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Abstract
In contrast to conventional genomic prediction, which typically targets a single breed and 
circumvents the necessity for population structure adjustments, multi-breed genomic predic-
tion necessitates accounting for population structure to mitigate potential bias. The presence 
of this structure in multi-breed datasets can influence prediction accuracy, rendering proper 
modeling crucial for achieving unbiased results. This study aimed to address the effect of 
population structure on multi-breed genomic prediction, particularly focusing on crossbred 
reference populations. The prediction accuracy of genomic models was assessed by in-
corporating genomic breed composition (GBC) or principal component analysis (PCA) into 
the genomic best linear unbiased prediction (GBLUP) model. The accuracy of five different 
genomic prediction models was evaluated using data from 354 Duroc × Korean native pig 
crossbreds, 1,105 Landrace × Korean native pig crossbreds, and 1,107 Landrace × Yorkshire 
× Duroc crossbreds. The models tested were GBLUP without population structure adjust-
ment, GBLUP with PCA as a fixed effect, GBLUP with GBC as a fixed effect, GBLUP with 
PCA as a random effect, and GBLUP with GBC as a random effect. The highest prediction 
accuracies for backfat thickness (0.59) and carcass weight (0.50) were observed in Models 
1, 4, and 5. In contrast, Models 2 and 3, which included population structure as a fixed effect, 
exhibited lower accuracies, with backfat thickness accuracies of 0.40 and 0.53 and carcass 
weight accuracies of 0.34 and 0.38, respectively. These findings suggest that in multi-breed 
genomic prediction, the most efficient and accurate approach is either to forgo adjusting for 
population structure or, if adjustments are necessary, to model it as a random effect. This 
study provides a robust framework for multi-breed genomic prediction, highlighting the critical 
role of appropriately accounting for population structure. Moreover, our findings have import-
ant implications for improving genomic selection efficiency, ultimately enhancing commercial 
production by optimizing prediction accuracy in crossbred populations.
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INTRODUCTION
Accurate prediction of genomic breeding values is a critical component of successful genomic 
selection, which requires a sufficiently large reference population to reliably estimate marker effects 
[1]. However, small populations, such as Jersey cattle, often pose challenges owing to the limited 
reference populations of progeny-tested bulls, leading to less reliable genomic breeding values 
[2]. Consequently, genetic progress is restricted in breeds without a large reference population. 
One approach to addressing this limitation is across-breed prediction, which involves the use of 
a large reference dataset from another breed [3]. Another approach is multi-breed prediction, 
which combines data from multiple breeds to create a larger, more comprehensive dataset [3]. 
Both approaches can enhance prediction accuracy for smaller breeds, helping them become more 
competitive while minimizing the additional costs associated with genotyping and phenotyping. 

Empirical studies have demonstrated that the accuracy of across-breed genomic prediction is 
often near zero and that combining multiple breeds has not yielded significant improvements 
in accuracy [3,4]. However, these methods remain promising, particularly when combined with 
strategies that account for population structure and other sources of variation [5,6]. Addressing 
population structure, also referred to as population stratification, is critical for genomic prediction 
across different breeds. Population structure arises from differences in allele frequencies between 
subpopulations, which may result from geographic separation, or natural or artificial selection [7]. 
These differences can lead to spurious marker-trait associations [8,9], potentially inflating estimates 
of genomic heritability [10] and introducing bias into genomic prediction accuracy [6]. 

To mitigate the effects of population structure, it is important to model it appropriately within 
genomic prediction models, particularly when combining data from multiple breeds. A common 
method involves incorporating principal components (PCs) derived from genomic data as a fixed 
effect in the prediction model [7]. However, incorporating PCs as a fixed effect can result in over-
correction, as these components are derived from the genomic relationship matrix used in genomic 
prediction [11]. To address this limitation, in this study, PCs were modeled as a random effect to 
capture population structure without confounding the genomic relationship matrix. The prediction 
accuracy of these models was compared with those of models in which PCs were excluded. 
Additionally, breed composition, another explanatory factor for population structure, was modeled 
as either a fixed or random effect to adjust for population structure. 

