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Abstract
In swine breeding programs, it has now become critically important to emphasize selection 
for resilience to external environmental stress factors that have negatively impacted the 
productivity of pigs, such as those due to climate change induced temperature increases, 
or the intensification of housing environments. Secretion of cortisol, a neurophysiological 
change mediated by the hypothalamic-pituitary-adrenal axis, is a central mechanism in the 
biological stress response. This hormone is closely related to pig robustness and health and 
can serve as an informative indicator of stress resistance and robustness in pigs. To identify 
positional candidate genes and their genetic variants influencing blood cortisol levels, we 
conducted genome-wide association study (GWAS), joint linkage and linkage disequilibrium 
(LALD) mapping and Bayesian fine-mapping analysis in an F2 resource population generated 
by crossing Duroc pigs with Korean native pigs. The data used in the study included 243 
F2 animals. We utilized imputed whole-genome sequencing data for our analyses. GWAS 
results revealed a genome-wide significant quantitative trait locus (q-value < 0.05) located 
within a ~2.46 Mb region between single nucleotide polymorphisms  7:114031215 and 
7:116497417 on pig chromosome 7, which accounted for 12.65% of the phenotypic variation. 
LALD mapping analysis was performed to narrow down the confidence interval (CI) of the 
quantitative trait locus which resulted in a CI of 2.39 Mb (7:114409266~116803751). Further, 
to identify candidate causal genes within the 2.39 Mb region, fine-mapping analysis was 
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INTRODUCTION
With the rapid technological advancement and adoption of next-generation sequencing, genotype 
imputation and Bayesian statistical fine-mapping approaches, it has become feasible to conduct 
post genome-wide association fine-mapping analysis of quantitative trait loci (QTLs), to identify 
some of the genetic variants causatively associated with complex quantitative traits, such as blood 
cortisol levels. The genome-wide association studies (GWAS) and fine-mapping complement each 
other in genetic research. While GWAS is an excellent approach to identify broad genomic regions 
associated with complex economic traits using a sparse density of DNA markers and conventional 
p-values to declare statistically significant associations, fine-mapping narrows these regions to 
specific potential causal variants. Fine-mapping employs sophisticated statistical methods that 
account for linkage disequilibrium (LD) structure, utilizes denser genotyping of DNA markers, 
and can compute the posterior probability of causality for each variant in the genomic regions of 
interest. As an essential post-GWAS analysis, fine-mapping identifies putative causal variants, 
provides biological insights, facilitates functional studies, and improves effect estimation. By offering 
higher resolution and more precise identification of causal variants, fine-mapping translates GWAS 
discoveries into biological insights [1–3].

Although GWAS were originally developed for population studies, family-based association 
studies, including outbred crosses, such as F2 intercrosses, have also become popular due to the 
implementation of mixed linear models (MLM) in GWAS [4–6]. Genetic selection for robustness- 
and health-related traits is becoming an important component of swine breeding operations 
because the current pig production system must cope with environmental stress factors derived 
from the intensification of housing environments and temperature increase due to climate changes 
[7]. Alterations in robustness and health can cause neuro-physiological changes, including changes 
in blood cortisol levels. Cortisol secretion is mainly affected by the hypothalamic-pituitary-
adrenal (HPA) axis, which are the key organs of biological stress response [8,9]. Hypothalamic 
corticotropin-releasing hormone stimulates the release of adrenocorticotropic hormone (ACTH) 
from the pituitary gland, which in turn triggers cortisol production in the adrenal cortex. The 
sensitivity of the adrenal glands to ACTH is crucial for the regulation of cortisol secretion. Cortisol 
bioavailability is critically modulated by corticosteroid-binding globulin (CBG). Through its high 
specific affinity for cortisol, CBG plays a vital role in regulating serum cortisol levels and their access 
to target cells. The majority of cortisol in the bloodstream is transported bound to CBG, while only 
a small fraction of the total serum cortisol remains unbound and biologically active [10,11].

