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Abstract
Pig farming is experiencing significant transformations, driven by technological advance-
ments, which have greatly improved management practices and overall productivity. Sound-
based technologies are emerging as a valuable tool in enhancing precision pig farming. This 
review explores the advancements in sound-based technologies and their role in improving 
precision pig farming through enhanced monitoring of health, behavior, and environmental 
conditions. When strategically placed on farms, non-invasive technologies such as micro-
phones and sound sensors can continuously collect data without disturbing the animals, 
making them highly efficient. Farmers using sound data, can monitor key factors such as 
respiratory conditions, stress levels, and social behaviors, leading to improved animal welfare 
and optimized production. Advancements in sensor technology and data analytics have en-
hanced the capabilities of sound-based precision systems in pig farming. The integration of 
machine learning and artificial intelligence (AI) is further enhancing the capacity to interpret 
complex sound patterns, enabling the automated detection of abnormal behaviors or health 
issues. Moreover, sound-based precision technologies offer solutions for improving environ-
mental sustainability and resource management in pig farming. By continuously monitoring 
ventilation, feed distribution, and other key factors, these systems optimize resource use, 
reduce energy consumption, and detect stressors such as heat and poor air quality. The inte-
gration of sound technologies with other precision farming tools, such as physiological mon-
itoring sensors and automated feeding systems, further enhances farm management and 
productivity. However, despite the advantages, challenges remain in terms of low accuracy 
and high initial costs, and further research is needed to improve specificity across different 
pig breeds and environmental conditions. Nonetheless, acoustic technologies hold immense 
promise for pig farming, offering enhanced management, an optimized performance, and im-
proved animal welfare. Continued research can refine these tools and address the challeng-
es, paving the way for a more efficient, profitable, and sustainable future for the industry.
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INTRODUCTION
As the population grows, so does the demand for meat and, in turn, the density of livestock farms. 
This significantly impacts the lives of the animals raised on these farms, particularly pigs, which 
are a crucial source of animal protein worldwide [1]. Animal products, including meat and milk, 
contribute approximately 33% of the protein consumed by humans [2], and pork is the second-
most highly consumed meat globally, valued for its affordability and relatively low cost [3]. Several 
factors influence pig farming, including the farm size, livestock-raising methods, environmental 
conditions, disease management, and feed consumption rate [4]. Pigs raised under different 
conditions exhibit distinct behaviors and growth patterns. Those reared intensively tend to grow 
larger and reach maturity more quickly than their counterparts raised in diverse environments [5]. 
However, intensively raised pigs often show aggressive, abnormal behaviors, such as navel stabbing 
and tail and ear biting [6]. Moreover, diseases are responsible for 25% of pig deaths globally [7], 
and ensuring pig health is vital for production success, necessitating vigilant monitoring for any 
infections on the farm [2]. Early detection of health issues is crucial, with diseased pigs promptly 
identified, isolated, and treated to prevent spread.

Over the years, the pig farming industry has witnessed remarkable advancements in management 
practices and technology adoption to improve efficiency, productivity, and sustainability [8]. Among 
these technological innovations, acoustic-based precision technologies have emerged as a promising 
approach for enhancing management practices in pig farming [9]. Utilizing acoustic-based 
precision technologies involves deploying sound sensors and data analytics tools to monitor various 
aspects of pig behavior, health, and environmental conditions through the analysis of sound waves 
and vocalizations [10]. These technologies offer numerous advantages, including non-invasiveness, 
continuous monitoring capabilities, and the ability to detect small changes in pig behavior and 
welfare indicators [11, 12]. Accordingly, they have received attention from researchers, industry 
experts, and policymakers aiming to improve pig farming efficiency while prioritizing animal 
welfare and environmental sustainability.

Pig vocalizations can be powerful indicators of their health, particularly with regard to respiratory 
infections, which are a major concern in intensive farming [13]. Coughing is a prevalent symptom 
of respiratory diseases, which are often marked by distinct sounds upon airway expulsion, serving as 
the bodily responses against respiratory infections. These sounds can aid in screening and diagnosis, 
as they give initial indications of various airway and lung conditions manifesting early in respiratory 
illnesses [14,15]. To maximize this potential for screening and diagnosis, we require equipment 
capable of collecting and analyzing livestock data effectively. Current research into acoustic-based 
precision technologies for pig farming encompasses a diverse range of applications, including 
health monitoring [16–19], behavior analysis [10, 20–22], environmental monitoring [23–25], 
and automated management systems [26–29]. Studies have demonstrated the effectiveness of 
acoustic sensors in detecting early signs of disease, monitoring behavior, improving reproductive 
efficiency, and mitigating environmental stressors. Furthermore, advancements in sensor technology, 
data analytics, and machine learning algorithms have expanded the capabilities of acoustic-based 
systems, enabling more accurate and efficient monitoring and management of pig production 
systems.

While acoustic-based precision technologies hold promise, their application in pig farming faces 
challenges, including the difficulty in collecting data accurately amid environmental noise, issues 
with interoperability, high initial costs, and privacy concerns. Additionally, integrating acoustic 
technologies into pig farming demands careful planning, farmer training, and adaptation. These 
factors must all be addressed in order to unlock the technologies’ potential to improve pig farming 
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efficiency, welfare, and sustainability.
Early detection of illnesses and assessment of their severity on farms are invaluable to farmers 

as they facilitate prompt interventions and management. Sound analysis may play a major role 
in these regards, facilitating the recognition of signs of distress and the classification and grading 
of various respiratory diseases and their symptoms. Acoustic techniques offer distinct advantages 
over alternative sensing technologies, such as imaging, thermal, laser, and motion sensors, as they 
are cost-effective, non-invasive, and allow for the simultaneous monitoring of numerous animals 
without disrupting their natural living conditions [30]. In recent years, there has been growing 
acknowledgment of the value of sound analysis for comprehending animal behavior, health, and 
well-being. Against that background, the objectives of this review were to provide an overview 
of the current trends and advancements in acoustic-based precision technologies for pig farming, 
analyze the strengths and limitations of the existing research, identify gaps in our knowledge, and 
propose future research directions. The objectives of this review were to provide an overview of the 
current trends and advancements in sound-based precision technologies for pig farming, analyze 
the strengths and limitations of the existing research, identify knowledge gaps, and suggest future 
research directions.

PRINCIPLES AND THEORY OF SOUND-BASED PIG 
HEALTH MONITORING
Sound characteristics and sound sensors for pig monitoring
Sound is a form of energy produced by vibrations that travel through a medium, typically air but 
also liquids and solids [31]. These vibrations create pressure waves that propagate through the 
medium. When they reach the ears, they cause the eardrums to vibrate and the brain interprets 
that as sound; alternatively, the pressure waves are detected by instruments [32]. Sound waves are 
represented graphically through waveforms, showing changes in air pressure over time. In a simple 
sine wave, the height of the waveform represents the amplitude (loudness) of the sound, while 
the length of each cycle represents the frequency (pitch) of the sound (Fig. 1A). Digital sound is 
converted from analog through sampling, where each sample represents the amplitude at a specific 
moment. These samples are then stored as binary data in digital audio files, with fidelity determined 
by the sampling rate and bit depth (Fig. 1B). A spectrogram visually represents the frequency 
spectrum of a sound signal over time, displaying intensity through color or grayscale shading. Time 
is shown on the horizontal axis, and frequency on the vertical axis (Fig. 1C).

