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Abstract
Previous research reported an essential oil (EO) product decreasing methane (CH4) 
production by dual-flow continuous culture (DFCC); this product could assist organic dairy 
producers in decreasing emissions. Our objective was to assess the effect of this EO 
product on the microbial populations within DFCC. Here, we hypothesized that the EO 
either decreased protozoal population or induced shifts in the bacterial relative abundance 
to decrease CH4 production. Metagenomic DNA was extracted from previous effluent 
samples taken from a DFCC system (n = 2) across four experimental periods, after which 
samples were sequenced the 16S rRNA gene and microbial taxonomy was assigned 
using the SILVA v138 database. The treatments included a control (CON) diet (60:40 
concentrate:orchardgrass pellet mix, 17.1% crude protein, 33.0% neutral detergent fiber, 
20.1% acid detergent fiber, and 27.1% starch) fed twice daily for a total of 80 g/d dry matter, 
or the same CON diet with the addition of EO at 3 mg/d. Protozoa were also quantified in 
both fermenter contents and unpooled daily effluent samples. The statistical model included 
fixed effects of treatment and fermenter, and random effect of period, using either MaAsLin2 
or the adonis2 function in the vegan package of R for microbial features, or SAS mixed 
model for protozoal counts. The results were deemed significant at Q < 0.05 and p < 0.05 
for the MaAsLin2 and adonis2/SAS analyses, respectively. For the protozoal populations, 
the treatments had no significant effect (p > 0.10) on the total counts, differentiated groups, 
or cell outflow. The addition of EO increased the relative abundance of Methanobrevibacter 
and decreased that of uncultured Methanomethylophilaceae (Q < 0.05). In contrast, EO 
addition had no significant effect on archaeal α- or β-diversity (p > 0.05). Despite not having 
a significant effect on the β-diversity of archaeal and bacterial communities, EO decreased 
(p < 0.05) α-diversity indices in prokaryotic communities. Moreover, EO decreased (Q 
< 0.01) the relative abundance of Clostridia UCG-014, Rikenellaceae RC9 gut group, 
and Christenellaceae R7 group, and increased (Q < 0.01) others including Treponema, 
Succinivibrionaceae UCG-002, and Ruminococcus. Offsetting shifts in the relative 
abundance of fiber-degrading bacteria and detailed methanogen communities deserves 
further investigation including predicted metabolic pathways impacted by population shifts 
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INTRODUCTION
Methane (CH4) emissions from dairy cattle pose a significant environmental challenge, notably 
contributing to the global greenhouse gas footprint of agricultural activities. Therefore, effectively 
mitigating CH4  in dairy production is crucial to meet global environmental targets, such as those 
outlined in the Global Methane Pledge [1]. In this context, dietary interventions have recently 
garnered increasing attention as a promising approach to reduce enteric CH4 emissions from 
ruminants. 

Among these interventions, the use of essential oil-based additives, such as Agolin® Ruminant 
(AR, Agolin SA), has gained attention for its potential to modify rumen fermentation and decrease 
CH4 output. Agolin® Ruminant is an essential oil (EO) product containing a blend of coriander 
seed oil, eugenol, geranyl acetate, and geraniol [2] geared towards reducing CH4 emissions in cattle 
and some agencies have issued carbon credits to producers utilizing the product. This product is also 
available in an organic certified carrier for use in organic farms. The EOs in this product presumably 
disrupt the phospholipid membrane of archaea, leading to a decrease in CH4 production and an 
increase in the cow’s nutrient utilization efficiency [3]. Previous studies have employed both in 
vitro and in vivo experiments, revealing the additive’s capacity to alter rumen fermentation patterns 
and reduce CH4 production [2,4]. For example, studies have highlighted the efficacy of EO in 
lowering CH4 emissions in dairy cattle [5], coinciding with improvements in milk production and 
components in response to EO supplementation [6]. However, the effects of EO on the rumen 
microbiome and their association with CH4 mitigation remain largely unexplored. 

