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Abstract

Porcine epidemic diarrhea virus (PEDV) is a highly pathogenic virus that causes severe
gastrointestinal disease in neonatal piglets, often leading to high mortality. To better
understand PEDV pathogenesis, we developed porcine intestinal apical-out organoids
derived from the duodenum, jejunum, and ileum that support viral replication and enable long-
term experimental manipulation. In this study, we investigated the region-specific responses
of these organoids to PEDV infection, focusing on regional characteristics, gene expression,
and susceptibility to infection. PEDV replicated efficiently in the apical-out organoids, with
significantly higher viral loads in jejunal and ileal organoids than duodenal organoids,
indicating region-specific susceptibility. Bulk RNA sequencing and a differential gene
expression analysis revealed unique transcriptomic responses across regions. The jejunal
and ileal organoids exhibited stronger activation of pathways related to cellular processes,
immune regulation, and antiviral defense than the duodenal organoids. Notably, viral entry
receptor genes such as ANPEP, ACE2, and DPP4 were expressed at higher levels in jejunal
and ileal organoids under uninfected conditions, suggesting an innate predisposition for viral
entry in these regions. Further analysis identified key upregulated genes involved in immune
modulation, inflammation regulation, and tissue integrity, such as SLIT2, MMD2, and PKHD1,
along with downregulated genes, including IL-1A, MMP13, and GNA15, that help control
inflammation and minimize tissue damage. In conclusion, PEDV infection in porcine intestinal
organoids elicits region-specific responses, with increased susceptibility and antiviral
activation in jejunal and ileal organoids driven by the differential expression of viral entry
receptors and immune-regulatory genes.
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INTRODUCTION

Porcine epidemic diarrhea virus (PEDV) is a highly virulent pathogen that poses a significant
threat to the swine industry, particularly to neonatal piglets [1-3]. PEDV infection causes severe
gastrointestinal symptoms, including diarrhea, vomiting, and dehydration, which can lead to
mortality rates approaching 100% in affected populations [4,5]. The virus primarily targets the
intestinal epithelium [6], particularly in the jejunum and ileum, leading to villous atrophy and
compromised gut integrity [7]. Understanding PEDV pathogenesis is essential for developing
effective therapeutic strategies and vaccines.

Traditionally, PEDV research has relied on two-dimensional (2D) cell-culture models, such
as the IPEC-J2 and IPI-2I cell lines derived from porcine intestinal tissue [8,9]. However, those
models are limited in their ability to replicate the complex in vivo environment of the porcine
intestine, which features diverse cell types, unique structural architecture, and region-specific
physiological characteristics [10]. Recently, organoid technology has presented a promising
alternative, allowing for the cultivation of three-dimensional (3D) organoids that more accurately
mimic the physiological conditions of the intestinal epithelium [4,11,12]. Importantly, organoids
can be derived from specific regions of the intestine, such as the duodenum, jejunum, and ileum,
enabling the study of region-specific responses to PEDV infection [13].

Studies have shown that PEDV infection efficiency and host responses vary across intestinal
segments, likely due to inherent differences among the duodenum, jejunum, and ileum [14,15].
Furthermore, distinct gene expression patterns in the small intestine suggest that each region has
specialized physiological functions that might influence its susceptibility to infection [16]. Despite
the increasing use of organoids to study enteric viruses, few studies have investigated the region-
specific gene expression responses to PEDV infection, and the influence of those differences on
viral pathogenesis remains underexplored [17-19].

For this study, we established apical-out porcine intestinal organoids derived from the
duodenum, jejunum, and ileum to investigate region-specific transcriptional and functional
responses to PEDV infection. Specifically, we investigated how different intestinal regions
responded to PEDV at the molecular level, identifying variations in gene expression profiles,

immune activation, and antiviral defense mechanisms.

MATERIALS AND METHODS

Animal and viruses

All procedures involving pigs were approved by the Seoul National University Institutional Animal
Care and Use Committee (SNU-230915-4-1) and conducted in accordance with guidelines for
the care and use of laboratory animals. The PEDV DR13 strain used in this study was generously
provided by Professor Daesub Song from Seoul National University [20].

