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Abstract
Changes in posture and movement during the growing period can often indicate abnormal 
development or health in pigs, making it possible to monitor and detect early morphologi-
cal symptoms and health risks, potentially helping to limit the spread of infections. Large-
scale pig farming requires extensive visual monitoring by workers, which is time-consuming 
and laborious. However, a potential solution is computer vision-based monitoring of posture 
and movement. The objective of this study was to recognize and detect pig posture using 
a masked-based instance segmentation for automated pig monitoring in a closed pig farm 
environment. Two automatic video acquisition systems were installed from the top and side 
views. RGB images were extracted from the RGB video files and used for annotation work. 
Manual annotation of 600 images was used to prepare a training dataset, including the four 
postures: standing, sitting, lying, and eating from the food bin. An instance segmentation 
framework was employed to recognize and detect pig posture. A region proposal network 
was used in the Mask R–CNN-generated candidate boxes and the features from these boxes 
were extracted using RoIPool, followed by classification and bounding-box regression. The 
model effectively identified standard postures, achieving a mean average precision of 0.937 
for piglets and 0.935 for adults. The proposed model showed strong potential for real-time 
posture monitoring and early welfare issue detection in pigs, aiding in the optimization of farm 
management practices. Additionally, the study explored body weight estimation using 2D 
image pixel areas, which showed a high correlation with actual weight, although limitations 
in capturing 3D volume could affect precision. Future work should integrate 3D imaging or 
depth sensors and expand the use of the model across diverse farm conditions to enhance 
real-world applicability.
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INTRODUCTION
Pork is the second most consumed meat globally, with chicken, pork, and beef collectively 
contributing to 92% of the world’s meat production [1]. Compared to traditional approaches, 
achieving precision management in pig farming requires the implementation of advanced 
methodologies like precision livestock farming (PLF) [1,2], and monitoring and recognizing pig 
behavior through PLF is essential for enhancing production efficiency. 

The behavior of pigs serves as an indicator of their health and development, playing a crucial 
role in the overall productivity and economic outcomes of pork production [3–5]. Indeed, 
animal behavior research is booming with the synergy of sensors, artificial intelligence (AI), and 
big data, offering exciting insights into their farm lives [1,6]. By integrating sensors, AI, and 
data processing, researchers can monitor animal behavior in unprecedented detail, unlocking 
discoveries and improving animal welfare [7,8]. For instance, real-time monitoring of prenatal 
behavior characteristics and activities during parturition in sows has been achieved using three-axis 
acceleration [9] and pressure sensors [10], while radio frequency identification (RFID) technology 
is replacing conventional ear tags, facilitating precision feeding [11]. A comprehensive review has 
outlined diverse tail postures in pigs, correlating these with physical and emotional states as well as 
injury behaviors [12]. Additionally, pig postures often reflect the impact of various external factors 
[13–15] that are typically under the farmer’s control.

As pig farming operations grow in scale and intensity, keeping a watchful eye on individual 
animals becomes increasingly challenging [16]. Indeed, traditional methods and sensor technologies 
often rely on direct observation, which can be time-consuming, subjective, and stressful for both the 
pigs and the farm workers [17]. Furthermore, despite technological advances, the use of external 
devices—such as sensors and wearables—can lead to reduced levels of contact between animals, 
feed intake, and reliability of movement data, as well as altered physiological parameters (e.g., heart 
rate variability), and changes in behavior that reveal discomfort and potential stress [18–20]. In 
some sensor installations, it can even lead to the need for breeder intervention [21]. 

However, the rise of non-contact computer vision technology offers a promising potential 
solution. This innovative approach has gained popularity as researchers have effectively implemented 
computer vision systems to monitor the day-to-day activities of pigs. These systems demonstrate 
remarkable capabilities in recognizing behaviors such as aggressive behavior [22], drinking [23], 
mounting [24], tracking [25], and feeding [26]. Their suitability is particularly pronounced in the 
context of the evolving commercial pig farming model, as they enable a non-intrusive and efficient 
means of tracking and understanding pig behavior, providing valuable insights for improved 
management and productivity in large-scale pig farming operations.

Deep learning has significantly advanced the field of computer vision, particularly in the tasks 
of image classification and object detection [27]. Object detection is a key area in computer vision, 
which involves recognizing object classes and identifying their locations within an image [28]. Deep 
learning-based object detection is divided into two-stage and one-stage algorithms. Two-stage 
algorithms—such as regions with convolutional neural networks (R–CNN) [29], Faster R–CNN 
[30], and SPPNet [31]—first generate anchor boxes and then perform object detection; they offer 
high accuracy but are relatively slow. In contrast, one-stage algorithms—including you only look 
once (YOLO) [32], single shot detecor (SSD) [33], and CenterNet [34]—directly extract features 
to predict the position and class probability of objects, striking a better balance between speed and 
accuracy. 

The use of deep learning models for object detection is now widely accepted and has led to 
significant breakthroughs in the field. These models are trained with large datasets and have greatly 
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improved the speed and accuracy of object detection [35]. The application of deep neural networks, 
particularly CNNs, has also played an important role in achieving rapid and accurate results in 
object detection [36], while the availability of labeled datasets (e.g., MS COCO [37], Caltech [38], 
KITTI [39], and PASCAL VOC [40]) has facilitated the training of custom deep learning object 
detection algorithms. Additionally, commercial tools offer the capability of running trained deep 
learning models [41] on input rasters to detect objects and produce a feature class containing them.

Typical pig postures—including standing, lying on their sides, and sitting—are indicative of 
their developmental state and comfort level in their environment [42]. Furthermore, continuous 
monitoring of eating behavior is essential for understanding how feeding patterns influence overall 
health. Posture monitoring plays a vital role in the rapid detection of pig diseases, providing early 
identification of potential threats to their health and assessment of their comfort [43]. 