One of the main concerns regarding the administration of AR (as well as other EO-based 
products) is whether it also disrupts the rumen fibrolytics when fed to cattle, as very few studies 
have characterized the changes in the microbiome in response to Agolin® Ruminant [7]. In a recent 
study, AR fed in dual-flow continuous culture (DFCC) decreased CH4 production by 10% in less 
than two weeks of adaptation [8] but did not decrease fiber digestibility nor did it significantly alter 
volatile fatty acid production, prompting researchers to investigate which rumen microbes might be 
impacted by AR to both explain the mechanisms underlying decreased CH4 emission and gauge 
potential drawbacks.

To address this gap, our study employed samples from the previous DFCC study coupled with 
advanced microbiome analysis to investigate the effects of EO on rumen microbial populations 
and CH4 emissions in dairy cattle. This approach allows for a controlled simulation of the rumen 
environment, providing detailed insights into the microbial dynamics within the rumen and their 
relation to CH4 production [9].

This study aimed to determine the microbial factors associated with CH4 inhibition by EO using 
a DFCC system. We hypothesized that EO either decreased the protozoal population or induced 
shifts in the archaeal or bacterial abundance to decrease CH4 production. This study contributes 
to the evolving field of enteric CH4 mitigation in dairy cattle, offering valuable insights for the 

development of sustainable and effective dietary strategies in the dairy industry. 

MATERIALS AND METHODS
DFCC treatments
The DFCC system utilized for this study implements updated approaches previously characterized 

assistance in the lab.
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[9]. Effluent samples used for DNA extraction and protozoal enumeration came from a previous 
study [6] evaluating the efficacy of several organic-certified CH4 inhibitors. Briefly, DFCC (n = 
4) were inoculated from two Jersey cows housed at the Waterman Dairy Farm (The Ohio State 
University, Columbus, OH) under care according to the Institutional Animal Care and Use 
Committee protocol #2013A00000073. These cows were fed a lactating diet common to the herd at 
the time [10] including 39% corn silage, 9.9% wet brewer’s grains, 7.7% soybean meal, 4.6% bypass 
soy, 0.9% bypass fat, 0.9% molasses, and 3.4% vitamin mineral premix (without monensin or other 
feed additives). A Latin square treatment arrangement was applied to evaluate four treatments 
which are detailed previously. Of these, only two were considered for the current study due to a 
lack of efficacy previously reported for the other two treatments. The control (CON) diet was fed 
twice daily a total of 80 g/d dry matter (DM) diet (60:40 concentrate:orchardgrass pellet mix, 
17.1% crude protein [CP], 33.0% neutral detergent fiber [NDF], 0.1% acid detergent fiber [ADF], 
and 27.1% starch; Table 1) and one fed CON diet with 3 mg/d dose of supplemental organically-
certified EO (Agolin® Naturu, Agolin SA). Fermenter effluent samples (d8-11) were subsampled 
and stored at −80℃ for metagenomic DNA extraction. Additionally, fermenter samples (d5) and 
effluent samples (d8-11) were fixed in formalin and stored for enumeration based on the procedure 
outlined in Dehority, 1984 [11]. The outflow of cells in effluent was contrasted to the fermenter 
contents populations to estimate generation time for protozoa, and protozoa were divided into 
the following types: Charonina (based on previous reports of high enrichment in DFCC [12]), 
Isotrichidae, Diplodinium, and other entodinia – either small (< 100 µm in length) or large (> 100 
µm in length).

Metagenomic DNA extraction and metataxonomic analysis of the rumen bacteri-
ome and archaeome
Metagenomic DNA from the effluent samples was extracted using the repeated bead beating plus 
column method [13] and purified with Qiagen mini-stool kits from Thermo Fisher Scientific. 
The researchers conducting the extractions were blinded to treatment during the DNA extraction 
and subsequent taxonomy classification. The quality and quantity of DNA were assessed using 
a NanoDrop ND-2000 spectrophotometer (Thermo Scientific, NanoDrop Technologies) and 
further evaluated through 1% agarose gel electrophoresis. Amplicon libraries, targeting the V4 
hypervariable region of the 16S rRNA gene were generated using the 515F and 806R universal 
primer pair [14] and each library was uniquely barcoded for multiplexing at The Ohio State 
University’s Molecular and Cellular Imaging Center (Wooster, OH). The libraries were then pooled 
and sequenced using an Illumina MiSeq sequencer (2 × 300 bp paired-end sequencing). Quality 