In this study, we evaluated the accuracy of genomic predictions using models that incorporated 
breed composition and PCs as fixed and random effects and compared the results with those of a 
baseline model. This study aimed to determine whether accounting for population structure using 
breed composition or PCs can improve genomic prediction accuracy. The findings of this study may 
provide valuable insights into optimizing genomic prediction models for populations with complex 
or diverse structures.

MATERIALS AND METHODS
Animals, genotypes, and phenotypes
The genotype dataset comprised data from 354 Duroc × Korean native pigs (DK), 1,105 Landrace 
× Korean native pigs (LK), 1,017 Landrace × Yorkshire × Duroc (LYD) crossbreds, along with 
purebred animals. Crossbred individuals were genotyped using the Illumina PorcineSNP60 
Genotyping BeadChip, whereas genotype data for purebred animals were provided by the Centre 
for Research in Agricultural Genomics [12]. Genotype data for the Korean native pigs (KNPs) 
among the purebreds were provided by the National Institute of Animal Science in Korea. Details 
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regarding the number of animals, single nucleotide polymorphisms (SNPs), and average observed 
heterozygosity rate for each breed are presented in Table 1. The quality control process involved the 
exclusion of SNPs located on sex chromosomes, with a genotype call rate below 90%, and with a 
minor allele frequency below 1%. After merging datasets and applying the quality control process, a 
common set of 24,118 SNPs were retained for analysis.

Phenotypic data revealed differences in backfat thickness and carcass weight among the breeds. 
The LYD breed exhibited the lowest backfat thickness, whereas the DK breed had the highest 
backfat thickness. Conversely, the DK breed exhibited the lowest carcass weight, whereas LYD had 
the highest carcass weight. The carcass performance of the breeds crossed with the KNP was lower 
than that of LYD. This finding aligns with the known characteristics of the KNP breed, which is 
known for its good meat quality but poor growth rate [13]. Statistical details for the phenotypes are 
provided in Table 2.

Principal component analysis
Principal component analysis (PCA) was employed to investigate genetic differences between 
populations and to correct for population structure. PCA simplifies data complexity while 
maintaining the underlying relationships among the data points. When applied to biallelic 
genotype data, PCA identifies the eigenvalues and eigenvectors of the covariance matrix of allele 
frequencies, thereby reducing the data to a limited number of dimensions known as PCs. Each PC 
represents a proportion of the total genomic variation. Subsequently, the data are mapped onto the 
space defined by these PC axes, facilitating the visualization of samples and their distances from 
each other in a scatter plot. In this visualization, sample overlap indicates shared genetic identity, 
reflecting common ancestry or origin [14]. 

Genomic breed composition
Genomic breed composition (GBC) was estimated from genomic data using a maximum likelihood 
model implemented in ADMIXTURE v1.3.0 [15]. ADMIXTURE uses genotype data to cluster 
individuals into subgroups based on a predetermined number of groups. The projection extension of 

Table 1. Number of animals, SNPs, and average observed heterozygosity rate for each breed
Breed Number of animals Number of SNPs Observed heterozygosity

Duroc × Korean native pig 354 61,565 0.32

Landrace × Korean native pig 1,105 62,163 0.34

Landrace × Yorkshire × Duroc 1,017 52,258 0.39

Duroc 20 46,259 0.27

Korean native pig 25 40,047 0.23

Landrace 20 46,259 0.32

Yorkshire 20 46,259 0.31
SNPs, single nucleotide polymorphisms.