Cortisol, a crucial hormone for facilitating adaptive stress responses, ensures the body’s energy 
supply in dynamic environmental conditions. This hormone influences multiple physiological 
processes, including appetite regulation, glucose metabolism, and fatty acid metabolism. 
Additionally, cortisol suppresses inflammation, modulates immune function, and mobilizes 
energy resources. It also affects energy storage. However, to be beneficial, cortisol levels must be 
maintained within an optimal concentration range [12]. In pigs, cortisol levels correlate with various 
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performed within the region. The fine-mapping analysis identified SERPINA1, ITPK1, 
CLMN, SERPINA12, and PRIMA1, in addition to SERPINA6, which was previously shown 
to be associated with blood cortisol levels. Our results identified positional candidate 
genes and genetic variants associated with serum cortisol concentrations that can be included 
in marker panels for genomic prediction to improve selection for robustness in pigs.
Keywords:   Fine-mapping, Candidate gene, Serum cortisol levels, Imputed whole-
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economically important traits. Higher cortisol is associated with reduced growth and feed efficiency, 
and influences body weight, carcass characteristics, immune function, leanness, and meat quality 
[13,14]. The association between cortisol levels and various economically important traits has been 
well documented across species. For instance, studies in chickens and sheep have linked cortisol 
release to growth-related traits [15,16]. 

The secretion of cortisol regulated by the HPA axis is individually variable to stress responsiveness 
and is influenced by genetic determinants − heritability estimates of cortisol levels range between 
medium to high which makes it amenable to selection in breeding programs [17,18]. Hence, it is 
important to identify the genetic factors underlying blood cortisol levels and develop DNA markers 
to improve of the robustness and health of pigs, which are tightly linked to their welfare and 
productivity. Despite the importance of cortisol, only a limited number of GWAS and RNA seq 
analysis have been conducted to identify candidate genes that affect blood cortisol levels [19]. For 
example, previous GWA studies have identified SERPINA6 and SERPINA1 genes, which encode 
CBG, implicated in the regulation of blood cortisol levels in humans and pigs [20–22]; Crawford 
et al. reported strong evidence that genetic variants in the SERPINA6/SERPINA1 locus primarily 
affect SERPINA6 gene expression in the liver, which likely influences cortisol levels and its delivery 
to other tissues [21]. In goats, an RNA-seq experiment aimed at identifying genes and pathways 
associated with increased cortisol levels due to transportation stress revealed significant enrichment 
of genes involved in inflammation and apoptosis pathways [23].

Here, we present the results of GWAS and post-GWAS fine-mapping analyses in which 
we aimed to identify positional candidate genes and genetic variants affecting serum cortisol 
concentrations that are involved in the mechanisms of stress response in pigs. Our findings could 
provide insights into stress response mechanisms and targets for improving pig welfare and 
productivity through genomic information enabled accurate genetic evaluation.

MATERIALS AND METHODS
Animals and phenotype measurement
We generated an F2 resource population by crossing Duroc and Korean Native Pig (KNP) pigs 
from Jeju Island [13–24]. There are two types of indigenous pigs in Korea: those living on the main 
peninsula of Korea and those living on Jeju Island. The Jeju Island indigenous pigs are particularly 
interesting as they have unique genetic properties that are very distinct from those of pigs raised on 
the Korean Peninsula since they have been largely isolated on Jeju Island for more than 1,000 years 
[25,26]. Hereafter, the Jeju native pig will be referred to as KNP. The coat color of KNP is black, and 
similarly to most indigenous breeds, their growth performance is stunted in comparison to modern 
commercial pig breeds. They possess however excellent meat quality attributes, such as a solid fat 
structure, a darker red meat color, and high levels of marbling [27–29]. In this study, nine purebred 
Duroc pigs were mated with five purebred KNP pigs to produce 36 F1 animals. Subsequently, the 
F1 animals were intercrossed to produce 345 F2 animals. From the F2 progeny comprised 31 full-sib 
families, high-quality serum cortisol level data from 243 F2 animals (133 males and 110 females) 
were obtained as phenotypic data, and the corresponding genotypic data were included for this 
study. All animals were raised at the experimental farm of the National Institute of Animal Science, 
Rural Development Administration, Jeju, Republic of Korea. They were fed ad libitum, and the 
males were not castrated. All experimental procedures were performed in accordance with national 
and institutional guidelines and were approved by the Ethical Committee of the National Institute 
of Animal Science (No. 2020-446). 