Posture-focused detection algorithms serve as a foundation for pig behavior analysis and 
management decision-making. Nasirahmadi et al. [44] proposed three deep learning-based 
methods for detecting the standing and lying (on the belly and the side) postures of pigs in 
commercial farm conditions. They utilized Faster R–CNN, SSD, and R–FCN combined with 
Inception V2, ResNet, and Inception ResNet V2 for feature extraction from RGB images. The 
experimental results indicated that the R–FCN ResNet–101 method outperformed the others, 
achieving higher average precision (AP) of 0.93, 0.95, and 0.92 for standing, lying on the side, and 
lying on the belly postures, respectively. The mean average precision (mAP) exceeded 0.93. Riekert 
et al. [45] designed a deep learning system for pig position and posture detection using standard 2D 
camera imaging, employing Faster R–CNN and Neural Architecture Search (NAS). Trained on a 
dataset from 21 cameras, the system achieved 87.4% AP for position and 80.2% mAP for position 
and posture detection. Under challenging conditions with limited similar images, an AP for 
position detection was maintained above 67.7%, while the mAP for position and posture detection 
ranged from 44.8% to 58.8%. Alameer et al. [46] detected individual postures, including the sitting 
posture, implementing the identification and tracking of pigs without the use of physical marks or 
sensors. Their study concluded that YOLOv2 surpassed Faster R–CNN in both mAP and speed, 
achieving an mAP above 98%. 

Shao et al. [47] designed an assembled model for pig detection, segmentation, and classification 
using YOLOv5, DeepLabv3+, and Resnet, respectively. They achieved a classification accuracy of 
92.26% for four postures. Kim et al. [48] constructed high-quality pig posture datasets for deep 
learning models, revealing that YOLOv2 achieved a remarkable AP of 97%. Sivamani et al. [49] 
trained the tiny YOLOv3 model on datasets from nine pens, outperforming two-stage deep 
learning models like Faster R–CNN and R–FCN, as well as machine learning models like support 
vector machine (SVM), with a high mAP of 95.9%. Brünger et al. [50] demonstrated effective 
pig contour extraction using neural networks for binary segmentation and instance segmentation; 
this approach achieved pixel-level accuracy for individual pig extraction, facilitating future posture 
recognition. Ocepek et al. [51] used Mask R–CNN for pig body segmentation to differentiate 
curved and straight postures; they also employed a YOLOv4 [52] model for tail detection, 
achieving an AP of around 90% as an alternative to Mask R–CNN.

While these pig posture detection methods exhibit high accuracy and efficiency in controlled 
settings, they face several limitations. Key challenges include generalization to diverse farm 
environments, robustness to variations in pig postures, dependency on image quality, computational 
complexity, the need for annotated datasets, limited adaptability to novel postures, and a lack of 
explainability. Additionally, the methods struggle to cope with real-time applications, and some 
are sensor-dependent. Addressing such limitations is crucial to achieving practical and widespread 
implementation of pig posture detection systems in agricultural settings, emphasizing the 
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importance of ongoing improvements, adaptability, and the consideration of real-world challenges. 
Against this background and the growing need for smart pig health management, the study aimed 
to investigate and implement an instance segmentation approach for accurately delineating and 
categorizing various pig postures in a closed farm.

MATERIALS AND METHODS
Experimental site and image acquisition
The pig farm used in this experiment was located in the Animal Resources Research Center, 
Chungnam National University, Cheongyang, Korea (see Fig. 1A). The pig room was 9.60 m × 
5.00 m × 2.30 m. Each room contained twelve pig pens, with each pen size being 1.60 m × 2.30 
m (Fig. 1B) and each pen containing four pigs. The environmental conditions (e.g., temperature, 
humidity, and ventilation) were maintained using an automatic control system to ensure consistency 
and optimal conditions for the pigs throughout the experiment.  

Data were collected from the pig pens that consisted of a total of 4 weaned piglets and pigs 
([Landrace × Yorkshire] × Duroc), which were used as test animals. The starting age was 3 weeks 
for weaned piglets and 9 weeks for pigs, with average weights of 7.02 ± 0.63 and 25.0 ± 0.27 kg, 
respectively. The data were gathered over three weeks (November 19, 2021–December 16, 2021) 
and consisted of 10 videos (top and side views) from each pen. As the intention was to identify pig 
postures and disease monitoring, the data were mainly collected at 11:00–13:00 and 15:00–17:00, 
the operative feeding times of the day [43].

Two RGB cameras (Raspberry Pi V2, Raspberry Pi Foundation, Cambridge, UK) were used to 
record footage from the side and top perspectives, as shown in Fig. 2. Both cameras were attached 
to a commercial microcontroller board (Raspberry Pi 4B, Raspberry Pi Foundation) and a monitor. 
A Python-based program for automated video capture was utilized to store the video files. The 
system can remotely monitor and capture video or static images using a virtual network computing 
viewer, an open-source remote access application. It allows the device to work remotely using the 
microcontroller’s graphical user interface display of the microcontroller to guarantee automated 
viewer startup. For video capture, the cameras were mounted on the top and side of the pig pen, 

Fig. 1. The pig farm site and the pig room used for this experimental setting. (A) The overall pig farm site, (B) 
pig room where the study took place, (C) the piglets within the pig pen, and (D) adult pigs housed in the similar 
pens.
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and the camera angle from both sides was horizontal. The obtained footage was 640 × 480 pixels at 
30 frames per second. All the video data were recorded in H.264 format using an external hard disk 
drive linked to the microcontroller board. The specifications of the microcontroller and the camera 
are shown in Table 1.