Animal sounds refer specifically to those animals produce as means of communication, defense, 
mating, or expressing emotions [33]. Animal sounds can vary greatly in frequency, amplitude, 
duration, and complexity, depending on the species and the context [34]. Many animals utilize 
vocalization, employing specialized structures such as vocal cords or syrinxes. The complexity of 
these sounds ranges from simple calls to intricate songs (Fig. 1D). Animal sounds possess distinct 
acoustic features such as the frequency range, duration, amplitude modulation, and spectral 
composition, which are crucial for communication and convey information about the animal’s 
identity, location, and behavior (Fig. 1E). Bioacoustics is a field dedicated to studying animal sound 
production and behavior, for which techniques such as audio recording and spectrogram analysis 
are applied [35]. Through bioacoustics studies, researchers may gain valuable insights into animal 
behavior, ecology, and evolutionary processes.

Diseases symptoms in pig and piglet crushing
Acoustic-based technologies can detect sounds of piglet crushing, and diseases in pigs can manifest 
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in various symptoms also detectable using these technologies, which often indicate underlying 
health issues that require attention. Pigs experiencing discomfort due to conditions such as 
lameness, respiratory problems, or gastrointestinal issues may produce increased vocalizations, 
which can serve as early warning signs of potential health problems [36]. Various disease conditions 
detectable by acoustic-based techniques are listed in Table 1.

Common pig sounds associated with diseases include coughing, sneezing, screaming, squealing, 
grunting, and barking sounds, which indicate respiratory issues, distress, or discomfort in pigs 
[37,38]. Coughing, in particular, is the pig sound associated with respiratory diseases [2,13,39]. 
Cough sound analysis in pig health monitoring often indicates respiratory issues such as pneumonia, 
influenza, or other respiratory infections [40], and their detection is crucial for preventing growth 
reduction, weight loss, or mortality in pigs [41]. Moreover, abnormal vocalizations in pigs during 
handling, transport, or confinement can indicate stress, discomfort, fear, or anxiety [42]. Monitoring 
and addressing these signs are vital for ensuring animal welfare across the farming, research, and 
transportation sectors.

Additionally, changes in the pitch, frequency, or intensity of vocalizations may indicate pain or 
distress, especially in piglets subjected to crushing incidents [43]. Piglet crushing, where mother pigs 
or sows accidentally crush piglets while lying down or moving, is the primary cause of pre-weaning 

Fig. 1. Detailed illustration of sound representations used in pig health monitoring. (A) Sound waveforms displayed at different frequencies, showing 
variations in amplitude over time, (B) digital representation of sound, demonstrating the conversion of analog sound waves to a digital format, (C) sample 
spectrogram, highlighting frequency components over time and showing the intensities of different frequencies, (D) pig vocal sound sample, capturing typical 
vocalization patterns of pigs, and (E) acoustic features of a pig scream sound wave, including key characteristics such as pitch, intensity, and harmonics for 
disease and distress detection.
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piglet mortality [44]. While the precise factors contributing to sow-inflicted piglet crushing remain 
unclear, potential reasons include inexperience, illness, sow behavior, and differences in body weight 
[45]. Crushing incidents are often identified by the sound of a squealing piglet, with screaming 
heard in many cases [38]. These distressing, high-pitched audible indicators reflect the intense 
discomfort and potential injury experienced by the piglet. 

In this context, integrating acoustic monitoring technology with regular health assessments can 
enhance the early detection of diseases and welfare issues in pigs and piglets, facilitating timely 
interventions and improving overall animal well-being.

Overview of processing algorithms for sound data analysis
Automation serves as a tool for enhancing the welfare of pigs by detecting changes in their 
health conditions and behaviors [36]. As part of this automation, the accurate and automatic 
identification of pig sounds within farm environments is important. In precision livestock farming 
(PLF), microphones are used for sound-based monitoring of health and welfare-relevant animal 
sounds within farm facilities [11]. This technology offers a convenient means of automatically and 
continuously monitoring animals’ health conditions through their vocalizations. When gathering 
data from pig farms, it is paramount to adopt approaches that minimize the animals’ stress levels 
[46]. To achieve that goal, microphones can be positioned throughout the farm, such as above 
pens for general monitoring, near feeding areas to track feeding behaviors, and in areas of social 
interaction among pigs [8]. Different types of microphones used in pig farms are listed in Table 
2, and typical microphone settings and placements in pig farms are shown in Fig. 2, highlighting 
the importance of optimized settings for effective monitoring and management. These sensors are 
important in continuously monitoring pig health and behavior, providing valuable insights that 
support the application of proactive interventions and thus the achievement of improved welfare 
outcomes [2]. The choice of data acquisition sensor can significantly impact the sound quality, 
given the potential for noise interference in farm conditions, which may ultimately compromise the 
detection accuracies and monitoring capabilities [17]. Different models have been developed, and 
familiarity with the specifications of a sound sensor or microphone is important for its correct usage 
in a farm setup. Various devices were previously used in studies engaged in sound data collection, 
including unidirectional cardioid microphones [39,47], omnidirectional electret microphones 
[48], digital camcorders [49], an audio–video system [50], recording pens [18], and sound sensors 

Table 1. Overview of various diseases and health conditions detectable through sound-based detection 
and monitoring techniques in pig farms

Category Condition
Respiratory diseases Coughing

Sneezing

Snuffling

Grunting

Digestive diseases Moaning

Groaning

Screaming

Vomiting

Piglet crushing Piglets squealing

Screaming

Ear biting

Tail biting
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Table 2. Detailed overview of sound sensors applied in pig farms to monitor health and detect disease symptoms
Model Frequency response Sensitivity Manufacturer

Shure MV7 20 to 20,000 Hz −5 dBV at 1 kHz Shure, Illinois, USA

Shure 16A 50 to 50,000 Hz −68 dB Shure, Illinois, USA

WXS8800-004B 20 to 12,500 Hz 30 to 120 dB Polysense Technologies Inc., California, USA

ECM-3005 50 to 16,000 Hz 6 mV/Pa MONACOR, Bremen, Germany

MKE 2 20 to 12,500 Hz 5 mV/Pa Sennheiser, Wedemark, Germany

LIQI LM 320E 100 to 16,000 Hz 14mV/Pa Shenzhen Liqi Electronic Technology Co., Ltd. China

Pillar cm-5010 pro 40 to 16,000 Hz −40 to ±2dB Comsonic Co,. Ltd., Korea

Sennheiser ME 67 40 to 20,000 Hz 50 mV/Pa ± 2.5 dB Sennheiser Electronic GmbH & Co. KG, Germany

Sound sensor
(MAX9814) 20 to 20,000 Hz 20 to 60 dB Maxim Integrated, USA

Mrobo M66 50 to 16,000 Hz −54 to ± 3 dB Morbo, China

Panasonic,
WM-61A 20 to 20,000 Hz −38 to ± 3 dB Panasonic Corporation, Japan

M260C 30 to 20,000 Hz −34 dB Audio-Technica Corporation, Japan

Lenovo B610 8 to 48,000 Hz ≥ 80 dB Lenovo, Beijing, China

JVC GR-DVL520A Digital camcorder Victor Company Ltd., Japan

Sony ICD-UX560F Digital voice recorder Sony Corporation, Japan

Fig. 2. Illustration of microphone positioning strategies in pig farm environments. (A,B) Microphone set 
up with additional sensors and data acquisition (DAQ) box for integrated monitoring, (C) microphone positioned 
at a moderate height above the pigs to capture ambient and individual vocalizations, and (D) microphone placed 
in close proximity to the pigs from above for an enhanced sound quality and specific behavior detection.