Blood samples (10 mL) were collected at 140 days of age from the jugular veins of the 243 F2 
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offspring. This specific age was chosen based on the ease of blood collection, taking into account 
the body size of pigs at this stage of development. The 140 days of age provided a balance between 
the pigs being sufficiently mature for straightforward blood sampling and not being too large to 
handle safely and efficiently. To minimize sampling variance, the blood sampling was conducted 
in the morning as soon as the research farm staffs were present at the farm. Serum cortisol levels 
were measured using a commercially available enzyme-linked immunosorbent assay kit (Endocrine 
Technologies, Newark, CA, USA). Descriptive statistics are presented in Table 1. The cortisol 
phenotype showed significant deviation from normality and was transformed using a natural 
logarithm to remove skewness. 

Single nucleotide polymorphism marker data
Genomic DNA was isolated from the blood samples using a standard sucrose-proteinase K 
method. Genotyping was conducted using the Porcine SNP 60K BeadChip technology (Illumina, 
San Diego, CA, USA), which contained 61,565 SNPs across the whole genome. The SNPs were 
filtered for a minor allele frequency < 1%, genotype call rate < 95%, and p-value of χ2-test for 
Hardy–Weinberg equilibrium ≤ 0.000001. Additionally, Mendelian inconsistencies in the F2 
pedigree were assessed using the SNP marker information. The quality control procedures were 
performed using the PLINK v 1.90 [30]. In total, 39,463 SNP markers were retained and used for 
further analysis. 

Whole genome sequencing and genotype imputation
To scale up the information obtained from the Porcine SNP 60K BeadChip data of the study 
population to whole-genome sequence (WGS) level, genotype imputation was performed. As a 
reference panel for imputation, we collected WGS data from 56 pigs, including 7 Duroc, 19 KNP, 
and 30 Duroc × KNP F2 (DK F2) individuals. Among them, some of the Duroc (7) and KNP (5) 
pigs were the parental animals of the F2 resource population. The 30 DK F2 pigs were sampled from 
the F2 progeny of the resource population. Whole-genome sequencing was performed using the 
Illumina HiSeq platform (Illumina). DNA libraries were prepared according to the manufacturer’s 
instructions and sequenced using the paired-end 150 bp sequencing protocol. The sequencing 
coverage for these individuals was approximately 30×. In addition, whole-genome resequencing data 
from 14 KNPs were obtained from the NCBI Sequence Read Archive (SRA). These sequencing 
data were accessed under the BioProject accession number PRJNA254936. These data were also 
included in the subsequent procedures for preparing the reference sequence dataset for genotype 
imputation.

The raw sequencing data were processed and analyzed using a standard bioinformatics pipeline. 
Briefly, the quality of raw sequencing reads was assessed using FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc). The cleaned reads were then mapped to the Sus scrofa reference 
genome (Sscrofa11.1) using Burrows-Wheeler Aligner (BWA) with default parameters [31]. 
Duplicate reads were marked and removed using Picard MarkDuplicates (http://broadinstitute.
github.io/picard). Variant calling was performed using Genome Analysis Toolkit (GATK), 
following the best practices for variant discovery [32]. The resulting variants were filtered based on 
quality scores, depth of coverage, and other standard parameters using GATK VariantFiltration to 
retain high-confidence genetic variants, ultimately leading to the acquisition of a total of 23,308,271 
DNA markers.