Table 2. Number of animals with record (N), mean, and standard deviation (SD) for backfat thickness and carcass weight

Breed
Backfat thickness (mm) Carcass weight (kg)

N Mean SD N Mean SD
Duroc × Korean native pig 295 24.21 5.86 295 69.67 11.62

Landrace × Korean native pig 1,014 22.93 6.9 1,081 79.17 12.48

Landrace × Yorkshire × Duroc 1,017 22.16 5.07 1,017 88.23 5.94
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the ADMIXTURE program allows for estimating ancestry using predefined ancestral population 
allele frequencies. This extension enables efficient ancestry inference across large genomic datasets, 
leveraging allele frequencies from reference panels, such as the 1000 Genomes Project. Additionally, 
the projection approach is particularly advantageous for datasets with significant population 
distribution imbalances, as such imbalances can adversely affect the accuracy of ancestry inference 
[16].

The projection extension of the ADMIXTURE program was used to analyze the dataset owing 
to the imbalance between purebred and crossbred samples. Ancestral population allele frequencies 
were estimated using the purebred samples, whereas the GBC values of the crossbreds were 
estimated using the allele frequencies of the purebreds.

Statistical models
First, PCs and GBCs were calculated for each individual, which were subsequently used in five 
models to predict genomic estimated breeding values (GEBV). Although additional fixed effects 
such as age and farm were considered, age information was unavailable, and farm data showed high 
multicollinearity with the PC and GBC values, which precluded their inclusion. 

Model 1 (NULL) is defined as follows:
y = Xb + Zg + e,

where y represents the vector of trait records (backfat thickness or carcass weight); b indicates the 
vector of fixed effects, including sex; X denotes the design matrix linking fixed effects to the records; 

g represents the vector of random genetic effects, modeled as ( )2~ 0,G gN σ , with G being the 
genomic relationship matrix and ( )2~ 0,G gN σ  being the genetic variance captured by the SNPs; Z indicates 
the design matrix linking records to animals; and e denotes the vector of random deviations, 
modeled as ( )2~ 0, I eN σ , with I as an animal-by-animal identity matrix and ( )2~ 0, I eN σ  representing the 
error variance. The GEBV for this model was predicted as GEBV = ĝ. The genomic relationship 
matrix was constructed using GCTA v1.94.1 software according to the following equation [17]: 

where xij and xik represent the genotypes (coded as 0, 1, or 2) of individuals j and k at SNP i. pi 
indicates the allele frequency of SNP i, and N denotes the total number of SNPs. The distribution 
of the diagonal and off-diagonal elements of the genomic relationship matrix is shown in Fig. 1. 
The mean of the diagonal elements is 1.03, indicating low inbreeding within the population. The 
mean of the off-diagonal elements is 0, showing that individuals are genetically independent of 
each other.

Model 2 (PC_F) is defined as follows:
y = Xb + Zg + e,

where y represents the vector of trait records; b denotes the vector of fixed effects, which includes 
PC values (20 PCs) and sex; X indicates the design matrix linking fixed effects to records; g 
represents the vector of random genetic effects; Z denotes the design matrix linking records to 
animals; and e indicates the vector of random deviations. For this model, GEBV = ĝ.
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Model 3 (GBC_F) is defined as follows:
y = Xb + Zg + e,

where y represents the vector of trait records; b denotes the vector of fixed effects, which includes 
GBC values and sex (here, breed composition values represent the proportion of each individual’s 
genome derived from the four breeds: Duroc, KNP, Landrace, and Yorkshire); X indicates the 
design matrix linking fixed effects to records; g represents the vector of random genetic effects; 
Z denotes the design matrix linking records to animals; and e indicates the vector of random 
deviations. For this model, GEBV = ĝ.

Model 4 (PC_R) is defined as follows:
𝐲 = 𝐗𝐛 + 𝐙𝐠 + Zpc + 𝐞,

where y indicates the vector of trait records; b represents the vector of fixed effects, including 
sex; X denotes the design matrix linking fixed effects to records; g indicates the vector of random 
genetic effects; pc denotes the vector of random variables representing groups of PC values, which 
were clustered using the Gaussian Mixture Model implemented in the ‘mclust’ R package [18]; 
Z indicates the design matrix linking records to animals; and e denotes the vector of random 
deviations. For this model, ˆGEBV g pc= + .

