLOv5 + MobilenetV3 97.8 [94]

Kinect camera Structure from motion (SfM) – [81]

Kinect camera CNN – [84]
CNN, convolutional neural network; YOLO, you only look once; FCN, fully convolutional network; VGG16, Visual Geometry Group Network having 16 layers. 

Table 5. Overview of commercially available RGB image sensor-based systems designed to support health monitoring, disease detection, and farm 
management for pig healthcare

Measure System name System type Monitoring performance Website
Behavior, diseases, 
activity

Pig Guard Handheld Yes https://www.serket-tech.com/

– Mounted No https://www.hikvision.com/en/

– Handheld Yes https://www-en.yingzi.com/index.html

EdgeFarm Mounted No https://intflow.ai/en/home/

Body weight – Handheld No https://lembergsolutions.com/

Viiew, Viiew Pro Handheld Yes https://illuvation.kr/_eng

PigVision Mounted Yes https://asimetrix.co/en/

optiSCAN Handheld No https://www.hl-agrar.de/cms/en/Home.html

Pigxcel Mounted Yes https://www.smartagritech.se/?lang=en

eYeGrow Mounted Yes https://www.fancom.com

WUGGL Handheld No http://www.wuggl.com

https://www.ifm.com/de/en/product/O3D313
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using deep learning algorithms to update profiles with details like individual identity, breed, weight, 
and gender. EdgeFarm (Intflow, Gwangju, Korea) provides an AI solution that monitors biometric 
data to detect injuries and diseases while tracking eating habits, social interactions, and weight gain. 
Lemberg Solutions (Lviv Oblast, Ukraine) developed an AI-based image recognition system for 
automatic pig weight measurement, reducing stress and improving efficiency. Viiew and Viiew Pro 
(Illuvation, Jeonju, Korea) offer AI-integrated docking systems for accurate weight management. 
PigVision (Asimetrix, North Carolina, USA) uses compact cameras with AI to estimate pig 
weights, while optiSCAN (Holscher & Leuschner, Emsbüren, Germany) employs a 3D camera 
and AI to provide precise measurements from over two million data points. Pigxcel Edge (Smart 
Agriculture Solution, Sjövik, Sweden) uses machine learning to track daily pig weights, with data 
analyzed in the cloud. The eYeGrow monitor (Fancom BV, Panningen, The Netherlands) automates 
weight monitoring with a 3D camera, and WUGGL One (WUGGL GmbH, Lebring, Austria) 
combines high-precision cameras with a contactless temperature sensor for real-time monitoring.

RGB sensors, combined with AI technology, present a promising approach for pig farms 
to enhance animal welfare, improve farm management, and boost profitability in commercial 
applications. As AI and sensor technology continue to evolve, their potential applications in pig 
farming are expected to expand, driving further innovation and improvements across the industry. 
These advances will enable more precise monitoring, automated decision-making, and optimized 
resource management, contributing to the future of smart farming.

FUTURE PERSPECTIVES, CHALLENGES AND SUMMARY
Machine vision and RGB imaging provide significant advantages in pig health management 
by enabling early disease detection and real-time monitoring of behavior, surpassing traditional 
observation-based methods. These technologies analyze large datasets to detect subtle changes 
in behavior or appearance that indicate disease onset, enhancing welfare monitoring by tracking 
social interactions and stress indicators [95]. The integration of sensor and camera data offers a 
comprehensive view of the farm environment, aiding in the effective management of housing 
conditions. Cameras are widely used for disease detection, behavior monitoring, and health 
assessment in controlled environments, with notable benefits for farm monitoring [34,44].

However, several challenges hinder the full potential of machine vision in pig health management. 
A primary issue is the need for robust, accurate image processing algorithms that are capable of 
handling broad variability in pig appearance and behavior. Developing machine learning models 
that are trained on large, labeled datasets is both resource-intensive and time-consuming [45]. 
Commercial farm settings present additional obstacles, such as the clustering of animals, varied 
feeding habits, unmarked animals, inconsistent lighting, environmental debris, and background 
interference [6,44]. Surveillance systems also face challenges such as abrupt lighting changes that 
cause shadows, similar pig features that complicate the identification of individuals, and occlusions 
from group interactions or debris [55,96]. Object deformation and temporary obstructions further 
complicate tracking and identification processes [6,59,97].

Implementing machine vision and RGB imaging in pig farms is complex due to the diversity 
of sensors and data systems already in use. Additionally, privacy and ethical concerns surrounding 
data usage and regulatory compliance must be carefully addressed when integrating these 
technologies. Despite these challenges, machine vision holds substantial promise for advancing 
health management in modern pig farming systems. Continued research and development efforts 
are essential to further refine image acquisition techniques, enhance the accuracy of algorithms, and 
address privacy and ethical considerations surrounding data usage. The immersive adoption of these 
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technologies—alongside complementary advances in sensor technology, drones, and robotics—
promises to revolutionize pig farming practices. By exploring the insights provided by machine 
vision and RGB imaging, farmers can optimize disease management strategies, improve pig welfare, 
and ultimately enhance the sustainability and profitability of pig production systems.
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