https://www.monacor.com/products/pa-technology/microphones-and-headphones/clip-on-microphones/ecm-3005/
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attached to pig body parts [51,52].
Processing and analyzing pig sounds can serve various purposes such as monitoring pig health, 

detecting distress, or assessing environmental conditions. There are typically four key steps in sound 
analysis, each contributing to a comprehensive understanding of the acoustic data [53]—sound 
recording, individual sounds’ labeling, sound feature extraction, and classification—as illustrated 
in Fig. 3. In the initial step, sound data are captured using microphones placed strategically within 
the pig enclosure or relevant environment. The microphone quality and placement are critical for 
capturing accurate and comprehensive pig vocalizations. Microphones are typically positioned 
around pig pens, considering factors such as height, distance from walls, and noise sources such as 
fans and ventilation units [53]. In various studies, a common sampling rate for microphones was 
44.1 kHz [10,11,14,27,29]. However, due to experimental constraints, it is common practice for 
only one microphone to be used, which may harm the recording quality [28,53]. Preprocessing pig 
sound data is thus crucial to enhance the recording quality and extract meaningful information. 
Preprocessing involves filtering, pre-emphasis, framing, windowing, normalization, resampling, 
artifact removal, and compression. Filtering techniques such as low-pass, high-pass, and band-
pass filters remove unwanted frequencies, while pre-emphasis boosts high-frequency components, 
compensating for attenuation during recording or transmission [33–35]. Framing divides the 
audio into short, overlapping segments for analysis, and windowing reduces spectral leakage with 
functions such as Hamming or Hann. Normalization scales the signal’s amplitude, resampling 
adjusts the sampling rate, and techniques such as interpolation or median filtering remove artifacts. 
Dynamic range compression lessens amplitude differences for a consistent loudness level, enhancing 
perceptual quality [49,53].

After capturing sound data, individual sound events are labeled or annotated with corresponding 
categories. In pig sound analysis, this means identifying and categorizing different pig vocalizations 
based on their acoustic features and the context, such as coughing, screaming, feeding, distress, 
or social interactions [11,47]. These labeled sounds provide the basis for further analysis and 
interpretation. Research on labeling and extracting pig sound segments is limited and often only 
covers manual labeling, though this requires expertise in animal research and lacks a unified 
standard approach [54]. Additionally, the scarcity of open-source pig sound databases presents a 
challenge for researchers and developers working in fields such as animal behavior studies, disease 
management, and even sound analysis technological development. Gaining access to diverse and 

Fig. 3. Step-by-step overview of the sound data pipeline for monitoring pig health and behavior, from 
initial sound capture to final analysis and interpretation.
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comprehensive datasets will be crucial for advancing our understanding and developing applications 
in these domains [53,55]. Considering the diverse characteristics of pigs during their growth, it 
is also essential to capture information on the breeds, ages, weights, environments, and locations 
where sounds were produced.

Sound data undergo feature extraction to quantify their acoustic properties after labeling. 
Extracting features like mel-frequency cepstral coefficients (MFCCs) [56–59], spectral and 
temporal characteristics [47,53,58,60], and frequency-based descriptors [61,62] distinguishes 
different sounds and aids in classification. The mel-frequency cepstrum (MFC) represents the 
short-term power spectrum of a sound using a linear cosine transform of a log power spectrum on 
a nonlinear mel scale. The MFCC is widely favored for speech and sound recognition as it maps 
the linear spectrum onto a nonlinear mel spectrum of the sound signals, aligning with human 
hearing principles [27]. Fig. 4 shows a schematic diagram of the MFCC feature extraction process. 
While some studies use 13 MFCC features [63], others suggest an adaptive range of 2 to 91 [64]. 
Previously, the optimal results for spectral distortion (SD) distance measures were found when 
using a filter bank with 24 bands and a bandwidth of 220 mels [65]. Additionally, it has been 
noted that applying multi-taper methods in feature extraction reduces variance and enhances 
source separation. Thus, we may surmise from this that the number of MFCC coefficients needed 
depends on the specific application and the desired performance level. When analyzing audio 
signals, it is important to extract both temporal and spectral features in order to comprehensively 
understand the sound properties. Temporal features, such as energy and the zero-crossing rate 
(ZCR), are derived from the time domain and measure aspects such as the signal power and rate of 
sign changes. Spectral features, including MFCCs, gammatone cepstral coefficients (GTCCs), and 
linear predictive coding (LPC), are obtained by converting the time-based signal into the frequency 
domain using techniques such as the Fourier transform (FT) and short-time Fourier transform 
(STFT). Fig. 5 shows that various spectral and temporal characteristics, along with frequency-
based descriptors, are essential for effective sound feature characterization and extraction. These 
frequency-based descriptors capture essential audio signal characteristics, facilitating robust sound 
feature extraction.

Fig. 4. Detailed illustration of MFCC extraction. (A) Schematic diagram of MFCC feature extraction, and (B) step-by-step processing of an audio signal for 
feature analysis.
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The features offer a concise yet informative representation of the sound data, facilitating a robust 
classification in pig sound analysis. In sound recognition, it is critical to select relevant variables in 
the feature extraction phase. This step involves combining the key variables that effectively represent 
the sound signal into a multidimensional feature vector [17]. In field conditions, background 
noises are abundant and inevitable; these can lower the quality of sounds in recordings and affect 
model recognition performance [17]. To improve model performance, sound data preprocessing 
techniques such as background noise filtering are used [27,47,49]. Additionally, the model may be 
trained with background noise data, and advanced feature extraction methods may be applied, such 
as the dominant neighborhood structure (DNS) algorithm; techniques such as these may lead to 
a superior performance in noisy environments compared to traditional methods such as MFCCs 
[25,26,49].

In classification, algorithms categorize sound instances into predefined classes using extracted 
features. Techniques such as support vector machines (SVMs) [13,57,66,67], random forests (RFs) 
[26,68], and convolutional neural networks (CNNs) [39,47,57,69,70] are commonly employed for 
this task. Learning from labeled sound data enables these algorithms to discern between various pig 
vocalizations and thus offer insights into pig behavior and health and environmental conditions. The 
continuous process of sound analysis is refined at each stage to enhance its accuracy and efficiency 
and the outputs’ interpretability [16,69]. However, the limitations in pig sound data processing 
include a dependency on manual labeling, lack of standardization, sparse open databases, limited 
feature extraction techniques, and variability in algorithms’ performances [58]. Future directions for 
development could involve automated labeling solutions, standardization initiatives, open databases’ 

Fig. 5. Comprehensive illustration of key acoustic descriptors used in sound analysis, spectral and 
temporal characteristics, and frequency-based features for sound feature extraction.
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expansion, advanced feature extraction techniques, and contextual information’s integration into 
classification algorithms to enhance their robustness and adaptability.