Model 5 (GBC_R) is defined as follows: 
𝐲 = 𝐗𝐟 + 𝐙𝐠 + 𝐙𝐠𝐛𝐜 + 𝐞,

where y represents the vector of trait records; b denotes the vector of fixed effects, including sex; X 
indicates the design matrix linking fixed effects to records; g represents the vector of random genetic 
effects; gbc denotes the vector of random variables representing groups of GBC values, which 
were clustered using the Gaussian Mixture Model implemented in the ‘mclust’ R package [18]; 
Z indicates the design matrix linking records to animals; and e represents the vector of random 

deviations. For this model, ˆGEBV g gbc= + .

Fig. 1. Distribution of diagonal and off-diagonal elements of the genomic relationship matrix.
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Variance components were estimated using the restricted maximum likelihood (REML) method, 
as implemented in MTG2 [19], for each model. Heritability for the traits was estimated using 
the formula   ( )2 2 2 2/g g eh σ σ σ= + . The accuracy of GEBVs for each of the five models was calculated 
as r(GEBV,y), where y represents the phenotypes corrected for fixed effects [20]. A 5-fold cross-
validation approach was used to validate the models. In this method, animals were randomly 
divided into five groups, with each group treated as the validation set while the remaining groups 
constituted the reference set.

RESULTS
Principal components analysis
PCA was performed to explore genetic structure across populations. The analysis revealed that the 
first PC (PC1) accounted for 43.9% of the total genetic variance, whereas the second PC (PC2) 
constituted 13.6% of the variance (Fig. 2). The PCA plot revealed a clear separation among the 
crossbred populations, indicating distinct genetic backgrounds. However, the LYD population 
exhibited greater dispersion along the first two PCs, suggesting more considerable genetic variation 
within this group. This observed variation is likely attributed to the presence of F1 hybrids in the 
dataset, which primarily combined Landrace and Yorkshire genetics, thereby increasing the overall 
diversity observed in this population. 

Genomic breed composition
The breed composition of the crossbred populations was evaluated using ADMIXTURE analysis; 
the results are depicted in Fig. 3. The analysis was conducted in unsupervised mode using genomic 

Fig. 2. Population distribution across the first and second principal components. PC, principal 
components; DK, Duroc × Korean native pigs; LK, Landrace × Korean native pigs; LYD, Landrace × Yorkshire × 
Duroc.
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data from purebred samples, and the estimated breed allele frequencies were subsequently used to 
infer breed membership coefficients for the crossbred individuals. 

In the LYD population, the estimated breed composition revealed an average contribution of 
31%, 33%, and 36% from Landrace, Yorkshire, and Duroc, respectively (Table 3). The presence of 
F1 animals, as indicated by the PCA, was corroborated by the breed composition analysis, where 
the contribution of the Landrace and Yorkshire breeds showed that the F1 crossbreds were indeed 
hybrids of these two pure breeds. The variation in breed composition within the LYD population 

Fig. 3. Bar plot of the Q matrix from an ADMIXTURE run, showing the proportion of the genome 
contributed by each breed. (A) LYD population, (B) DK population, and (C) LK population. Each vertical bar 
represents an individual. KNP, Korean native pig; DK, Duroc × Korean native pig; LYD, Landrace × Yorkshire × 
Duroc.
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was not substantial, with standard deviations of 0.13, 0.12, and 0.19 for Landrace, Yorkshire, and 
Duroc, respectively. Similarly, the DK and LK populations exhibited balanced breed compositions. 
In the DK population, the average breed composition was 63% Duroc and 37% KNP, with 
minimal variation between individuals (SD = 0.05 for both breeds). The LK population had an 
average composition of 61% Landrace and 39% KNP, and low variation was also observed across 
individuals (SD = 0.06 for both breeds). These results suggest that the parental breeds had relatively 
balanced genetic contributions, as evidenced by the minimal variation in breed composition 
between individuals within the DK and LK populations.

Genetic parameter estimates
Heritability estimates for backfat thickness and carcass weight were derived from five different 
models; the associated variance components are detailed in Table 4. The estimates of genetic 
additive variance (Vg) and error variance (Ve) were used to calculate heritability for each trait. 