Because of the substantial difference in genome coverage between the 60 K SNP data and WGS 
data, a two-step imputation strategy was employed to obtain WGS markers from the 60K SNP 
data. Initially, a subset of SNPs was extracted at regular intervals (window size of approximately 28 
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variants) from the WGS data obtained from the reference samples, resulting in 824,938 genetic 
variants. Subsequently, 1-step imputation was performed for the test sample, consisting of nine 
Duroc, five KNP, and 243 DK F2 pigs. This 1-step imputation yielded a total of 578,493 DNA 
markers. Using these marker data from the test sample, a 2-step imputation was conducted to 
obtain the WGS data, resulting in a total of 15,542,014 genetic variants. Haplotyping at the whole-
genome level for both the reference and test samples was performed using Beagle version 2.4.1 
[33]. Beagle was strictly used for haplotype construction. Genotype imputation was then performed 
using Minimac4 based on chromosome-wise constructed haplotype information (https://github.
com/statgen/Minimac4). An imputation accuracy was evaluated using the correlation coefficient 
(r2), with a filtering criterion set at an r2 value of 0.6 or higher. The imputed genetic variants were 
further filtered for a minor allele frequency < 1% and P-value of χ2-test for Hardy-Weinberg 
equilibrium ≤ 0.000001. In total, 13,720,525 DNA markers were retained and used for further 
analyses.

Estimation of heritability and genome-wide association studies of serum cortisol 
levels
The efficient mixed-model association (EMMA) option of the rMVP package was used to estimate 
the heritability of the serum cortisol levels recorded in this study [34], and the following linear 
mixed model was used for the analysis:

y = Xb + Zu + e   (1)

where y is the vector of the log transformed serum cortisol levels; b is the vector of fixed effects, 
including the intercept, the effect of sex, the effect of slaughtering batch (with nine levels), and body 
weight at 140 days of age; u is the vector of random additive effects following a normal distribution 
u~N(0, Gσa

2), in which G is the genomic relationship matrix constructed using 13,720,525 DNA 
markers and σa

2 is the additive genetic variance; e is the vector of random residual effects following 
a normal distribution e~N(0, Iσe

2), in which I is the identity matrix and σe
2 is the residual variance; 

X and Z are the incidence matrices for b and u, respectively.
A GWAS adjusted for the familial relatedness within the F2 intercross was performed using 

the MLM option of the rMVP program [34]. The following linear MLM was used to assess the 
association between SNP markers and the serum cortisol levels: 

y = Xb + Z1a + Z2u + e   (2)

where, y is the vector of the serum cortisol levels; b is the vector of fixed effects including sex, the 
effect of slaughtering batch (with nine levels), and body weight at 140 days of age; a is the SNP 
marker effects; u is the vector of random additive effects with a distribution u ~N(0, Gσa

2), where 
G is the genomic relationship matrix that was constructed using the 39,463 SNP markers; σa

2 is 
the additive genetic variance; e is a vector of random residuals following a distribution e ~N(0, Iσe

2), 
in which I is the identity matrix and σe

2 is the residual variance. Z1 is the incidence vector for a. X 
and Z2 are the incidence matrices for b and u. The percentage of phenotypic variance explained by a 
marker (%VarSNP) was computed as follows [35]:

                 (3)

where p is the minor-allele frequency of the SNP marker; α is the additive genetic effect of the 

2

2
2 1100SNP

p

p( p )%Var α
σ


 
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DNA marker; σp
2 is the phenotypic variance for each meat quality-related trait. The p, α and σp

2 
were estimated using the rMVP program. The q-value adjusted genome-wide suggestive (q-value 
< 0.10) and significant (q-value < 0.05) thresholds were used to address the multiple testing issues 
[36]. 