Data quality challenges in real-time monitoring in farm environments
Several factors influence acoustic data on pig farms, including environmental conditions such as 
temperature and humidity; the farm layout and infrastructural materials; pig behavior, such as 
feeding and social interactions; the health and stress levels of the pigs, including disease conditions; 
piglet crushing by mother pigs or in crowded farm conditions; equipment noise from machinery; 
and human activity [2,71,72]. Background noise can interfere with the clarity of acoustic data 
and may require noise-canceling techniques or the careful placement of microphones to minimize 
its impact [36]. Fans and ventilation systems also cause major background noise, which hinders 
accurate pig sound data collection as it may mask pig vocalizations, lower the signal-to-noise ratio, 
and reduce the clarity of the audio [16,73], making it challenging to distinguish and analyze specific 
pig vocalizations.

Pig behavior also significantly influences the quality of acoustic data collected on pig farms. 
Vocalizations vary in type and intensity, with activity-based calls like feeding, fighting, and mating 
being louder and more distinct [2,74]. This can skew data toward specific behaviors if recordings 
capture mostly active periods. For instance, pigs have shown peak noise levels during feeding, with 
loud vocalizations while waiting for the food [75]. Furthermore, aggressive behavior such as pushing 
occurs around feeding areas. After feeding, noise levels then drop as pigs rest [53,76]. Additionally, 
piglets have quieter vocalizations compared to adults, posing challenges in detecting them in noisy 
environments [77]. Moreover, stress and discomfort can alter pig vocalizations, leading to data 
that may not represent the pigs’ usual state, rendering the data difficult to interpret [78]. Moreover, 
movements and interactions among pigs can generate additional noise, potentially obscuring the 
desired vocalizations in recordings [53,55]. Moreover, if pigs are particularly active or vocal during 
certain times of the day, it may be challenging to isolate specific acoustic signals of interest at those 
times.

The types and quality of sensors used for data acquisition also play a significant role. High-quality 
microphones capable of capturing a wide range of frequencies with minimal distortion are essential 
for accurate acoustic data collection [2,17,49], as is the placement of microphones [17], which 
should be strategically positioned to capture relevant sounds while minimizing interference from 
background noise and other sources [17,53]. Moreover, environmental factors such as temperature, 
humidity, and airflow can affect the propagation of sound waves within the pig farm [79,80], and 
these conditions may thus impact the accuracy and reliability of acoustic data acquisition systems.

Lastly, acoustic data acquisition systems on pig farms may be susceptible to interference from 
external sources such as nearby roads, industrial activities, or neighboring farms. Shielding or 
filtering techniques may be required to minimize this interference. Ensuring a reliable power supply 
and robust connectivity for data transmission are also essential for continuous monitoring and 
recording of acoustic data on pig farms. Addressing these factors through appropriate equipment 
selection, installation, and data-processing techniques can help optimize acoustic data acquisition 
on pig farms, for improved monitoring and management practices. These variables collectively 
shape the acoustic environment on the farm and can thus affect the quality and interpretation of 
sound data collected for various purposes, such as behavior monitoring and health assessment. 
Understanding and accounting for these factors are crucial for accurate analysis and effective 
management practices in pig farming.
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APPLICATION OF SOUND-BASED TECHNOLOGIES FOR 
PIG HEALTH MANAGEMENT
Vocalization classification and detection for pig monitoring
Classification and detection of pig vocalizations involve analyzing and interpreting the sounds pigs 
make to assess their health, behavior, and welfare. This process utilizes advanced acoustic-based 
technologies and machine learning techniques to distinguish between various vocalizations, such as 
distress calls, contentment sounds, or social interactions. Hou et al. [16] improved pig vocalization 
classification using a multi-feature fusion method, enhancing features with principal component 
analysis (PCA). Features such as short-time energy, frequency centroid, formant frequency, and 
MFCCs were extracted, and then they were enhanced with PCA. Their approach employed a back 
propagation (BP) neural network optimized with a genetic algorithm (GA), which achieved high 
accuracy (93.2%), precision (92.9%), and recall (92.8%), proving effective for automatic recognition 
and feedback of pig vocalizations. Wang et al. [21] proposed a novel algorithm for recognizing sow 
estrus sounds using an improved MobileNetV3 lightweight CNN. Sound data were collected from 
63 Canadian sows, denoised using fast Fourier transform (FFT), and underwent feature extraction 
using log-mel spectrograms (LM). The model achieved 97.12% precision, 97.34% recall, a 97.59% 
F1-score, and 97.52% accuracy. Compared to traditional methods, this approach more accurately 
captures the vocal characteristics of sows in latent estrus. However, certain issues remain. For 
instance, classification accuracy may drop when vocal signals have a low signal-to-noise ratio, which 
can be mitigated by using better microphones, advanced recording techniques, and more data. 
Additionally, overlapping grunts in low-frequency estrus sounds can lead to misclassification.

A low-cost, real-time sound-based pig abnormality monitoring system was proposed [22] for 
installation in real pigpens. The system uses an adaptive context attachment model (ACAM)-
based noise-robust voice activity detection (VAD) algorithm to detect sound regions in noisy 
environments. Each detected sound region is converted into a spectrogram, and the CNN-based 
MnasNet structure generates sound features and classifies them to detect anomalies. The system 
achieved an F1-score of 0.947 in identifying abnormalities, even in noisy pigpens. The execution 
time was 0.253 seconds, which was 0.220 seconds faster than the basic MnasNet model. Wang et al. 
[26] proposed a VAD method to automatically segment continuous sound. Individual sounds were 
segmented and acoustic features extracted, including MFCC and power spectral density (PSD). 
Deep features were derived from spectrograms, mel spectrograms, constant-Q transforms (CQTs), 
and MFCC color matrix maps using the lightweight SqueezeNet network. Multiple classification 
models were obtained when feeding acoustic and deep features into different classifiers, including 
SVM, adaptive boosting (AdaBoost), and bidirectional long short-term memory (BiLSTM). The 
experimental results showed recall and precision rates of 93.1% and 91.6%, respectively, when 
detecting pig coughs in continuous sound, while the recognition accuracy for continuous pig coughs 
reached 91.4%. This method represents a significant advancement in pig health monitoring as it 
can operate autonomously in actual farm conditions, whereas previous studies were often limited to 
controlled laboratory environments.

Song et al. [27] presented an improved DenseNet-based model for pig cough sound recognition, 
enhanced with Squeeze-and-Excitation Network (SENet) attention modules. The developed 
SE-DenseNet-121 model was used to improve the accuracy of pig cough detection, which is 
crucial for providing early warnings of respiratory diseases in swine. Their study explored various 
combinations of MFCC features, finding that 26-dimensional MFCC + ΔMFCC provided the 
optimal performance. The resulting SE-DenseNet-121 model achieved an accuracy of 93.8%, 
recall of 98.6%, precision of 97%, and an F1-score of 97.8% for pig cough sound recognition. This 
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improved model demonstrates significant potential for use in developing accurate and efficient pig 
cough sound recognition systems, which could be invaluable for the early detection of respiratory 
issues in pig farming. Ji et al. [81] proposed a novel feature fusion method combining acoustic and 
visual features to improve pig cough recognition accuracy. The acoustic features were extracted using 
root-mean-square energy (RMSE), MFCCs, ZCRs, and spectral characteristics from audio signals. 
Visual features, meanwhile, were extracted from CQT spectrograms using local binary patterns and 
a histogram of gradients. The acoustic and visual features were then combined into a hybrid feature 
set using the Pearson correlation coefficient (PCC), recursive feature elimination (RFE) with RF, 
and PCA. The fused feature set was evaluated using SVM, RF, and k-nearest neighbor (KNN) 
classifiers. The results showed that the combined acoustic and visual features achieved 96.45% 
accuracy in pig cough classification. This approach demonstrates the potential for multimodal 
feature fusion to enhance the precision of pig cough detection systems in providing early warnings 
of respiratory diseases.