Dataset preparation and posture class selection
As the video recordings from each location spanned 3 weeks, a random selection was made to 
extract one-of-a-kind images from the video files. As we collected the images during the active 
hours of the day, the dataset included a diverse collection of postures. The dataset was then divided 
into two subsets: the training set had 600 photos, while the testing set contained 160 images. 
In addition, a further 100 testing images were obtained from a variety of settings and were used 
to test the proposed method. There was no image processing prior to training to preserve the 
environmental features of the pig farms.

Pig postures were categorized (by positioning, orientation, and key body elements) into four 
individual classes: standing, sitting, lying, or eating. The annotation was done manually since the 

Fig. 2. Data acquisition setup used in the pig farm, showing the positions of the microcontroller and 
camera from both top and side views. The setup was designed to capture pig posture data effectively for 
subsequent analysis.

Table 1. Technical specifications of the microcontroller and camera used in monitoring pig postural movements in this study
Raspberry Pi 4B board Raspberry Pi camera

CPU: Quad core Cortex-A72, 64-bit @ 1.5 GHz Image Sensor: Sony IMX 219 PQ CMOS

RAM: 8 GB LPDDR4-3200 Sensor size: 3.68 × 2.76 mm

Connection: 802.11ac wireless, Bluetooth 5.0, BLE, Gigabit Ethernet, 40-pin GPIO header Lens size: 1/4”

OpenGL ES 3.0 graphics Resolution: 8 MP

Micro-SD card slot: 32 GB; Operating system and data storage Image resolution: 3280 × 2464 pixel

Power: 5V DC; USB-C connector & GPIO Video resolution: 640 × 480 pixel

Operating temp range: 0℃ to 50℃ Pixel size: 1.12 × 1.12 µm

Video/Image mode: 1080p: 30fps; 720p: 60fps

Image control: Automatic

Connection: 15-pin MIPI CSI-2
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morphology of the pig posture varied across different places and times. The annotation was done 
using MakeSense.ai (https://www.makesense.ai), a web-based and open-source annotation tool that 
does not call for any specialized installation. Fig. 3 illustrates the images with manual annotation 
of different pig postures, while Fig. 4 demonstrates these postures in both piglets and mature pigs. 
The sitting posture involved the pig resting with its hindquarters on the ground and its front legs 
extended, while the lying posture reflected a fully reclined position, often indicating rest. The eating 
posture captured pigs engaging in feeding, with their heads directed toward the food source. The 
standing posture represented the pigs being fully upright, supported by all four legs, and was often 
associated with movement or alertness. This classification as shown in Table 2, which is crucial for 
automated monitoring and behavioral analysis, aids in understanding pig welfare and optimizing 
farm management practices through image-based techniques.

Posture identification model
Instance segmentation combines the principles of object detection and semantic segmentation. 
Like object detection, instance segmentation was designed to categorize and pinpoint all instances 

Fig. 3. A demonstration of the annotation process for pig posture detection, conducted using the open-
source online platform MakeSense.ai, and highlighting the steps involved in labeling and preparing the 
data for training the detection model.

Fig. 4. Visual examples of the four posture classes observed in piglets and pigs. The postures (sitting, 
lying, eating, and standing) show variations between piglets and pigs, aiding in the understanding of how these 
postures are monitored for health assessments.



https://doi.org/10.5187/jast.2024.e112 https://www.ejast.org  |  683

Reza et al.

of objects within predefined classes. However, it extends beyond object detection by not only 
identifying objects but also precisely outlining each object’s boundary, generating individual masks 
for each object instance based on the specific pixels that belong to it.

The Mask R–CNN model [53] represents a significant advance in computer vision algorithms. 
It leverages a fusion of two fundamental approaches to perform instance segmentation: the Faster 
R–CNN object detection algorithm [30] and the Fully Convolutional Network (FCN) [54] 
segmentation method. In simpler terms, Mask R–CNN combines the robustness of object detection 
with the fine-grained segmentation capabilities of FCN. In this study, the Mask R–CNN instance 
segmentation model was used to address a unique challenge: recognizing and detecting various 
postures of pigs within a pig farm environment. The structure of the model is shown in Fig. 5.

To enhance the model’s accuracy and expedite training, the ResNeXt [55] network was used 
to replace the traditional ResNet [56] network. ResNeXt is distinctive in being a combination 
of ResNet and Inception [57] architectures, as shown in Fig. 6. The feature extraction network, 
specifically designed for processing images of pig postures, incorporates ResNeXt and the Feature 
Pyramid Network (FPN) algorithms. This combination efficiently extracts both low-level features 
(e.g., contours of adjacent pigs, corners in low light conditions) and high-level features (i.e., the 
background, piglets, and pigs) from the input pig image. These features contribute to five layers of 
different sizes and dimensions of feature maps. By utilizing these feature maps, the FPN constructs 

Table 2. Classification and description of pig postures observed in this study, providing detailed descriptions to facilitate the identification of 
posture-related health indicators

Parameters Configuration
Standing Upright body position on extended legs, with only the hooves in contact with the floor [42].

Lying Lying on the abdomen/sternum with front and hind legs folded under the body; the udder is obscured, on either side with all four legs 
visible (right side, left side); or visible [42].

Sitting Partly erect on stretched front legs with caudal end of the body in contact with the floor [42].

Eating Extended legs with only the hooves in contact with the floor and head lower/towards the food pen or drinking water.

Fig. 5. Illustration of the improved Mask–RCNN architecture applied in this study for pig posture 
detection. It included key components such as the ResNeXt–101 backbone and feature pyramid network (FPN), 
and regional proposal network (RPN) algorithm, showing how input images are processed to generate class, 
bounding box, and mask outputs for accurate posture detection.
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a multi-scale feature fusion process, enhancing the model’s ability to recognize and distinguish 
objects in the images across different scales and resolutions.