Joint linkage and linkage disequilibrium mapping analysis
Initial fine-mapping of QTL identified by the GWAS was performed by exploiting linkage and 
linkage disequilibrium (LALD) using a haplotype-based approach: 1) We used CRI-MAP version 
2.503, developed by Evans and Maddox (http://www.animalgenome.org/bioinfo/tools/share/
crimap), to establish a genetic linkage map of SSC7 using 899 SNP markers. These makers were 
selected from the Porcine SNP 60K BeadChip genotype data. 2) The founder haplotypes were then 
reconstructed using the DualPHASE program [37] which combines LALD information through a 
Hidden Markov Model setting. 3) The haplotypes then were incorporated into the following linear 
mixed-effect model including fixed effects (sex, slaughtering batch, and body weight at 140 days of 
age), random effects (i.e., the effects of the founder haplotypes and the additive polygenic effect), 
and random residual terms to perform high-resolution QTL mapping using QxPAK version 5.05 
[38]. A 1.0-LOD drop support interval was employed to estimate the confidence interval (CI) at 
the location of QTL location [39].

Further Bayesian fine-mapping analyses for identifying candidate causal gene(s) 
for serum cortisol levels
To refine the critical region identified by the LALD analyses, a further fine-mapping approach 
based on the FINEMAP program was conducted [40]. The FINEMAP program uses a shotgun 
stochastic search algorithm that incorporates summary statistics (i.e., Z-score) from GWAS and 
the LD correlation structure calculated from the SNP markers in the region of interest to calculate 
the posterior probability of each SNP marker being a candidate causal variant. A threshold of 5% 
for the posterior probability was applied to select markers associated with candidate causal variants 
from the FINEMAP analyses [41]. A regional association plot with LD information was drawn 
using IntAssoPlot (https://github.com/whweve/IntAssoPlot).

Positional candidate gene analyses
A list of genes annotated within the QTL region was extracted from the NCBI database release 
85 based on Sus scrofa 11.1 assembly (NCBI accession ID: NC_010454.4). A list of genes in 
each QTL region was obtained from the NCBI database. A comparative analysis with previously 
reported QTL locations for the trait was conducted using the Animal QTLdb [19]. The candidate 
causal variants identified using the FINEMAP program were annotated using the ENSEMBL pig 
genome database (https://asia.ensembl.org/). 

RESULTS AND DISCUSSION
Descriptive summary statistics and estimated heritability of the serum cortisol trait in the DK F2 
pigs are presented in Table 1. The mean value and range of serum cortisol levels were 21.18 ng/
mL and 61.6 ng/mL (2.30–63.90 ng/mL) in the F2 population. The estimate of heritability for 
the cortisol traits was 0.32, indicating that a considerable contribution of genetic effects to the 
phenotypic variation in the trait of interests is considerable. A total of 23,129,957 genetic variants 
were imputed using Beagle and Minimac4. The average imputation accuracy (r²) for the entire set 
of genetic variants was 0.67. A total of 7,587,919 variants had an imputation accuracy below the 
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threshold of 0.6 (r²). After filtering out these low-accuracy variants, the final average imputation 
accuracy (r²) increased to 0.968 (Table 2). After an additional QC filtering step with PLINK for 
MAF and Hardy-Weinberg equilibrium deviations, a total of 13,720,525 DNA markers remained 
for subsequent analyses.

Genome-wide association studies
To investigate the genetic structure underlying the cortisol trait in pigs, we used an F2 intercross 
between the Duroc and KNP pigs. Using this F2 intercross population, we detected a single 
genome-wide significant QTL (q-value<0.05), comprising 34 DNA markers with extremely 
tight LD among these markers. The QTL spans a ~2.46 Mb region between 7:114031215 and 
rs326739326 (7:116497417), for serum cortisol levels on SSC7 (Fig. 1). However, a single most 
significant DNA marker associated with the phenotype of interest was not detected (Table 3). This 
significant QTL accounted for 12.65% of the phenotypic variance of the serum cortisol levels in 
the pig population (Table 3).

Table 1. Basic statistics for the phenotypic data in the DK F2 pigs
Phenotype Total N *N1) Mean StDev Min Max h2

Cortisol (ng/mL) 243 234 9 21.18 12.46 2.30 63.90 0.32
1)*Number of individuals with missing phenotypes.