Choi et al. [49] developed a noise-robust system for sound-event classification using texture 
analysis. One-dimensional sound signals were transformed into two-dimensional gray-level images 
through normalization, and the researchers applied the DNS technique to extract textural features. 
Experimental validation employed four classifiers: CNN, SVM, KNN, and C4.5. The system 
achieved an F1-score exceeding 96.57% on livestock data, demonstrating its superior performance 
in noisy conditions compared to other methods. Liao et al. [69] proposed TransformerCNN, 
a sound classification model combining CNN spatial feature representation with Transformer 
sequence coding. Eight features were used for this experiment: LM, MFCC, chroma, spectral 
contrast, tonnetz (CST), MFCC + CST (MC), LM + CST (LMC), and MC + LMC (MLMC). 
Through comprehensive qualitative and quantitative evaluations, the approach demonstrated a 
high performance level in classifying domestic pig sounds, with an accuracy of 96.05%. The model 
also exhibited robustness and generalization across different input features, for which it showed a 
consistent performance. Table 3 summarizes the different methods and algorithms applied in pig 
vocal and cough recognition, classification, and real-time detection.

Early disease symptoms detection in pig management
Early detection of pig diseases using sound is an innovative and effective approach that has shown 
promising results in recent years. This method primarily focuses on analyzing pig vocalizations, 

Table 3. Comparisons of effectiveness of different methods and algorithms used in pig sound and cough analysis, covering aspects, such as 
recognition accuracy, classification performance, and real-time detection capabilities

Detection/
classification Classification technique Feature Extraction technique Accuracy Reference

Vocal classification BP + GA Short-time energy, Frequency centroid, Formant frequency, MFCC 93.20 [16]

CNN-MobileNet V3 Fast Fourier transform (FFT), Log-mel spectrogram 97.52 [21]

MnasNet ACAM, VAD 94.72 [22]

SVM, AdaBoost, BiLSTM MFCC, PSD, CQT, SqueezeNet 91.41 [26]

SE-DenseNet-121 MFCC, ΔMFCC, Δ2MFCC 93.80 [27]

SVM RMSE, MFCC, ZCR, Centroid, Flatness, Bandwidth, Chroma 96.45 [81]

CNN, SVM, KNN DNS 96.57 [49]

TransformerCNN MLMC 96.05 [69]
BP, back propagation; GA, genetic algorithm; MFCC, mel-frequency cepstral coefficients; CNN, convolutional neural networks; ACAM, adaptive context attachment model; VAD, voice 
activity detection; SVM, support vector machines; PSD, power spectral density; CQT, constant-Q transform; BiLSTM, bidirectional long short-term memory; SE, Squeeze-and-Exci-
tation; RMSE, root-mean-square energy; ZCR, zero-crossing rates; KNN, k-nearest neighbor; DNS, dominant neighborhood structure.
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especially coughs, to identify respiratory diseases before they become severe. Gutierrez et al. [14] 
aimed to classify porcine wasting diseases by analyzing cough sounds from pigs infected with 
porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome (PRRS) virus, 
and Mycoplasma hyopneumoniae (MH) and comparing those with normal coughs. Thirty-six pigs 
were studied, in which blood samples confirmed their infections. Cough sounds were recorded for 
30 minutes using a video recorder, the recording was inputted into commercial software, and the 
cough sounds were labeled and analyzed using ANOVA and discriminant analysis. The results 
showed that normal coughs had a higher pitch compared to infectious coughs (p < 0.002). Chung 
et al. [13] analyzed coughing sounds for their frequency, intensity, and other characteristics in an 
effort to detect pig-wasting disease. Cough sounds from infected pigs were individually recorded 
and digitalized and then compared to normal pig sounds, which were recorded without other noise 
and labeled using auditory processing. The study found that a combination of MFCC and support 
vector data description (SVDD) could automatically detect pig-wasting diseases using cough 
sounds, with 94% accuracy. 

Zhao et al. [18] introduced a novel method using a deep neural network (DNN)-hidden 
Markov model (HMM) for continuous pig cough sound recognition to detect respiratory 
diseases early. The process includes noise elimination with the Wiener algorithm based on wavelet 
thresholding, followed by feature extraction using a 39-dimensional MFCC. The DNN-HMM 
model categorizes farm sounds into pig coughs, non-pig coughs, and silence and achieves a 7.54% 
word error rate (WER). Yin et al. [39] developed a method for recognizing sick pig cough sounds 
using CNNs. The fine-tuned AlexNet model with spectrogram features was utilized for its image 
recognition capabilities. Spectrograms were constructed using the STFT and initially saved as 640 × 
480-pixel images. These images were resized to 227 × 227 pixels, the optimal input size for AlexNet. 
The resized spectrograms were then inputted into the fine-tuned AlexNet model for classification, 
and the results showed that the proposed algorithm achieved a cough recognition accuracy of 
96.8%, overall recognition accuracy of 95.4%, and F1-score of 96.2%. To reach these results, the 
study used preprocessing and data augmentation to tackle the complex acoustic environments in pig 
houses. This approach shows promise for the development of intelligent alarm systems for the early 
detection of respiratory diseases in pigs, thereby enhancing animal welfare and farm management.

Shen et al. [47] investigated a novel framework that combines acoustic features with deep 
learning features to enhance the accuracy of pig cough sound recognition. The proposed method 
integrated traditional acoustic features, such as MFCCs, time-frequency representations (TFRs) 
involving the CQT, and STFT, with deep features extracted using CNNs. The combined features 
were fed into a SVM using early fusion to identify pig cough sounds. This fusion approach 
combined the strengths of both feature types to improve the robustness and precision of cough 
detection in noisy farm environments. The CQT is more suitable for sound recognition in a pig 
housing environment than the traditional linear STFT. The study achieved a high recognition 
accuracy of 97.35%, demonstrating the effectiveness of the combined feature approach. The results 
suggest that this method can significantly enhance the early detection of respiratory diseases in pigs, 
providing a valuable tool for improving animal health management and welfare in commercial pig 
farming.

Shen et al. [57] introduced a novel method for improving pig cough sound recognition accuracy 
by combining MFCC-CNN features. These features were created by fusing multiple frames of 
MFCCs with single-layer CNNs. Classification utilized softmax and linear SVM classifiers, 
validated through field experiments. The results showed a significant performance enhancement 
with the MFCC-CNN features compared to MFCCs. The F1-scores were improved to 10.37% 
and 5.21%, and the cough detection accuracy improved by 7.21% and 3.86% for the softmax 
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and SVM classifiers, respectively. Elsewhere, a novel approach was presented [73] for pig sound 
recognition using a combination of DNNs and HMMs. Audio samples were collected from 10 
landrace pigs in various states, including eating, estrus, howling, humming, and panting. Audio data 
were preprocessed using Kalman filtering and an improved endpoint detection algorithm based 
on the empirical mode decomposition–Teager energy operator (EMD-TEO) cepstral distance. 
The system extracts 39-dimensional MFCCs as features for network learning and recognition. The 
DNN-HMM model, with five HMM states and three DNN hidden layers of 128 nodes each, 
achieved a high performance in recognizing different pig sounds, with recall rates of 73.7%–100%, 
an accuracy of 70%–95%, and a specificity of 92.6%–98.8%. Compared to the traditional Gaussian 
mixture model (GMM)-HMM, the DNN-HMM approach showed significant improvements 
in the average recall rate (12.42% higher), accuracy (17% higher), and specificity (4.14% higher). 
The study demonstrated the effectiveness of this hybrid deep learning approach for accurate pig 
sound recognition, which has potential applications in the automated monitoring of pig health and 
behavior in farm settings.