Model 1 (NULL), which did not account for population structure, yielded the highest 
heritability estimates, with a heritability value of 0.44 ± 0.03 for backfat thickness and 0.31 ± 0.03 
for carcass weight. The elevated heritability estimates for this model may be attributed to its lack 
of adjustments for potential confounding factors related to breed differences. Models 2 (PCA_F) 

Table 3. Genomic breed composition by breeds
Population Breed Minimum Median Maximum Mean SD

Landrace × Yorkshire × Duroc Landrace 0.06 0.27 0.90 0.31 0.13

Yorkshire 0.05 0.30 0.89 0.33 0.12

Duroc 0 0.43 0.75 0.36 0.19

Duroc × KNP Duroc 0.49 0.63 0.75 0.63 0.05

KNP 0.25 0.37 0.51 0.37 0.05

Landrace × KNP Landrace 0.43 0.62 0.75 0.61 0.06

KNP 0.25 0.38 0.57 0.39 0.06
KNP, Korean native pig.

Table 4. Variance components and heritability estimates from five models for backfat thickness and carcass weight traits 

Model
Variance components Heritabilities

Backfat thickness (mm) Carcass weight (kg) Backfat thickness (mm) Carcass weight (kg)
1 (NULL) Vg 13.5 ± 1.3 31.4 ± 3.6 0.44 ± 0.03 0.31 ± 0.03

Ve 17.1 ± 0.8 69.2 ± 2.7

2 (PC_F) Vg 12.1 ± 1.3 24.9 ± 3.7 0.41 ± 0.03 0.26 ± 0.03

Ve 17.5 ± 0.8 71.3 ± 2.8

3 (GBC_F) Vg 13.7 ± 1.3 26.0 ± 3.4 0.44 ± 0.03 0.27 ± 0.03

Ve 17.1 ± 0.8 70.6 ± 2.7

4 (PC_R) Vg 13.2 ± 1.3 28.1 ± 3.6 0.41 ± 0.04 0.23 ± 0.04

Vpc 1.6 ± 1.7 23.7 ± 15.1 0.05 ± 0.05 0.19 ± 0.1

Ve 17.2 ± 0.8 69.9 ± 2.7

5 (GBC_R) Vg 13.5 ± 1.3 27.1 ± 3.5 0.44 ± 0.03 0.23 ± 0.04

Vgbc 0.2 ± 0.3 22.3 ± 14.3 0 0.19 ± 0.1

Ve 17.1 ± 0.8 70.2 ± 2.8
1) Variance components are the genetic additive variance (Vg) and the error variance (Ve). In addition, the Model 4 (PC_R) and the Model 5 (GBC_R) estimates additional genetic vari-
ance components (Vpc and Vgbc).

PC, principal components; GBC, genomic breed composition.
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and 3 (GBC_F), which incorporated population structure as a fixed effect, yielded lower heritability 
estimates; Model 2 estimated heritability for backfat thickness at 0.41 ± 0.03 and carcass weight at 
0.26 ± 0.03, whereas Model 3 estimated these factors at 0.44 ± 0.03 and 0.27 ± 0.03, respectively. 
These reductions in heritability suggest that accounting for population structure as a fixed effect 
can decrease the perceived genetic influence on the traits. Models 4 (PCA_R) and 5 (GBC_R) 
included additional genetic variance components (Vpc and Vgbc) to account for population structure 
as a random effect. In Model 4, the genetic variance (Vg) was estimated at 13.2 ± 1.3 and Vpc at 1.6 ± 
1.7 for backfat thickness, contributing an additional heritability of 0.05 ± 0.05 to the base estimate 
of 0.41 ± 0.04. For carcass weight, Vg was estimated at 28.1 ± 3.6 and Vpc at 23.7 ± 15.1, contributing 
an additional heritability of 0.19 ± 0.1 to the base estimate of 0.23 ± 0.04. Model 5 demonstrated 
similar patterns, although Vgbc for backfat thickness was close to zero. These models typically yielded 
heritability estimates similar to those of Model 1 for backfat thickness; however, for carcass weight, 
they provided a more nuanced understanding of genetic effects by accounting for population 
structure as a separate effect. 