The process begins by inputting the feature map of the pig’s posture image into the Regional 
Proposal Network (RPN). Using 3×3 anchor frames with varying aspect ratios, these anchors are 
slid across the feature map to identify regions of interest (RoI). After this initial assessment, the 
system determines whether the proposed frame contains an object and adjusts the parameters of 
the proposed bounding box accordingly. Next, a regional feature aggregation method known as 
RoIAlign is applied. RoIAlign avoids the need to quantify the boundary of each RoI. RoIs are 
divided into a grid of a*a units, with unquantified boundaries for each unit. Four coordinates are 
established for each unit. Subsequently, values at these positions are computed through bilinear 
interpolation. Finally, a maximum pooling operation is carried out. RoIAlign effectively adapts the 
RPN-generated regions to a fixed-size feature map with minimal error, enhancing the efficiency of 
detecting small targets in the process.

Mask R–CNN is a two-stage technique. The first stage generates RoIs from the RPN, while 
the second uses the generated RoIs to output class, box offset, and binary mask. The mask branch 
generates a Km^2 dimensional output for each RoI, where K is the number of classes, and m is 
the size of the mask. The mask branch computes the output for each of the K classes, and only the 
masks with the classes outputted by the class branch compute the loss. The multi-task loss for each 
RoI is computed during training. The Mask R–CNN loss function is then calculated as follows:

La = Lc + Lb + Lm                                                                                                           (1)

where, La signifies the overall cost loss function of the model, Lc denotes the classification loss 
associated with the prediction box, Lb represents the regression loss pertaining to the prediction box, 
and Lm corresponds to the average binary cross-entropy loss.

Fig. 6. Unit Structure of (A) ResNet-101 and (B) ResNeXt-101 architectures. The components include 
convolutional layers (Conv), batch normalization layers (BN), and ReLU activation functions. In (B), the 
ResNeXt-101 architecture is shown with grouped convolutions, indicated by “F/32” for the number of feature 
maps, which is designed to improve feature learning and computational efficiency.
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Training configurations
Transfer learning was the primary approach used in the model training process for the custom 
dataset; it is aimed at identifying objects of interest, such as pigs. Fig. 7 presents examples of feature 
extraction using the implemented algorithm, showing different pig postures. 

In deep learning, the effectiveness of model training is often controlled by the availability of 
extensive datasets. However, transfer learning has emerged as a valuable technique to address the 
challenges posed by limited data. Transfer learning can be defined by Equation (2) as follows:

T(s) = {x, P(x)}, T(t) = {x, P(x)}                                               (2)

where, T(x) is the source domain, T(t) is the target domain, x is the feature space, and 𝑃(x) 
represents the marginal probability distribution.

This approach allowed us to use a pre-trained model on a large dataset and adapt it for our 
specific task, thus significantly reducing the amount of data required and minimizing the training 
time. This method makes use of the information by the Mask R–CNN model pre-trained on the 
MS COCO dataset [37], a popular benchmark for object identification tasks. These pre-trained 
weights provide the advantage of existing knowledge of different object classes from the model, 
which can be used to fine-tune it for this particular purpose.

Google Colab (Google Colaboratory, Google LLC, Mountain View, CA, USA) was used for 
the training process, as it gives access to a Tesla T4 GPU. However, developing deep learning 
models with an intricate architecture—such as Mask R–CNN—can be memory-intensive and 
computationally demanding. As a result of the memory limitations of the cloud platform, the 

Fig. 7. Outputs of feature extraction for various pig postures using the improved algorithm. Each row represents different postures of piglets and pigs 
(sitting, lying, eating, and standing), with the extracted features highlighted in the corresponding columns. The size of each image is denoted as H × W = 480 × 
800, illustrating the segmentation results for each posture class.
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training epoch was reduced from the original 1000 to 100. During training, a learning rate of 
0.001 was employed. In addition, the weights of the model were updated after each epoch using a 
learning momentum of 0.9. By regulating the weight adjustments during training, these settings 
guaranteed convergence to the optimal solution. A weight decay of 0.0001 was used to maintain 
model generalization and avoid overfitting.

Large weights are penalized by weight decay, which effectively discourages it and encourages 
a more balanced model. Hyperparameter adjustment was used to guarantee the stability of the 
training. Several hyperparameters were adjusted to obtain the best possible model performance 
within the limited 100 epochs. This process involved modifying the batch size, learning rate, 
optimizer selection, padding settings, and filter choices for the model configuration. These 
hyperparameters, which were carefully tuned to optimize the model’s efficacy, are crucial to the 
convergence and performance of deep learning models.

Body weight estimation of pigs
The weight estimation algorithm utilized image processing techniques to analyze masked RGB 
images. The MATLAB 2021a image processing toolbox (The MathWorks, Natick, MA, USA) was 
used to complete this image processing task. RGB images were converted to grayscale, reducing 
their complexity while retaining the intensity of light and considering hue and saturation. A binary 
mask was then applied to isolate the pig from the background, resulting in a binary image where 
the pig was represented as a white silhouette against a black background (as shown in Fig. 8). The 
algorithm counted the total number of white pixels in this binary image, which corresponded to 
the area occupied by the pig. This pixel count was then used in a pre-determined formula or model 
to estimate the pig’s body weight based on the relationship between pixel area and weight derived 
from empirical data. This approach enabled accurate weight estimation without the need for direct 
physical measurement.