StDev, Standard deviation;  h2, heritability.

Table 2. Evaluation of the genotype imputation accuracy
Chromosome Total variants1) Mean r2 Pass Pass mean r2

1 2,144,560 0.629 1,357,945 0.963
2 1,478,956 0.653 974,485 0.962

3 1,393,829 0.591 832,824 0.960

4 1,366,608 0.701 967,277 0.971

5 1,098,829 0.656 728,091 0.965

6 1,566,762 0.652 1,033,019 0.965

7 1,323,022 0.669 893,604 0.966

8 1,515,476 0.719 1,100,848 0.970

9 1,578,875 0.607 965,412 0.968

10 1,004,923 0.725 735,704 0.971

11 978,320 0.667 658,497 0.971

12 755,615 0.636 484,594 0.968

13 1,781,238 0.706 1,268,266 0.971

14 1,358,977 0.674 922,556 0.968

15 1,263,992 0.663 844,095 0.970

16 1,034,235 0.712 743,793 0.969

17 805,850 0.653 530,034 0.968

18 679,890 0.731 500,994 0.969

Total 23,129,957 0.669 15,542,038 0.968
1)Total_variants, total number of imputed and genotyped variants per chromosome; Mean r2, average r² of all SNPs; Pass, num-
ber of variants with r² > 0.6; Pass mean r2, average r² of variants after filtering out genotypes with r² < 0.6.
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Linkage and linkage disequilibrium mapping analysis
We performed integrated LALD mapping to reduce the CI of the QTL using the 899 markers 
(from the Porcine SNP 60K BeadChip genotype data) located across the SSC7. The 1-LOD drop 
method was used to estimate the CI of the QTL in SSC7 (Fig. 2A). The CI was reduced to 2.39 
Mb (7:114,409,266–116,803,751). This region overlaps with a previously reported QTL region 
that influences pig blood cortisol levels [42–46]. The 2.39 Mb region in SSC7 encompassed 24 
annotated genes with 14,337 DNA markers in the Sus scrofa 11.1 genome and imputed genotype 
dataset (Figs. 2B and 2C). 

Further Bayesian fine-mapping for identifying novel positional candidate gene(s) 
for serum cortisol levels
To further refine the critical region harbouring causative genes, we conducted fine-mapping of the 
2.39 Mb region identified by the LALD analysis using the FINEMAP program. To enhance the 
fine-mapping accuracy for identifying putative causal genes, we first selected DNA markers located 
within the 24 positional candidate genes in the critical region based on the GWAS results. For each 
positional candidate gene, we retained only the DNA marker with the lowest p-value. Subsequently, 
we manually chose 297 DNA markers evenly distributed across the 2.39 Mb region. We then 
pruned these DNA markers using the LD pruning option in the PLINK program, resulting in 17 
DNA markers evenly distributed throughout the 2.39 Mb critical region. Hence, a total of 41 DNA 
markers were included in the Bayesian fine-mapping analysis. No single DNA marker showed a 
substantial posterior probability (greater than 0.5) in the critical region (Table 4). DNA markers 
demonstrated low to medium levels of posterior probability, ranging from 0.066 to 0.116. This was 
most likely due to the modest sample size (N = 243) of the F2 cohort. Nevertheless, our Bayesian 
fine-mapping approach allowed us to prioritize potential causal genes. While we acknowledge the 
limitations of our study, including the moderate sample size and the inability to pinpoint specific 

Fig. 1. Whole-genome imputed sequence association analysis for serum cortisol levels in the DK cross. The red horizontal line represents the genome-
wide significant threshold (p = 4.78E-06) A. Manhattan plot B. QQ plot (Genomic inflation factor = 1.032) 

Table 3. Summary of the QTL affecting serum cortisol identified by the GWAS  
SSC Nsnp

1) Interval (Mb) Centered SNP Effect SE %var p-value q-value
7 34 115575190-115584273 7:115580597 0.3216 0.0643 12.65 1.13E-06 0.0398