Accuracy of Genomic Estimated Breeding Values
The accuracy of GEBVs was evaluated using five models; the results are summarized in Table 5 and 
depicted in Fig. 4. Model 1 (NULL), Model 4 (PCA_R), and Model 5 (GBC_R) exhibited the 
highest accuracy for predicting both backfat thickness and carcass weight. These models achieved an 

Table 5. Mean and standard deviation of GEBV accuracy for five prediction methods

Model
Backfat thickness (mm) Carcass weight (kg)

Mean SD Mean SD
1 (NULL) 0.59 0.01 0.50 0.04

2 (PCA_F) 0.40 0.03 0.34 0.03

3 (GBC_F) 0.53 0.04 0.38 0.02

4 (PCA_R) 0.59 0.01 0.50 0.03

5 (GBC_R) 0.59 0.01 0.50 0.03
GEBV, genomic estimated breeding values; PCA, principal component analysis; GBC, genomic breed composition.

Fig. 4. GEBV accuracy of five prediction models. From left to right, the models are Model 1 (NULL), Model 
2 (PCA_F), Model 3 (GBC_F), Model 4 (PCA_R), and Model 5 (GBC_R). The dots represent the average 
accuracy, and the lines indicate the standard deviation. GEBV, genomic estimated breeding value; PCA, 
principal component analysis; GBC, genomic breed composition.
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average accuracy of 0.59 for backfat thickness and 0.50 for carcass weight, with minimal variation 
across replicates (SD = 0.01 for backfat thickness and between 0.03 to 0.04 for carcass weight). 
Models that incorporated population structure as a fixed effect (Models 2 and 3) demonstrated 
lower accuracies for GEBVs. For backfat thickness, Model 2 (PCA_F) achieved a mean accuracy 
of 0.40 ± 0.03, whereas Model 3 (GBC_F) yielded a mean accuracy of 0.53 ± 0.04. The accuracy 
for carcass weight in these models was reduced similarly, with Model 2 achieving an accuracy of 
0.34 ± 0.03 and Model 3 yielding an accuracy of 0.38 ± 0.02. These results suggest that modeling 
population structure as a fixed effect captures population differences but compromises GEBV 
accuracy. In contrast, modeling population structure as a random effect captures genetic variation 
due to breed differences without adversely affecting GEBV accuracy.

The Spearman rank correlation coefficient of GEBV between all models showed that all models 
were highly correlated with each other (except Model 2 in backfat thickness), ranging from 0.59 to 
0.60. In carcass weight, Models 1, 4, and 5 had high Spearman correlation coefficients with each 
other, but models 2 and 3 had low correlation coefficients with the other models, ranging from 0.39 
to 0.70 (Fig. 5). Models that did not correct for population structure and models that corrected for 
population structure as a random effect had similar genomic prediction patterns. 

DISCUSSION
In multi-breed genomic predictions, using a reference population that encompasses multiple 
breeds inevitably introduces differences in population structure across these breeds. Therefore, 
this study aimed to assess prediction accuracy while adjusting population structure as either a 
fixed or random effect in multi-breed genomic predictions. The findings revealed that adjusting 
for population structure as a fixed effect resulted in decreased accuracy, whereas treating it as a 
random effect did not yield any improvements in accuracy. These results suggest that in multi-breed 
genomic predictions, the genomic relationship matrix sufficiently accounts for population structure, 
indicating that a model without adjustments for population structure is the most efficient. 