Table 1. Control diet (CON) fed to dual-flow continuous cultures at 80 g/day, twice daily, (60:40 
concentrate:orchardgrass pellet mix), with or without 3 mg/d EO1)

Nutrient Diet composition
Dry matter (g/d) 80.0

Crude protein 17.1%

Starch 27.1%

Water soluble carbohydrates 8.4%

Neutral detergent fiber 33.0%

Acid detergent fiber 20.1%

Fat 2.2%

Ash 9.2%
1)CON, 80 g/d of control diet; EO, CON diet + 3 mg/d blended essential oil product.
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control measures, including denoising, merging, and chimera removal, were performed using 
QIIME2 version 2022.2 [15], following an approach similar to that described previously [16].

In this analysis, the final number of quality amplicon sequencing variants (ASVs) was 3,662,173 
(3,653,369 bacterial ASVs and 8,804 archaeal ASVs) and they were classified taxonomically 
based on a 99% similarity . This classification was conducted using the weighted Silva 16S pre-
trained classifier (NR 138 version; [17–19]) to enhance classification accuracy. Only phyla, families, 
and genera with a relative ASV abundance ≥ –0.5% in at least one treatment were included in 
the analysis. ASV BIOM tables for archaea and bacteria were separated prior to downstream 
analysis. Alpha diversity indices such as richness, Chao1, Shannon’s index, Pielou’s evenness, 
Good’s coverage, and Faith’s phylogenetic diversity were derived from the average rarefied ASV 
table (repeated 100 times, referenced in [20]). The microbial metabolic functions were predicted 
using PICRUSt2 [21] utilizing 16S ASVs. Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways were reconstructed from these predictions, representing microbial metabolic functions 
based on KEGG ortholog profiles derived from PICRUSt2.

Statistical analysis
Statistical assessment of the microbial relative abundance data was carried out using MaAsLin2 
[22] to examine the impact of EO. This analysis involved centered log-ratio normalization and a 
linear model without data transformation. The statistical model encompassed the fixed effects of 
both the treatment and fermenter, along with the random effect of the period. The mixed model 
was implemented using either MaAsLin2 or SAS 9.4 (SAS Institute), particularly for analyzing 
effluent protozoal counts. Alpha diversity metrics and effluent protozoal counts were examined 
using the SAS mixed model. A significance threshold of Q < 0.05 (Benjamini-Hochberg FDR-
corrected P-values) was set for MaAsLin2 analyses, and a p < 0.05 was used for SAS analyses. Bray-
Curtis and Jaccard distance matrices were compared to evaluate the overall microbial community 
differences resulting from EO. This was done using the adonis2 function within the ‘vegan’ package 
(version 2.5–7) of R [23]. The same statistical models were applied to conduct these comparisons. 
Additionally, PCA results were graphically represented through plots created using the ‘ggfortify’ 
package in R (version 3.5.3) [24].

RESULTS
Protozoal populations were primarily entodiniomorphids (74%, Table 2) – mostly shorter in length 
than 100 µm – while another 16% of the protozoal population was Charonina spp. Both protozoal 
populations within fermenters and daily flow of protozoa in effluent were unchanged by treatment, 
as was generation time (p > 0.10). In the control treatment, no members of Isotrichidae were 
detected in effluent samples despite being identified in fermenter populations.

Fig. 1 provides a comprehensive overview of the primary bacterial communities identified in the 
effluent samples at the phylum level. Our analyses revealed five major phyla – each representing 
more than 0.5% of the average relative abundance in either the control or treatment groups 
– accounting for 98.4% of the relative abundance of the detected ASVs. These phyla include 
Bacteroidota (45.6%), Firmicutes (27.6%), Proteobacteria (19.7%), Spirochaetota (3.5%), and 
Patescibacteria (1.9%) (Fig. 1A). At the genus level, 34 major bacterial genera accounted for 90.3% 
of the total bacterial population, as shown in Fig. 1B. 