Chen et al. [70] introduced a novel method for estrus sound recognition using the fusion of two 
representative features and CNNs. The study extracted features using MFCCs and Chirplet MCCs 
(CMCCs), combining these features as inputs to 1D-CNN models. The approach improved 
sow estrus prediction accuracy in real farm conditions, achieving a high test performance with an 
accuracy score of 0.96. Table 4 summarizes the different methods and algorithms for pig disease 
detection and monitoring using sound on a pig farm.

Monitoring pig behavior and activity
Ferrari et al. [25] explored the use of pig vocalizations to evaluate heat stress in swine. The study 
aimed to enhance our understanding of animal welfare by analyzing how pigs respond vocally to 
stressful conditions, particularly heat stress. The researchers found they could distinguish between 
different stressors in pigs, such as pain and heat, with an accuracy of 81.12%. The methodology 
involves using sound analysis techniques to monitor and interpret pig vocalizations, which can serve 
as indicators of their thermal comfort and overall well-being. This approach offers a non-invasive 
and efficient means of assessing heat stress in swine, potentially leading to better management 
practices in livestock farming and thus supporting animal welfare and productivity. Traditional 
methods often rely on manual inspections or reactive adjustment, while sound-based monitoring 
enables continuous, non-invasive observations for faster issue detection and precise interventions, 

Table 4. Overview of sound-based techniques and algorithms for detecting and monitoring pig disease symptoms, focusing on sound patterns 
such as coughs and vocalizations associated with specific health conditions

Detection/Classification Classification Technique Feature Extraction Technique Accuracy Reference
Sound ANOVA Digitalized - [14]

SVDD MFCC 94.0 [13]

DNN-HMM MFCC 92.46 [18]

Fine-tuned AlexNet Spectrogram with STFT 95.4 [39]

SVM MFCC, TFR, CQT, STFT, CNN 97.35 [47]

SVM, Softmax MFCC–CNN 96.68 [57]

DNN-HMM Kalman filtering, EMD-TEO, MFCC 83.0 [73]

CMCC-CNN MFCC 96 [70]
MFCC, mel-frequency cepstral coefficient; SVDD, support vector data description; DNN-HMM, deep neural network–hidden Markov model; STFT, short-time Fourier transform; SVM, 
support vector machine; STFT, short-time Fourier transform; TFR, time-frequency representation; CQT, constant-Q transform; CNN, convolutional neural network; EMD, empirical 
mode decomposition; CMCC, Chirplet mel-frequency cepstral coefficient.
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which reduce resource wastage and thus promote more sustainable agricultural practices [25]. 
Vandermeulen et al. [38] identified specific sound features of pig screams that indicate stress, 
aiding in animal health and welfare monitoring. After analyzing seven hours of labeled data from 
24 pigs, the authors used the sound features to develop a detection method with physical meaning 
and explicit rules. They transformed the sound data using FFT, chirp group delay (CGD), and 
fundamental frequency calculation (FFC) to obtain frequency information. Pig screams were 
found to have a distinct formant structure, adequate power, high frequency content, and sufficient 
variability and duration. The detection method achieved 72% sensitivity, 91% specificity, and 83% 
precision. Its application for the continuous monitoring of pig vocalizations on farms may help 
farmers detect health or welfare issues early and thus improve their animal care practices.

Moura et al. [46] developed software for the real-time monitoring and analysis of piglet 
vocalizations to assess their stress levels. The researchers created a system that can detect and analyze 
distinct sounds from piglets and correlate those with stress levels. The software uses a combination 
of sound analysis techniques, including linear prediction coding, and artificial neural networks 
to identify stress vocalizations in commercial piggery environments. The system interprets piglet 
sounds and classifies different stress conditions by focusing on specific acoustic parameters such as 
signal duration, resonance frequencies, and amplitude. The research demonstrated that vocalization 
analysis offers an efficient, non-invasive method for identifying stress in piglets, potentially allowing 
for real-time welfare assessment in commercial pig farming. This approach could provide farmers 
with a valuable tool for detecting stress-related issues early, thus enabling timely interventions to 
improve animal welfare and productivity. da Silva et al. [78] developed software predicting stress in 
piglets based on their vocal calls during various stressful conditions (cold/heat, pain, hunger, thirst). 
Vocal signal intensities were analyzed from 40 piglets under stress conditions, with unstressed 
piglets serving as a baseline. Data organization and paraconsistent logic were used to handle 
uncertainties arising from overlapping vocal signal intensities. The results showed a high accuracy 
in predicting pain-induced stress (93.0%), but lesser accuracy in predicting stress-free conditions 
(normal). Nonetheless, the method effectively resolved uncertainties in overlapping signals, with 
particular success in distinguishing pain-related vocalizations due to their higher intensity and 
longer duration.

Tail biting and piglet crushing detection
Early identification of tail biting is crucial for animal health and welfare as it allows for early 
intervention. Heseker et al. [82] detected pig screams in audio recordings with the goal of 
identifying tail biters among 288 undocked weaner pigs in six pens using a binomial, generalized, 
linear mixed-effects model (GLMM) and linear mixed-effects (LME) model. When a biter was 
visually identified and removed, the previous days’ recordings were analyzed for screams (sudden 
loud noises above 1 kHz) and tail-biting events. It was found that 52.9% of the 2,893 detected 
screams were due to tail biting in the pen. Audio analysis identified biters 1–9 days before they were 
visually detected. The corresponding screams could be detected earlier than physical signs, which 
suggests that vocalization analysis may provide an effective early warning system for tail biting. 
Cordeiro et al. [43] investigated the use of vocalization signals to estimate pain levels in piglets 
during common farm management procedures. The researchers recorded vocalizations from 20 
male piglets under four conditions: normal circumstances (pain-free), marking with the Australian 
method, tail trimming, and castration. Analysis of the sound signals revealed that the vocalizations’ 
pitch frequency (Hz), maximum amplitude (Pa), and intensity (dB) increased progressively from 
pain-free pigs to those undergoing marking and further increased for tail trimming and castration 
procedures. There was no significant difference in vocal responses between tail trimming and 



Sound-based pig monitoring for precision production

292  |  https://www.ejast.org https://doi.org/10.5187/jast.2024.e113

castration, suggesting similar pain levels for these procedures. The study demonstrated that specific 
acoustic parameters of piglet vocalizations, such as pitch, amplitude, and intensity, can offer reliable 
indicators of pain levels. This research contributes to the development of non-invasive methods 
for assessing animal welfare in pig farming, which may allow for more timely interventions and 
improved management practices to reduce pain and distress in piglets.