Genotypic versus pedigree-based breed composition
GBC highlights the superior accuracy of genotypic data over that of pedigree information in 
determining breed composition. Pedigree records often contain inaccuracies or are incomplete, 
which can result in erroneous breed composition estimates [21,22]. In contrast, using genomic 

Fig. 5. Spearman correlation between models. (A) Backfat thickness and (B)carcass weight. GBC, genomic 
breed composition; PCA, principal componant analysis; GBC, genomic breed composition.
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data with tools such as ADMIXTURE provides a more precise assessment [23]. The findings of 
this study revealed that the breed compositions calculated using ADMIXTURE closely aligned 
with those expected from complete pedigree records, thereby corroborating previous research that 
emphasizes the reliability of genomic data for estimating breed composition in admixed populations 
[23].

Effect of population structure on genomic estimated breeding values
The effect of population structure on the estimation of genetic parameters is a well-established 
concern in genomic studies. Population structure can lead to false-positive associations [24], which 
may result in inflated heritability estimates [10] and biased accuracies in genomic predictions [6]. 
To address this issue, this study incorporated PCs and GBCs into GBLUP models as fixed or 
random effects. 

Notably, the inclusion of PCs or GBCs as fixed effects resulted in decreased accuracy of GEBVs 
compared to those of models that excluded these factors. This reduction in accuracy may stem 
from the redundancy between the information provided by these variables and that captured by 
the genomic relationship matrix. Essentially, the genomic relationship matrix already encompasses 
much of the population structure information; therefore, adding PCs or breed composition as 
fixed effects could result in double-counting, leading to overcorrection and reduced model accuracy 
[11,25]. In contrast, treating PCs and GBC as random effects did not yield any improvement in 
prediction accuracy. This result suggests that the additional genetic variance components captured 
by these random effects did not provide significant new information beyond what was already 
accounted for by the genomic relationship matrix. Similarly, previous studies have demonstrated 
that incorporating population structure as a random effect does not enhance the accuracy of 
genomic predictions [25]. However, the advantage of including breed as a random effect within 
the model, as GEBVs are divided into two components. Specifically, a model with a random effect 
splits the genetic variance into within-breed and across-breed GEBVs, thereby facilitating the 
understanding of how predictions differ within and across breeds [25]. 

These findings hold significant implications for the optimal design of genomic prediction models. 
Although accounting for population structure is crucial to avoid biases, these results indicate that 
the genomic relationship matrix within the GBLUP framework sufficiently captures the required 
information. Consequently, additional adjustments for population structure, whether as fixed or 
random effects, may be unnecessary and could even negatively affect prediction accuracy. These 
findings support the growing consensus that simpler models that rely on the genomic relationship 
matrix without further correction for population structure are often the most effective [25].

This study focused on carcass traits and therefore did not explicitly include heterozygosity, even 
though crossbred animals were used. However, recent findings suggest that including heterozygosity 
in genomic predictions for maternal traits can improve prediction accuracy [26]. Therefore, 
future research on maternal traits in genomic prediction models may benefit from considering 
heterozygosity as a factor to further enhance prediction accuracy. 

Implications for multi-breed genomic prediction
Our findings have significant implications in the field of multi-breed genomic prediction. This 
study demonstrated that the genomic relationship matrix alone could effectively capture breed 
differences within multi-breed populations, thereby eliminating the necessity for additional 
corrections for population structure. This circumvention is particularly advantageous in multi-breed 
contexts, where genetic relationships among breeds can vary widely, facilitating accurate predictions 
of breeding values for selection decisions. 
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Given the observed decrease in accuracy when population structure was included as a fixed 
effect, future studies and practical applications of genomic prediction should prioritize models that 
incorporate the genomic relationship matrix as the primary tool for capturing genetic variance. This 
approach is more straightforward and ensures higher accuracy in predicting breeding values, which 
is crucial for effectively managing and improving crossbred populations. 

In conclusion, this study underscores the robustness of the genomic relationship matrix in 
accounting for population structure within multi-breed genomic prediction. The findings suggest 
that, although population structure is an important consideration, the genomic relationship matrix 
is sufficient for capturing the relevant genetic variance, modeling additional corrections unnecessary. 
This insight is valuable for optimizing genomic prediction models in crossbred populations and 
enhancing the accuracy of GEBV predictions.
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