Performance evaluation
Four common evaluation metrics for object detection—precision, recall, AP, and mAP—were used 
to validate the proposed methods. Intersection over Union (IoU) quantifies the overlap between 
two bounding boxes by comparing their intersection to their union in object detection. This ratio is 
a critical parameter in evaluating predictive accuracy: the prediction box is considered accurate if the 
IoU exceeds a specified threshold. The IoU for a ground truth box and a prediction box is computed 

Fig. 8. The process of pig body weight estimation through segmented pixel numbers. (A) An original 
image, (B) the annotated image with different colors indicating detected pigs, (C) a masked image showing 
detected areas, (D) ground truth segmentation derived from the annotated image, and (e) the segmented results 
obtained from the masked image. The segmented areas were used to estimate body weight by counting the 
pixel numbers corresponding to each pig.
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by dividing their intersection by their union, as follows:

                   (3)

Precision is the proportion of accurately predicted boxes within a class to the total predicted 
boxes in that class. The formula is as follows: 

                            (4)

where, TP is the number of prediction boxes with an IoU greater than or equal to the defined 
threshold, and FP is the number of prediction boxes with an IoU less than the threshold.

Recall is the ratio of accurately predicted boxes within a class to the total ground truth boxes in 
that class. The formula is as follows:

                               (5)

where, FN represents the number of undetected ground truth boxes.
AP approximates the area under a Precision–Recall curve for a specific class, ranging from 0 to 1. 

In practice, the Precision–Recall curve is smoothed by taking the maximum precision value on the 
right side of each point. The AP is calculated using the following formula:

                             (6)

where, Rn and Rn–1 are the recall values at the nth and (n–1)th threshold, and Pn is the precision 
value at the nth threshold. In this study, the AP value used was 0.5 with a fixed IoU threshold of 
0.5. These parameters allow for a focused evaluation of precision and recall of the model at that 
particular threshold, which can be valuable for understanding its behavior under specific conditions; 
the average value of all results is taken as the final result.

mAP is a widely used performance metric in object detection, calculated as the average of the AP 
over all detected classes. The formula for mAP is given by: 

                               (7)

where, n is the number of classes and APi is the average precision for class i. The mAP provides a 
comprehensive measure of the model’s accuracy across multiple classes, making it a valuable metric 
for evaluating object detection models.

RESULTS
Model studies have demonstrated that the number of iterations significantly impacts the outcomes 
of training results. Key metrics, such as training and validation loss, are crucial for understanding 
the performance and progress of a Mask R–CNN model, or indeed any machine learning model. 
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Fig. 8 illustrates the training and validation loss and accuracy curves for the model. The model was 
trained for 100 epochs, with each epoch comprising 1,000 steps.

Over the course of 100 epochs, the training loss value decreased from 1.94 to 0.52. Similarly, 
the validation loss value decreased from 1.32 to 0.44, as shown in Fig. 9. The reduction in training 
loss indicates that the model becomes increasingly better at fitting the training data, achieving 
noticeable stability after around 75 epochs. This trend suggests that the model effectively learns 
to make more accurate predictions based on the training data. Lower validation losses signify an 
improvement in the model’s performance on new, unseen data, which is a critical indicator of its 
capability for generalization (beyond the training set). 

Fig. 10 illustrates the mAP of the posture detection model on the validation set, with mAP@50 
and mAP@50:95 metrics showing continuous improvement and convergence to higher accuracies 
as epochs increased. The mAP@50 metric rapidly increased in the initial epochs, reaching around 
0.7 by epoch 20, and then improved more slowly, fluctuating between 0.85 and 0.9 from epochs 
40–100. Similarly, mAP@50:95 showed a rapid initial increase, reaching around 0.6 by epoch 20; it 
then rose gradually, fluctuating between 0.75 and 0.8 from epochs 40–100. These trends indicated 

Fig. 9. Performance evaluation of the improved Mask R–CNN model for pig posture detection across 
100 epochs. (A) training and validation loss curves, indicating the decrease in loss during model training, 
and (B) training and validation accuracy curves, highlighting the increase in accuracy over time. These results 
demonstrated the effectiveness of the model in accurately detecting pig postures.

Fig. 10. The mAP curves for the pig posture detection model across 100 epochs. The blue line represents 
the mAP@50, and the brown line shows the mAP@50:95, illustrating the precision in detecting pig postures at 
different intersection-over-union thresholds. Both curves show improvement as training progresses, indicating 
an increasing accuracy in posture detection.
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high precision under both metrics, with mAP@50 performing better at a less strict IoU threshold.
The convergence of both metrics suggested consistent model improvement with training, and the 

improved mask R–CNN model demonstrated high accuracy, which was particularly evident in the 
higher convergence of mAP@50 and reflected the effectiveness in precise object localization and 
classification.

Model performance on posture detection
Table 3 summarizes the performance of an improved Mask R–CNN model in detecting piglet 
postures. Fig. 11 represents the output results of piglet posture detection and segmentation in the 
test images, utilizing the proposed Mask R–CNN model. The model showed strong performance 
across different postures, excelling at detecting standing piglets (with an F1-score of 0.962), 
followed closely by the detection of eating (F1-score of 0.945). The model performed slightly less 
well in detecting sitting (F1-score of 0.920) and lying piglets (F1-score of 0.891). Sitting and 
lying postures might exhibit more significant visual overlap than standing or eating, making it 
challenging for the model to differentiate between them (as shown in Fig. 12). For instance, a piglet 
lying on its side might be mistakenly classified as sitting, as shown in Fig. 12A. The average recall, 
precision, and F1-scores across all postures were 0.923, 0.937, and 0.930, respectively, suggesting 
that the improved Mask R–CNN model performed well overall in detecting piglet postures, 
particularly for standing and eating behaviors. While the performance was slightly lower for sitting 
and lying postures, the overall results were promising, and the model could be a valuable tool for 

Table 3. Evaluation of posture detection in piglets using an improved Mask R–CNN model
Posture Recall Precision F1-score

Standing 0.953 0.972 0.962

Sitting 0.914 0.926 0.920

Eating 0.937 0.954 0.945

Lying 0.887 0.896 0.891

Average 0.923 0.937 0.930
R–CNN, regions with convolutional neural networks.