1)Nsnp, number of SNPs included in interval; Interval (Mb), range of Nsnp; %var, percentage of phenotypic variance explained by the centered SNPs; q-value, FDR-based q-value.
QTLs, quantitative trait loci; GWAS, genome-wide association studies; SSC, Sus scrofa chromosome; SNP, single nucleotide polymorphism; FDR, false discovery rate.
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causal variants, the fine-mapping approach has enabled us to create a prioritized list of potential 
causal candidate genes. This list provides valuable direction for subsequent studies, demonstrating 
the usefulness of fine-mapping even in situations where definitive causal variant identification is not 
achieved. For example, the most significant QTL region, explained by 34 variants in Table 3, spans 
only 9,083 bp. This narrow region contains just two genes: SERPINA6 and SERPINA1. Based 
solely on the p-values obtained from the conventional GWAS, it would be challenging to determine 
which of these genes should be prioritized for further investigation. However, as shown in Table 4, 
the posterior probabilities derived from our fine-mapping analysis allow us to distinguish between 
SERPINA6 and SERPINA1, providing a basis for prioritization. Recently, Uemoto et al. reported 
results of GWAS and LALD analysis on Landrace pigs [22]. While our study shares similarities 
with their study, employing both GWAS and LALD approaches, major differences underscore the 
novelty of our work. We used whole-genome imputed sequence variants instead of a conventional 

Fig. 2. Fine-mapping analysis of QTL for serum cortisol levels on SSC7. (A) LALD analyses, (B) Positional 
candidate genes in the 1-LOD interval (2.39 Mb) region. (C) IntAssoPlot for the 1-LOD interval (2.39 Mb) region. 
QTLs, quantitative trait loci; LALD, linkage and linkage disequilibrium; LOD, logarithm of odds. 
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60K SNP chip, providing comprehensive genomic coverage including rare and novel variants. In 
addition, we applied Bayesian fine-mapping to prioritize potential causal candidate genes, rather 
than presenting a conventional list of positional candidates. This approach allowed for more precise 
localization and prioritization of potential causal genes and variants.

In this critical region, SERPINA6, a gene encoding CBG, has been proposed as a putative causal 
gene accounting for this QTL effect [34]. A p.Arg307Gly (c.919T>C) substitution in SERPINA6 
was previously shown to increase CBG capacity and decrease CBG affinity for cortisol in vitro 
[47,48]. These findings suggest that SERPINA6 is a positional and functional candidate gene for 
the QTL associated with blood cortisol levels in pigs. However, the fine-mapping results based 
on posterior probability ranked the top five genes as SERPINA1, ITPK1, CLMN, SERPINA12, 
and PRIMA1 genes, all with higher posterior probability than SERPINA6 (Table 4). In this study, 
we could not evaluate the p.Arg307Gly (c.919T>C) substitution in SERPINA6 because the 
corresponding variant at position 7:115541678 was not present among the 14,337 DNA markers 
initially considered for the fine-mapping. 

SERPINA1, which encodes alpha-1 antitrypsin, inhibits neutrophil elastase and regulates cortisol 
secretion by influencing CBG cleavage and subsequent reconfiguration of the reactive center loop 
[49]. Heterozygosity of SERPINA1 mutations leads to alpha-1 antitrypsin deficiency and CBG 
cleavage, thereby increasing the free cortisol fraction [50]. Intracellular inositol triphosphate (IP3) 
is involved in various signal transduction pathways that affect cellular metabolisms [51]. Increased 
IP3 levels can trigger cortisol secretion by the adrenal zona fasciculate cells [52]. IP3 is produced 
by PIP2 hydrolysis, and ITPK1 synthesizes IP4, IP5, and IP6. Hence, ITPK1 polymorphisms could 
potentially affect inositol metabolism, which may be associated with cortisol secretion via the 
inositol pathways. CLMN, which encodes a calponin-like transmembrane domain protein, regulates 
cell cycle exit and neurite outgrowth in murine neuroblastoma cells. Genetic variants of CLMN 
may influence synaptic function and organization, resulting in the HPA axis [53,54]. SERPINA12, 
also known as VASPIN, is an adipokine belonging to the serpin protein family. Cortisol plays an 
important role in adipose tissue by influencing adipokine expression, insulin sensitivity, and fatty 
acid metabolism [55]. PRIMA1 encodes Proline-Rich Membrane Anchor 1 protein, which is 
required for anchoring of acetylcholinesterase to neuronal synapses. Acetylcholin, a product of 