Chapel et al. [44] compared vocalization patterns between piglets crushed by sows and those 
manually restrained by humans. The authors recorded vocalizations from 10 sows and their litters 
48 hours after parturition, collecting 631 calls from crushed piglets and 659 calls from restrained 
piglets. Analysis of the acoustic properties revealed significant differences between the two groups. 
Crushed piglets exhibited lower fundamental frequencies (523.57 Hz vs. 1,214.86 Hz) and 
narrower bandwidths (4,897.01 Hz vs. 6,674.99 Hz) in the loudest portion of their calls compared 
to restrained piglets. Additionally, crushed piglets had a lower mean peak frequency overall 
(1,497.08 Hz vs. 2,566.12 Hz). These findings highlighted important distinctions in vocalization 
patterns between piglets experiencing crushing events and those undergoing human restraint. 
The study suggested that future research should measure sow reactivity to these different types 
of vocalizations, to improve research practices and potentially develop more effective methods 
for reducing piglet crushing in swine production. Illmann et al. [77] investigated piglet distress 
vocalizations under simulated crushing and isolation conditions, exploring variations with age, 
body weight, and health status. The researchers observed that piglets squeezed on day 1 emitted 
more intense distress calls than those on day 7, and that lighter piglets vocalized more during 
squeezing than heavier ones, while their health status did not significantly affect the vocalization 
intensity during squeezing. Furthermore, neither age nor weight influenced the vocalization 
intensity in isolation; instead, these factors had a combined effect. The findings as such indicate 
that vocalizations reflect piglets’ vulnerability and need for maternal care, particularly in scenarios 
resembling crushing by the sow.

Evaluating farm environments using sound data
Wang et al. [80] investigated the relationship between animal cough sounds and environmental 
air quality. They analyzed cough sounds from 84 weaners alongside four key air quality factors: air 
temperature, relative humidity, ammonia concentration, and dust concentration. Their study found 
significant differences in cough sounds among weaners exposed to varying air qualities, as indicated 
by PSD analysis. The developed recognition algorithm, utilizing principal mel-frequency cepstrum 
coefficients (PMFCCs), PCA, and SVM, achieved an impressive average recognition rate of 95% 
for sound samples collected across different pig houses. These findings suggest that cough sound 
analysis can provide qualitative insights into air quality conditions within commercial livestock 
buildings.

Sistkova et al. [75] examined how the time of day and season affect noise levels from pigs in pig 
housing with slatted floors. It was observed that pigs were louder during feeding times, when there 
was increased squealing. Seasonal variations also impacted noise levels, with higher noise typically 
noted in summer compared to winter. These findings highlight the importance of managing noise 
to raise pig welfare during farm operations, as excessive noise can cause stress for animals and 
workers alike. The authors suggested that implementing strategies to mitigate noise may enhance 
the acoustic environment in pig barns and thus improve overall farm management practices. Table 
5 summarizes the different models and algorithms developed to recognize pig behavior and activity, 
identify tail biting and piglet crushing, and monitor farm environmental conditions using sound data.
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Advanced wearable sound-based devices
Wearable sensors are less developed for applications in pigs than in cattle. Of the studies to 
date, Yoshioka et al. [83] proposed a recording system to detect respiratory diseases in pigs using 
body-conducted sound (BCS). This system can capture biological signals in groups, such as the 
individuals’ heartbeats. A piezoelectric sensor extracts and records these sounds via frequency 
modulation (FM) waves. In that way, this system records individual pigs’ sounds from a distance. 
An experiment was performed in which BCSs were recorded before and after PRRSV inoculation 
on days 3, 5, 7, and 10. Acoustic analysis showed significant differences in the ZCR and MFCC 
before and after inoculation, suggesting that respiratory diseases could be detected early through 
acoustic features. The authors’ concept of wearable-sensor-based disease detection using wireless 
data acquisition is shown in Fig. 6.

Cheng et al. [84] developed a wireless system to collect BCS with a piezoelectric sensor on pigs’ 
skin and respiratory sounds using a small, high-quality MEMS microphone, which does not burden 
the pig. Recordings are made using a Cymatic Audio LR-16 recorder. In their experiment, the data 
were converted into a waveform, and strong peaks were detected. Cheng et al. [85] later established 

Table 5. Detailed comparison of various models and algorithms used to monitor and assess pig behavior and farm conditions, including specific 
applications like tail biting detection, piglet crushing prevention, and environmental condition tracking

Detection/Classification Classification technique Feature Extraction Technique Accuracy Reference
Behavior/activity Power spectrum density Average peak frequency, fundamental frequency, duration 81.12 [25]

Rule-based classifier FFT, CGD, FFC 87.00 [38]

Polynomial adjustment FT - [46]

Decision tree Acoustic response 93.0 [78]

Tail biting/piglet crushing GLMM+LME Pitch frequency 52.9 [82]

Vocalization pattern Pitch frequency, maximum amplitude, intensity 78.20 [43]

Mean maximum frequency Acoustic properties 25-75 [44]

Vocalizations pattern Intensity - [77]

Environmental factors PCA + SVM PMFCCs 95.00 [80]

ANOVA Noise level - [75]
FFT, fast Fourier transform; CGD, chirp group delay; FFC, fundamental frequency calculation; FT, Fourier transform; GLMM, generalized, linear mixed-effects model; LME, linear 
mixed-effects; PCA, principal component analysis; SVM, support vector machine; PMFCC, principal mel-frequency cepstrum coefficient.

Fig. 6. Schematic outline of use of body-conducted sound signals for pig health assessment, from 
sound capture to wireless transmission and machine learning analysis for disease detection.
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an early detection system for respiratory diseases in pigs using BCS. A wireless recording system 
for the ear tip was developed to capture respiratory sounds and heartbeats. In pigs with PRRS, 
significant differences in ZCR and MFCCs were found before and after virus inoculation. These 
acoustic features suggest the recording system’s potential for use in the early detection of respiratory 
diseases. In a similar study, Tsuchiya et al. [86] proposed an early detection system for respiratory 
diseases in pigs using BCS. The system monitors respiratory sounds and heartbeats and extracts 
periodic components in BCS using independent component analysis (ICA) and adaptive signal 
processing (ALE). In the authors’ experiment, significant differences in the ZCR and MFCC 
features were found before and after inoculation, suggesting that respiratory diseases can be 
detected early by analyzing such acoustic features.

Wearable sensors in pigs hold potential for disease detection and monitoring, which may help 
prevent the spread of illnesses and support effective outbreak management, though they currently 
come with notable drawbacks. Their potential arises through the scope for continuously monitoring 
physiological signals such as heartbeats, respiratory patterns, and BCSs in a non-invasive mode 
that does not disturb the pigs, thereby producing data with greater accuracy than those generated 
through alternative means, which may be utilized to improve animal welfare, while saving time and 
labor for farmers through the automation of data collection and analysis.

However, the significant drawbacks of wearable sensors at present include the high costs for 
their development, installation, and maintenance, which can be prohibitive for many farms; the 
complexity of data interpretation, requiring advanced algorithms and skilled personnel, which can 
be resource-intensive; the risk of sensor malfunction or data loss due to technical issues, potentially 
affecting system reliability; the potential for animal discomfort from sensors; and the influence of 
environmental factors such as humidity and dirt on sensor performance. Despite these issues to 
be overcome, the advantages that wearable sensors offer in early disease detection and enhanced 
animal welfare make them a promising tool in livestock management.