Fig. 11. Output results of piglet posture detection and segmentation in test images using the proposed mask R–CNN model. The postures were 
labeled using different colors in annotated images (upper row), while in detected images (lower row), the postures wer highlighted with bounding boxes and 
confidence scores, demonstrating the ability of the model to accurately identify and segment piglet postures in test images.
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applications such as piglet monitoring and behavior analysis.
Table 4 summarizes the performance of an improved Mask R–CNN model in detecting postures 

among the older group of pigs, while Fig. 13 represents the output results of posture detection 
and segmentation in the test images utilizing the proposed Mask R–CNN model. The model 

Fig. 12. Inaccurate piglet posture detection and segmentation in test images using the proposed Mask R–CNN model (marked with blue rectangles). 
(A) Misdetection, where the model incorrectly identifies a posture; (B) overlap detection, where two postures are mistakenly detected together; and (C) a case 
where the posture is not detected, despite being present in the image. These examples illustrate areas where the accuracy of the model could be improved.

Fig. 13. Results of pig posture detection and segmentation using the proposed Mask R–CNN model in test images. In the annotated images (upper 
row), different postures are marked with various colors, whereas in the detected images (lower row), the postures are segmented and assigned confidence 
scores with bounding boxes, demonstrating the effectiveness of the model in accurately identifying and segmenting different pig postures.

Table 4. Evaluation of posture detection in pigs using an improved Mask R–CNN model
Posture Recall Precision F1-score

Standing 0.961 0.973 0.967

Sitting 0.907 0.918 0.912

Eating 0.935 0.960 0.947

Lying 0.881 0.887 0.884

Average 0.921 0.935 0.928
R–CNN, regions with convolutional neural networks.
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demonstrated strong performance across various pig postures, particularly excelling at detecting 
standing pigs (with an F1-score of 0.967), followed closely by eating (F1-score of 0.947). The 
model performed slightly less well in detecting sitting (F1-score of 0.912) and lying pigs (F1-
score of 0.884). As for the piglets, the lower performance in detecting sitting and lying postures 
could be due to greater visual overlap between these postures, which is challenging for the model to 
differentiate. The average recall, precision, and F1-scores across all postures were 0.921, 0.935, and 
0.928, respectively, indicating that the improved Mask R–CNN model performed well overall in 
detecting pig postures and demonstrated high accuracy and reliability, particularly for standing and 
eating behaviors. 

However, there were some limitations of the Mask R–CNN model in accurately detecting 
and segmenting piglet postures in the test images, as shown in Fig. 14. Specifically, the model’s 
performance was suboptimal, as evidenced by the blue rectangles drawn around the piglets, which 
highlight areas where the model failed to correctly identify and delineate the posture of the piglets. 
This failure could be due to insufficient training data, variability in piglet postures, or the viewing 
angle from the camera. Nonetheless, despite slightly lower performance for sitting and lying 
postures, the overall results were promising, and they suggest that the model could be a valuable 
tool for applications such as pig monitoring and behavior analysis.

Pig activity monitoring
The implementation of the proposed Mask R–CNN model enabled the monitoring and analysis of 
postural behaviors of pigs within a farm environment. The primary target was to provide continuous 
surveillance of pig postures, which is crucial for optimizing their health and farm conditions 
based on real-time animal activity data. To achieve this, five consecutive days of video footage 
were processed by the model, allowing it to classify and quantify the frequency of the four specific 
postures (i.e., standing, sitting, lying, and eating). The outcomes of this analysis are presented in 
Fig. 15, which shows the average posture detection from the video data spanning an entire 24-
hour cycle (from 06:00 to 06:00 the following day) to capture the variability in pig behaviors across 
different times of the day. The model detected and recorded the number of postures in real time and 
saved these posture counts continuously in text files, facilitating further analysis.

The scoring diagrams (derived from the posture detection data) demonstrated the effectiveness 
of the model in continuously monitoring the postural activity of group-housed pigs within the 

Fig. 14. Inaccurate pig posture detection and segmentation in test images using the proposed Mask R–
CNN model (marked as blue rectangles). (A) certain postures are not detected, (B) a posture is missed, and 
(C) another posture is incorrectly detected. These instances highlight the limitations of the model in some cases, 
despite its overall accuracy.
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farm environment. In particular, the graph representing eating postures highlighted notable peaks 
during feeding times (see Fig. 15A), and the one showing the standing posture highlighted periods 
of increased activity, such as when pigs were inspected by the farmer. These graphs indicate that 
the model can accurately correlate posture changes with specific events and activities under farm 
conditions. 

The patterns observed in the lying and sitting postures (Fig. 15B) provide valuable insights into 
the well-being of pigs. The automated scoring method, enabled by the Mask R–CNN model, offers 
a significant advantage in the early detection of potential health and welfare issues in pig farms. For 
instance, deviations in the typical lying or sitting behavior patterns could serve as early indicators of 
conditions such as lameness or the occurrence of tail-biting incidents, which are important welfare 
concerns. Moreover, the increased duration of lying could forecast incipient sickness or disease in 
pigs. By continuously monitoring such postural changes, farmers can receive timely alerts regarding 
potential problems, enabling timely intervention and management.

Moreover, the integration of this posture detection system with farm management software 
could lead to a more proactive approach to managing farm environmental conditions. For example, 
temperature and ventilation adjustments could be automatically triggered based on real-time data 
reflecting the comfort and activity levels of pigs; such interventions would not only enhance animal 
welfare but also improve overall farm efficiency.