Table 4. Positional candidate genes and posterior probabilities for significant variants in SSC7 Bayesian fine-mapping approach
Marker1) Position Effect SE 2%var p-value q-value Gene Annotation P.P

7:115583990 115583990 0.322 0.064 0.127 1.13E-06 0.040 SERPINA1 3′ UTR variant 0.116

7:114409265 114409265 -0.289 0.061 0.103 4.02E-06 0.047 ITPK1 Intron variant 0.094

7:116490750 116490750 -0.299 0.061 0.111 1.92E-06 0.040 CLMN Intron variant 0.091

7:115727874 115727874 0.307 0.064 0.115 3.07E-06 0.040 SERPINA12 Intron variant 0.084

7:115045439 115045439 -0.298 0.062 0.110 2.33E-06 0.040 PRIMA1 Intron variant 0.083

7:115802806 115802806 -0.302 0.061 0.113 1.55E-06 0.040 SERPINA5 Intron variant 0.077

7:115792190 115792190 -0.302 0.061 0.113 1.55E-06 0.040 SERPINA4 3′ UTR variant 0.077

7:115342222 115342222 0.300 0.064 0.110 4.49E-06 0.048 DDX24 Intron variant 0.075

7:115280790 115280790 0.300 0.064 0.110 4.49E-06 0.048 CCDC197 5′ UTR variant 0.075

7:115023328 115023328 -0.294 0.061 0.107 2.72E-06 0.040 UNC79 Intron variant 0.074

7:115667344 115667344 -0.298 0.061 0.110 1.82E-06 0.040 SERPINA11 Intron variant 0.074

7:115554168 115554168 -0.298 0.061 0.110 1.82E-06 0.040 SERPINA6 Open chromatin 0.073

7:115314601 115314601 -0.292 0.061 0.106 2.61E-06 0.040 OTUB2 Intron variant 0.066
1)Marker, Marker ID; 2%var, percentage of phenotypic variance explained by the marker; q-value, FDR based q-value; Gene, positional candidate gene; Annotation, ENSEMBL 
variant annotation; P.P, posterior probability of the marker to be causal.
FDR, false discovery rate.
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acetylcholinesterase, is released in response to stress, and activates the HPA axis, which is linked to 
cortisol production [56]. However, there is still a paucity of direct genetic evidence on the effects of 
CLMN and PRIMA1 on blood cortisol levels.

CONCLUSION
The intensification of housing environments and the impact of climate change on current 
production systems have negatively impacted the breeding and growth of pigs. The cortisol level is 
an important indicator of stress resistance and robustness in pigs. This hormone levels in pigs could 
indicate environmental stress, potentially intensified by climate change. Rising temperatures and 
erratic weather patterns increase heat stress, alter food and water availability, and expose livestock 
to new pathogens, elevating cortisol and affecting animal health and productivity. Studying cortisol 
levels in pig populations like the KNP and its crossbreeds can provide insights into their adaptation 
to changing environments [57]. To elucidate the molecular genetic basis of breeding robustness, 
we identified QTLs affecting basal serum cortisol levels using imputed whole-genome sequencing 
data-based GWAS, LALD analysis, and Bayesian fine-mapping approaches. This study identified 
novel positional candidate genes (SERPINA1, ITPK1, CLMN, SERPINA12, and PRIMA1) in 
addition to the previously known SERPINA6. Our results provide a basic understanding for the 
development of genetic markers to improve the robustness of pigs.
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