Commercial applications in sound monitoring and diagnostics
SoundTalks (SoundTalks NV, Leuven, Belgium) is a pioneering technology that has garnered 
significant attention for its capabilities in automatic respiratory disease detection using cutting-edge 
artificial intelligence (AI) algorithms. SoundTalks is an AI-powered technology that autonomously 
monitors the respiratory health of pigs from the nursery to their slaughter by recognizing and 
quantifying cough sounds. Sensors track environmental conditions such as room temperature and 
humidity, and an alert system notifies the farmer about potential respiratory issues and sudden 
temperature fluctuations. SoundTalks has two main components: a monitor and a gateway, as 
shown in Fig. 7A. The device features a microphone and environmental sensors fixed to the 
monitor, along with LED lights for alert indication. It collects sound data within a 10-meter radius 
and wirelessly transmits all data to the gateway, which can receive data from multiple monitors 
within a 30-meter range and which then sends the data to the AI cloud for processing and analysis. 
Farmers can conveniently access the data online via a PC or smartphone app, provided they have a 
strong and uninterrupted internet connection.

MASCO (MACSO Technologies Limited, CA, USA) has introduced an innovative solution 
“AgTech” for detecting pig sounds and using AI algorithms to identify sick pigs within farm 
settings. This cutting-edge system offers easy installation and boasts a high accuracy and enables 
continuous respiratory health monitoring, significantly enhancing efficiency and addressing 
challenges posed by skilled labor shortages. The advanced AI platform powered by MASCO 
provides farmers with a 24/7 audio-monitoring solution, which means respiratory health can be 
monitored even when farmers are off-site. Each audio sensor is trained to recognize early signs of 
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respiratory illness, as shown in Fig. 7B. The system promptly alerts farmers when such signs are 
detected, facilitating timely interventions. 

The solution also offers access to historical farm data via an intuitive dashboard, empowering 
farmers with valuable insights that support their informed decision-making. MASCO has 
demonstrated proficiency in accurately detecting distinct pig sounds through “AgTech”, and the 
firm has expressed an ongoing commitment to revolutionizing farm management practices with 
state-of-the-art technology.

Fancom (Fancom BV, Panningen, The Netherlands) introduced the Pig Cough Monitor 
(PCM), which monitors pig respiratory health through an innovative automated design. The 
PCM continuously analyzes sounds recorded within the pig house and enables the real-time 
observation of coughing events, facilitating the early detection of diseases and minimizing the need 
for antibiotics. This PCM system comprises a control unit equipped with analysis software and two 
strategically placed microphones. By consolidating the data streams from the two microphones, the 
on-farm solution provides a comprehensive overview of farm operations. The system filters recorded 
sounds to differentiate between general pig noises and coughing episodes. Graphical representations 
of these data are provided to end-users through the F-Central FarmManager software, with alarms 
triggered when preset thresholds are surpassed. Farmers can then assess coughing levels based on 
established norms to determine whether they are acceptable, enabling better decision-making and 
enhanced efficiency. The opportunity provided to intervene when unacceptable coughing erupts 
supports efforts to ensure an enhanced animal performance, consistent growth, and increased 
profitability. Moreover, the software is designed to streamline farm management, ensuring that all 
critical information is easily accessible and actionable for optimal farm performance.

CHALLENGES AND FUTURE PERSPECTIVES
Closely monitoring each pig being farmed can provide information on even minor abnormalities 
early, allowing for early disease prevention. In this space, automated sound-based approaches 
are being investigated for their potential to provide more accurate results than traditional visual 
inspections, addressing issues with observational subjectivity [87,88]. However, despite the 
advancements, sound-based precision technologies in pig farming still face several challenges. A 
primary issue is noise interference, as farming environments are inherently noisy due to machinery, 
human activity, and other animals [71-––73], which make it difficult to isolate relevant sounds. 
Furthermore, pigs produce a wide range of complex vocalizations that can indicate various 

Fig. 7. Overview of hardware and AI-based monitoring systems for pig health management. (A) 
SoundTalks hardware, including (i) gateway device and (ii) monitor with integrated microphone, and (B) AgTech-
AI solution from MACSO for health monitoring, displaying (iii) normal condition indicated by green LED and (iv) 
health event detection indicated by red LED.
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conditions, from normal behavior to stress or illness, complicating the interpretation of these sounds 
[35,42,59]. Accurately distinguishing between these vocalizations requires sophisticated algorithms 
and significant computational power [25,26].

Additionally, environmental factors such as barn acoustics, temperature, and humidity can affect 
sound quality and detection accuracy. Moreover, the installation and maintenance of high-quality 
sound detection systems can be costly and may require technical expertise, which may not be readily 
available in all farming contexts [30,39,89]. Moreover, the lack of standardized protocols for sound 
data collection and analysis hinders the comparison and integration of data across different systems 
and farms [43,46,62]. There are also concerns about data privacy and security, as the continuous 
monitoring of sound data could potentially expose sensitive information about farm operations 
[8,9].

Despite these challenges, the future of sound-based technologies in pig farming looks promising. 
Advances in AI and machine learning are expected to significantly improve the accuracy and 
efficiency of sound analysis, enabling more precise monitoring of pig health and behavior. 
Moreover, integrating these systems with other precision farming technologies, such as IoT devices 
and real-time data analytics platforms, could provide comprehensive solutions for enhanced farm 
management [13,17,19]. Furthermore, ongoing research and development are likely to produce 
more robust and cost-effective sound detection systems, promoting their uptake by a wider range 
of farmers [29,31]. We also forecast that efforts to standardize sound data collection protocols and 
enhance data privacy and security will improve data sharing and integration across systems and 
farms, boosting farmer confidence [63]. 

As technology advances, sound-based precision tools are set to become essential components of 
smart farming, driving more efficient, sustainable, and humane pig farming practices. Their current 
limitations in sensor capacity and efficiency motivate ongoing research and resource optimization 
efforts to overcome the challenge of achieving high performance at a low cost, which is vital to 
fulfilling these tools’ potential in the agricultural sector.

CONCLUSION
Sound-based precision technologies have significantly advanced pig farming by enhancing 
management practices and productivity. The integration of sophisticated sensor technologies 
and advanced data analytics has revolutionized monitoring capabilities, allowing for detailed 
observations of pig behavior and health and environmental conditions. Recent improvements, 
including the use of machine learning techniques such as neural networks and deep learning 
models, have enabled more accurate classification and interpretation of pig vocalizations, promoting 
more efficient decision-making and proactive management. These technologies also offer valuable 
solutions to pressing challenges in the industry, such as achieving environmental sustainability and 
resource management. Acoustic sensors help optimize resource use and reduce energy consumption 
by continuously monitoring environmental parameters such as ventilation systems and feed 
distribution, and they facilitate the early detection of stressors such as heat or poor air quality, which 
enables timely interventions that mitigate negative impacts on pig health and farm performance. 
However, several challenges remain, including the need for standardized data collection protocols, 
improved interoperability between different sensor systems, and cost-effective implementation 
strategies. Addressing these challenges through ongoing research and development will be crucial 
for maximizing the benefits of acoustic-based precision technologies. While we have made 
remarkable strides with their development, further refinement and innovation are necessary to 
overcome the existing limitations. As these technologies continue to evolve, they hold the potential 



https://doi.org/10.5187/jast.2024.e113 https://www.ejast.org  |  297

Reza et al.

to significantly enhance management practices, improve animal welfare, and contribute to a more 
efficient and sustainable future in pig farming.
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