Body weight estimation
In our study, the actual body weight of each pig was recorded on a weekly basis using a large 
precision weighing scale. These weight data were collected alongside image data captured in the 
farm environment. The Mask R–CNN model was employed to process these images, segmenting 

Fig. 15. Variability in pig behaviors over 24 hours. (A) A comparison of eating and standing behaviors, and (B) 
a comparison of sitting and lying behaviors. The plots show the percentage of time spent in each posture across 
the day, highlighting trends and patterns in pig behavior.
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the pigs from the background to facilitate accurate body size estimation. From the output of the 
Mask R–CNN, images were selectively chosen based on criteria that ensured the entire body of 
the pig was visible and unobstructed, which is crucial for accurate segmentation and subsequent 
analysis. For each selected image, the pixel area corresponding to the segmented pig was calculated, 
and the pixel count (representing the projected area of the pig in the 2D image) was then used to 
predict the actual body weight. Strict guidelines were followed to eliminate outliers and ensure that 
the selected images accurately represented the body area despite the inherent variability in pixel 
count due to the movement and postural changes of pigs throughout the day.

The relationship between the pixel area derived from the segmented images and the actual body 
weight of the pigs was quantified by performing a correlation analysis. The results of this analysis (as 
shown in Fig. 16A) demonstrated a robust linear relationship between the pixel count and actual 
weight, with a coefficient of determination (R2) of 0.94 for piglets and 0.97 for pigs. These high R2 
values indicate a strong predictive capability of the model, suggesting that the segmented pixel area 
is a reliable indicator of body weight. Fig. 16B further illustrates the temporal changes in both the 
actual and predicted body weights of piglets and pigs across the experiment. The close alignment 
between the predicted and actual weights over time emphasizes the effectiveness of the model in 
tracking weight changes, which is critical for monitoring growth rates and health status.

However, despite these high correlations, we acknowledge some limitations that are inherent in 
using 2D images for body weight estimation. The primary challenge arises from the fact that 2D 
images cannot capture the entire three-dimensional volume of the pig body, leading to potential 
inaccuracies in weight estimation. The 2D-pixel area only represents a projection of the body, and 
variations in posture, angle of capture, and occlusions can introduce errors. For instance, if a pig is 
partially turned or if parts of its body are obscured, the segmented area may not accurately reflect its 
true size, reducing the precision of the weight estimation.

DISCUSSION
This study evaluated a deep-learning model for segmenting and detecting pig postures using RGB 
cameras from both top and side views. Unlike previous work focused on top-view perspectives 
[14] or using multiple cameras [45], our improved Mask R–CNN model successfully detected and 
segmented pig postures from non-vertical and real-world camera angles. The model achieved a 93% 
mAP in posture detection for both piglets and pigs, demonstrating its effectiveness with adequate 
training data from various camera perspectives. Table 5 presents a comparison of pig posture 

Fig. 16. The relationship between actual pig body weight and pixel numbers derived from the 
segmented pig body area. (A) The correlation between body weight and pixel numbers for piglets and pigs, 
and (B) temporal changes in actual and predicted pig body weight over the experimental period. The data show 
trends in weight estimation based on the pixel counts during the monitoring days.
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detection using different models, highlighting their AP across four postures (standing, sitting, lying, 
and eating) and the mAP. The Mask R–CNN–ResNeXt 101 model—applied to both piglets and 
older pigs—exhibited the highest overall performance with mAPs of 0.937 and 0.935, respectively, 
indicating its effectiveness in accurately detecting each posture, particularly eating (0.95 for piglets, 
0.96 for pigs). YOLOv5s [58,59] also demonstrated strong performance, especially in the standing 
(0.994), sitting (0.987), and lying (0.98) postures, with a commendable mAP of 0.868, showcasing 
its capability in specific posture detection. Other models—such as Yolo v3 [60] and Faster R–
CNN variants [42,44,45,61,62]—showed competitive results, with mAPs ranging from 0.845 to 
0.918, reflecting satisfactory reliability in posture detection tasks. Models like R–FCN+ResNet101 
[42] used a top-view 3D camera to detect the lying behavior of a lactating sow across five posture 
types, while the SSD+Inception V2 [44] model used top-view images; they displayed moderate 
performance with mAPs of 0.881 and 0.693, respectively, indicating room for improvement. 
Despite its lower mAP of 0.802, the Faster R–CNN+NASNet [45] with a 2D camera provided a 
balance across postures, with notable precision in standing (0.81) and eating (0.78). 

Overall, the results highlighted advances in posture detection, with the proposed Mask R–
CNN–ResNeXt 101 model leading in accuracy, while traditional models still maintained relevance 
with respectable performances. The comparison also highlights the significant variance in AP 
across different postures, emphasizing the importance of model selection based on the specific 
requirements in posture detection. This study confirms the Mask R–CNN–ResNeXt 101 as the 
top-performing model for comprehensive pig posture detection, particularly in complex scenarios 
such as eating, where it outperformed the others by a significant margin.

The performance of the Mask R–CNN model in real-time pig activity monitoring demonstrates 
its potential as a powerful tool for improving farm management practices. By processing video 
footage continuously over several days, the model could detect and quantify pig postures with high 
accuracy. This capability is vital for monitoring animal welfare, as deviations in normal postural 
behavior can serve as early indicators of health issues. Several other studies have also shown the 
potential for monitoring posture changes over time in pig farms. Image processing with a linear 
SVM model [12] was shown to classify pig lying postures (sternal and lateral) in commercial 
farming, but accuracy was hindered by image quality and caused some misclassifications. The R–

Table 5. Comparison of improved mask R-CNN and other models for pig posture detection to provide insights into the relative accuracy and 
efficiency of each approach.