In terms of archaeal communities, all ASVs were classified into two families: Methanobacteriaceae 
(97.2%) and Methanomethylophilaceae (2.8%), with only three genera detected 
(Methanobrevibacter, Methanosphaera, and uncultured genus within the Methanomethylophilaceae 
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Table 2. Counts of protozoal populations, calculated daily effluent flow, and generation time for dual-
flow continuous culture fermenters fed either a control diet or a control diet with 3 mg/d supplemental 
EO
  CON1) EO SEM p-value2)

Fermenter populations [cells (× 103)/mL] 24.5 21.1 5.12 0.17

Small entodinia 18.2 16.0 3.84 0.18

Large entodinia 0.200 0.200 0.108 0.80

Diplodinium 1.40 1.60 0.568 0.76

Isotrichid 0.800 0.700 0.367 0.58

Charonina 3.90 2.60 1.40 0.13

Daily flow [cells (× 107)/d] 36 33.9 0.360 0.55 

Small entodinia 30.4 31.0 2.78 0.83

Large entodinia 0.00736 0.00723 0.00806 0.99

Diplodinium 0.244 0.331 0.0994 0.33

Isotrichid - 0.00737 0.00534 0.27

Charonina 0.098 0.148 0.0419 0.41

Generation time3) (h) 42.9 30.8 14.6 0.51
1)CON, 80 g/d of control diet; EO, CON diet + 3 mg/d blended essential oil product. 
2)p-values reported for the main effect of EO versus CON.
3)Generation time = total pool size of cells (i.e., fermenter counts × fermenter volume / effluent flow of cells/d × 24 h.

Fi. 1. Relative abundance of the major bacterial phyla (A) and genera (B) (only phyla and genera with a relative abundance of ≥ 0.5% in at least one 
treatment are shown).
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family). Notably, all major bacterial and archaeal taxa were identified in both the control and EO 
treated groups.

This study also investigated the impact of EO on the diversity of the prokaryotic microbiome, 
revealing a significant reduction in all alpha-diversity indices – including species richness, evenness, 
phylogenetic diversity, and comprehensive indices (Shannon’s index and Simpson’s index) – across 
both the bacteriota and archaeota (Table 3). Despite these changes, the overall composition of 
the prokaryotic microbiome, as assessed by Bray-Curtis and Jaccard distance matrices, remained 
unaffected by EO treatment (p > 0.1; Fig. 2).

Comparative analysis between the control and EO-treated groups at the phylum level revealed 
differential abundances in Proteobacteria, Spirochaetota, and Patescibacteria (Table 4). At the genus 
level, eight bacterial genera (Clostridia UCG-014, Christensenellaceae R-7 group, unclassified 
genus within Bacteroidales, Bacilli RF39, Prevotellaceae UCG-001, Rikenellaceae RC9 gut group, 
and Candidatus Saccharimonas) exhibited a positive association with the control group, whereas 
four genera (Ruminococcus, Treponema, Butyrivibrio, and Succinivibrionaceae UCG-002) were 
more closely associated with the EO treatment (Table 4). Moreover, among the archaeal genera, 
Methanobrevibacter and an uncultured Methanomethylophilaceae genus exhibited positive and 
negative associations with EO treatment, respectively (Fig. 3).

An examination of the major KEGG pathways predicted from the bacterial communities 
revealed differential abundances in 26 pathways between the control and treatment groups as 
shown in Table 5. Similarly, for the archaeal microbiome, differential abundances were observed in 
seven and eight major KEGG pathways between the control and EO treatment groups (Table 6).

DISCUSSION 
Prior research indicated that EO did not significantly alter fermentation characteristics, such 
as VFA profiles, various nutrient digestibility estimates, and ammonia concentration in effluent 
samples from this DFCC experiment but there was a 10% decrease in CH4 for this study [25], 
aligning with the findings of a meta-analysis of the effects of AR treatment [2]. Our findings also 
demonstrated that EO had no impact on protozoal populations, including the specific genera 
identified in the present study. This is particularly noteworthy, as protozoal inhibition has been 
suggested as a potential mechanism for EO-induced CH4 mitigation by targeting hydrogen 
producers and the protozoa-associated methanogen community [26–30]. However, previous 

Table 3. Changes in the alpha-diversity indices of bacteriota and archaeota in response to EO treatment1)

Group Observed ASVs Chao1 estimates Pielou’s evenness Faith’s phylogenetic diversity Shannon’s index Simpson’s index
Archaea

CON2) 3.75 3.75 0.788 0.437 1.505 0.572

EO 3.25 3.25 0.619 0.374 1.226 0.471

SEM 0.979 0.979 0.217 0.083 0.504 0.184

p-value 0.0008 0.0008 < 0.0001 0.0005 0.0006 < 0.0001

Bacteria

CON 1,109 1,157 0.773 52.005 7.815 0.972

EO 1,066 1,125 0.728 51.179 7.317 0.953

SEM 104.479 120.563 0.033 2.801 0.408 0.016

p-value 0.0013 0.0023 < 0.0001 < 0.0001 0.0003 < 0.0001
1)Good’s coverage was at least over 99.4% for all samples.
2)CON, control diet; EO, essential oil fed at 3 mg/d.
ASV, amplicon sequencing variant.
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Table 4. Maaslin21) analysis of the bacterial phyla, families, and genera associated with EO treatment

Associated categorical feature Coefficient
Relative abundance (%)

SEM p-value Q-value
CON2) EO

Bacterial phylum

Patescibacteria CON 0.200 2.197 1.554 0.388 < 0.0001 < 0.0001

Proteobacteria EO 0.241 17.027 22.415 2.891 < 0.0001 < 0.0001

Spirochaetota EO 0.085 3.324 3.770 0.435 < 0.0001 < 0.0001

Bacterial genus

Clostridia UCG-014 CON 0.225 2.347 1.525 0.249 < 0.0001 < 0.0001

Christensenellaceae R-7 group CON 0.106 1.240 0.921 0.125 < 0.0001 < 0.0001

Bacteroidales UG CON 0.033 1.266 1.115 0.094 < 0.0001 < 0.0001

RF39 CON 0.089 0.668 0.470 0.059 < 0.0001 < 0.0001

Prevotellaceae UCG-001 CON 0.022 0.970 0.847 0.080 < 0.0001 0.001

Rikenellaceae RC9 gut group CON 0.155 7.098 5.683 0.689 < 0.0001 < 0.0001

Candidatus Saccharimonas CON 0.144 1.823 1.316 0.310 < 0.0001 < 0.0001

Pseudobutyrivibrio CON 0.071 1.023 0.812 0.119 < 0.0001 < 0.0001

Treponema EO 0.191 2.602 3.263 0.416 < 0.0001 < 0.0001

Ruminococcaceae UG EO 0.032 0.902 0.884 0.082 < 0.0001 < 0.0001

Butyrivibrio EO 0.097 2.140 2.326 0.128 < 0.0001 < 0.0001

Succinivibrionaceae UCG-002 EO 0.155 10.019 12.383 2.405 < 0.0001 < 0.0001
1)Only the major bacterial phyla and genera, representing at least ≥ 0.5% of the average relative abundance of at least one of the treatment groups that were significantly different 
(Q ≤ 0.05) are shown.
2)CON, control diet; EO, essential oil fed at 3 mg/d.
UCG, uncultured genus-level group; UG, unclassified genus (highest classified taxon level was presented).

Fig. 2. Principle component analysis plots of the archaeal and bacterial microbiome. The grey dots and ellipse represent the CON group fed 80 g/d dry 
matter of a control diet and the green dots and ellipse represent the EO group fed the CON diet supplemented with 3 mg/d essential oil. The overall archaeal 
and bacterial microbiome was not affected by EO (p > 0.10). ASV, amplicon sequencing variant; EO, essential oil; KEGG, Kyoto Encyclopedia of Genes and 
Genomes. 
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studies on various EOs have not consistently demonstrated this effect [31], highlighting the need 
for further research to elucidate the potential mechanisms through which EOs influence CH4 
production under different ruminal conditions. Further, DFCC systems modified for protozoal 
retention tend to harbor fewer protozoa – a drawback which has been documented in previous 
work [12] and the specific effect of EO on protozoa is recommended for further investigation in 
other in vitro models.