Model
AP

mAP References
Standing Sitting Lying Eating

YOLOv5s 99.4 98.7 98.0 86.8 [59]

YOLOv5 + EfficientNet 0.67 0.81 0.899 [60]

Yolov3 0.97 0.96 0.88 0.918 [61]

Faster R–CNN + NASNet 0.81 0.78 0.802 [45]

Faster R–CNN 0.90 0.84 0.891 [62]

Faster R–CNN + ResNet101 0.87 0.86 0.856

[44]R-FCN + ResNet101 0.88 0.88 0.881

SSD + Inception V2 0.69 0.70 0.693

R–FCN + ResNet101 0.95 0.90 0.73 0.872 [42]

Faster R–CNN–Resnet 50 0.86 0.91 0.84 0.845 [63]

Mask R–CNN–ResNeXt 101 (piglet) 0.97 0.92 0.89 0.95 0.937 This study

Mask R–CNN-ResNeXt 101 (pig) 0.97 0.91 0.88 0.96 0.935 This study
YOLO, you only look once; R–CNN, regions with convolutional neural networks;  FCN, fully convolutional network.
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FCN model [42] was used to detect and monitor pig postures in groups, aiding in climate and 
barn condition control; standing postures and activity peaks were noted during feeding, activity 
times, or farmer checks. Furthermore, using the Faster R–CNN model [45], pig lying behavior was 
monitored over 11 hours of video footage in a fattening pen, which revealed several activity peaks 
between 14.30 and 16.15 h, which corresponded to observations of aggressive behavior. 

The model’s ability to correlate specific postures with farm activities, such as feeding or 
inspections, further demonstrates its utility in providing actionable insights. For example, detecting 
peaks in standing or eating behaviors during feeding times can help optimize feeding schedules 
and ensure that all animals access food appropriately. The application of the Mask R–CNN model 
in detecting and analyzing pig postures could provide a robust tool for continuous monitoring and 
early detection of welfare issues. The data generated by this system could be vital in optimizing 
farm management practices, ensuring better health outcomes for animals, and enhancing the 
overall sustainability of pig farming operations. However, this new method requires adaptation and 
evaluation across a broader range of farming conditions, potentially needing a greater number of 
images for model training or alternative feature extraction methods.

In the context of body weight estimation, the study also used the Mask R–CNN model’s ability 
to segment pigs from the background in 2D images in order to predict body weight based on pixel 
area. The strong linear relationship between pixel area and actual body weight—as evidenced by R² 
values of 0.94 for piglets and 0.97 for pigs—suggests that this method is highly reliable for weight 
estimation. However, the reliance on 2D projections means that the model cannot fully capture the 
three-dimensional volume of the pig, leading to potential inaccuracies. Variations in posture, angle 
of capture, and occlusions could each introduce errors in the estimated weight. Future research 
could mitigate these limitations by exploring the integration of 3D imaging or depth sensors—
such as LiDAR or stereo cameras—to improve weight estimation by providing more accurate 
measurements of pig body volume than that provided by 2D images. These techniques provide a 
more accurate representation of body shape and size by capturing depth and spatial details, likely 
also leading to more accurate weight prediction. In addition, enhancing the ability of the model to 
handle occlusions and varying postures by incorporating advanced data augmentation techniques or 
using synthetic data for training could further improve its robustness in diverse farm environments.

The current study primarily focused on developing and evaluating accuracy of the improved Mask 
R–CNN model in posture detection and body weight estimation, demonstrating its effectiveness in 
monitoring pig activity. While the results indicated high precision in identifying postures and robust 
correlations for weight estimation, the study did not explicitly link these outcomes to potential 
risk factors. However, the ability to continuously monitor postural behaviors, as shown in Fig. 15, 
the analysis of lying and sitting postures, highlights the potential for identifying early indicators of 
welfare concerns, such as sickness or lameness. By detecting deviations in typical postural patterns, 
the system could indirectly point to risk factors like overcrowding, poor environmental conditions, 
or health issues.

Future research should expand on this work by systematically correlating monitored behaviors 
with specific risk factors, such as different diseases conditions, changes in temperature, ventilation, 
or feed quality, to validate its application for risk assessment. Additionally, integrating this system 
with farm management tools could facilitate more direct connections between detected behaviors 
and risk factors, enabling proactive interventions. The potential for such correlations exists in the 
results of this study, but explicit testing and validation remain a crucial next step to address this gap 
comprehensively.
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CONCLUSION
The study presents a significant advance in the use of deep learning for automated pig posture 
recognition and detection within controlled farm environments. RGB videos were taken from 
piglets and pig pens over a 3-week period. By employing the Mask R–CNN model, the research 
achieved high accuracy in identifying pig postures (standing, sitting, lying, and eating), with an 
impressive mAP of 0.937 for piglets and 0.935 for pigs. These outcomes highlight the model’s 
potential as a powerful tool for continuous monitoring and early detection of health and welfare 
issues on pig farms. The ability to correlate specific postures with farm activities, such as feeding and 
inspections, further enhances the utility of the model in providing actionable insights for optimizing 
farm management practices.

Moreover, the study explored the use of the Mask R–CNN model for estimating body weight 
based on pixel area from 2D images, revealing a strong linear correlation with actual body weight. 
However, the research acknowledges the limitations of using 2D images, suggesting that future 
studies incorporate 3D imaging techniques or depth sensors to improve accuracy in weight 
estimation.

Overall, the research demonstrates the effectiveness of the Mask R–CNN model in real-time 
monitoring and management of pig behavior, with potential applications in improving animal 
welfare and farm efficiency. Further adaptation and evaluation in diverse farming conditions, as well 
as enhancements in imaging techniques, could pave the way for more robust and reliable systems in 
the future.
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