In the current study, analyses using Bray-Curtis and Jaccard matrices revealed that the overall 
archaeal and bacterial microbiome remained unaffected by EO treatment, aligning with results 
from previous studies on EO treatments both in vitro and in vivo [32–34]. Despite minor microbial 
shifts, the overall microbiome exhibited relative stability.

EO treatment decreased the alpha diversity of the archaeota and bacteriota, which was consistent 
with findings from an in vivo study on lactating dairy cows [7]. This reduction in prokaryotic 
diversity could be linked to more efficient feed utilization and decreased CH4 emissions [35]. 
Previous EO treatments have been reported to inhibit methanogens and decrease CH4 production 
[31,36–38], suggesting that the observed lower methanogenic diversity and abundance of 
methylotrophic methanogen might result from the direct inhibitory effects of EOs. However, 
further research, particularly involving AR treatment, is needed to validate these suggestions.

Carbohydrate-fermenting Clostridia such as Clostridia UCG-014 and Christensenellaceae 
R-7 group, which accounted for a significant portion of ruminal hydrogenase transcripts in a 
previous study [39], play a key role in hydrogen production. Therefore, reducing the abundance of 
these primary hydrogen producers could decrease CH4 production. The differential distribution of 
two butyrivibrios might affect fermentation characteristics, especially butyrate production, due to 
their similar phenotypic characteristics but distinct phylogenetic classification [40]. Propionate-
producing bacteria such as Succinivibrionaceae UCG-002, commonly found in the CH4-inhibited 
conditions in the rumen of dairy cattle [41,42], were prevalent in the EO treatment, supporting 
previous observations of numerically increased propionate levels with EO treatment [25]. The 

Fig. 3. Differentially abundance of archaeal genera in response to EO treatment. EO, essential oil. 
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abundance of Spirochaetes, specifically Treponema spp., was significantly higher in the EO 
treatment, and also exhibited greater abundance in EO-treated lactating dairy cows [7]. However, 
the metabolic versatility of Treponema spp. makes it difficult to pinpoint the exact reason for their 
increased abundance in response to EO treatment [43].

The inhibition of CH4 production could stimulate anabolic processes requiring metabolic 
hydrogen, such as fatty acid synthesis [44]. Although we did not observe significant changes in 
metabolic hydrogen concentrations previously for this study [24], shifts in microbial pathways 
related to these fermentation end-products are anticipated following EO treatment.

Among the KEGG pathways related to CH4 metabolism (ko00680), the control group exhibited 
significant differences in the relative abundance of pathways involved in the pentose phosphate 
pathway, glycine, serine and threonine metabolism, glyoxylate and dicarboxylate metabolism, and 
carbon fixation pathways in prokaryotes, whereas EO treatment stimulated pathways related to the 
metabolism of cofactors and vitamins including riboflavin metabolism and folate biosynthesis. 

Acetogens require folate to produce acetate and ATP by reducing two molecules of carbon 
dioxide through the Wood-Ljungdahl pathway [45,46]. Therefore, although we did not detect 
significant changes in acetogen growth, our findings suggest that there was a shift in their growth 
patterns, especially under conditions that inhibited CH4 production. The stimulation of riboflavin 
metabolism, associated with the biosynthesis of coenzyme F420 [47], could potentially counteract 
EO-mediated methanogenesis inhibition. However, this function and other vitamin B complex 
metabolic functions were also more prevalent in the rumen microbiome of cows exhibiting high 
milk yield and milk protein content [48]. Additionally, archaeal metabolic pathways enriched 
in response to EO administration, such as the biosynthesis of secondary bile acids and ABC 
transporters, were found to be negatively correlated with CH4 emissions [49], suggesting that they 
play a key role in modulating the microenvironment and facilitating host-microbiome interactions 
[50–52].

Collectively, our findings suggest that the lack of substantial effects of EO on fermentation and 
digestion parameters measured parallel to the current study [24] might be due to the absence of a 
direct inhibitory effect of EO on methanogens. Offsetting shifts in the relative abundance of fiber-
degrading bacteria and detailed methanogen communities deserve further investigation including 
predicted metabolic pathways impacted by population changes. It appears that EO moderates CH4 
production primarily by modulating the ruminal prokaryotic microbiome.
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