Cell culture

Vero cells were cultured in Dulbecco modified Eagle medium (DMEM, Biowest) supplemented
with 5% fetal bovine serum (FBS, Biowest) and 1% antibiotic-antimycotic (Gibco) in a 37T
incubator supplied with 5% CO,. Vero cells were subcultured at 70%-80% confluency, and PEDV
was inoculated when the cells reached 70%-80% confluency.

Virus titration: tissue culture infection dose 50 assay
The virus was propagated in Vero cells that were seeded one day before infection in a T-75 flask at
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70%-80% confluency and incubated overnight at 37°C with 5% CO,. The cells were washed once
with phosphate-buffered saline (PBS, Biosesang) and inoculated with diluted PEDV DR13 for 1 h.
Then the cells were washed once with PBS and maintained in the PEDV infection medium, which
contained DMEM (Biowest) with 0.3% tryptose phosphate broth (Becton Dickinson), 0.02% yeast
extract (Gibeo), 2 pg/mL TPCK trypsin (Thermo Fisher Scientific), and 1% antibiotic-antimycotic
(Gibco) at 37°C in 5% CO,. The cytopathic effects (CPE) were monitored daily, and the virus was
harvested using three rounds of freezing and thawing after 72-96 h, when the CPE exceeded 80%.
The cell supernatant was centrifuged at 4,000 rpm for 20 min, and then the supernatant of the
sample was aliquoted and stored at —80C until use. The virus titer was measured using Vero cells
that were seeded in 96-well plates at a density of 2 x 10* cells/well in 200 pL of culture medium
and incubated at 37°C in 5% CO,. The virus was diluted in a 10-fold series in DMEM with 1%
antibiotic-antimycotic. Each dilution was added to the well in six replicates, and the negative
control cells were treated only with DMEM and 1% antibiotic-antimycotic. After 1 h of incubation
with the virus, the cells were washed once with PBS and then maintained in the PEDV infection
medium, as in the propagation procedure. After 72-96 h, when the CPE exceeded 80%, the mean
tissue culture infection dose 50 (TCIDy;) was calculated using the Spearman-Kiérber method.

Porcine intestinal organoid culture and differentiation

Duodenum, jejunum, and ileum tissue from of small intestines of 1-week-old piglets was dissected,
and crypts were isolated with Gentle cell dissociation reagent (StemCell Technologies). Then, the
crypts were embedded in Matrigel (Corning) with growth medium. The organoids were passaged
every 4-5 days. To differentiate the porcine intestinal organoids, the culture medium was changed
to differentiation medium after 2-3 days of passaging.

The porcine intestinal organoid growth medium was Advanced DMEM (Gibco) supplemented
with 2 mM GlutaMAX, 10 mM HEPES (Gibco), 1% penicillin/streptomycin, 1X N-2
supplement, 1X B-27 supplement without vitamin A (Thermo Fisher Scientific), 500 ng/mL
human R-spondin 1, 100 ng/mL human Noggin, 50 ng/mL human EGF (PeproTech), 100 ng/
mL WNT surrogate-Fc fusion protein (ImmunoPrecise Antibodies), 0.5 pM A83-01, 10 uM
SB202190, 10 mM nicotinamide, 10 nM human gastrin I, 5 pM LY2157299, 2.5 uM CHIR99021
(Sigma-Aldrich), and 10 pM Y-27632 (MedChemExpress).

The porcine intestinal organoid differentiation medium contained reduced concentrations of
human R-spondin 1, human Noggin, and WNT surrogate-Fc fusion protein (1/10 in the culture
medium) and 10 mM DAPT (Sigma-Aldrich).

Apical-out porcine intestinal organoid culture

'The organoids were passaged 2—3 days prior to starting the apical-out culture and were maintained
in growth medium. Matrigel-embedded organoids have basolateral surfaces facing outward, which
are referred to as basal-out organoids. To generate apical-out organoids, the organoids were first
separated from the Matrigel by incubating them in 5 mM EDTA in PBS on a shaking rotor
for 30 min at 4C to remove the extracellular matrix proteins. The organoids were centrifuged at
200xg for 5 min at 4°C. Then, the pellet was re-suspended in differentiation medium in ultra-low
attachment 24-well cell culture plates (Corning). After transitioning to apical-out culture for 3 days,
the suspended organoids exhibit reversed polarity, with the apical surfaces face outward. These are
referred to as apical-out organoids.

Viral infection
We infected 200 apical-out organoids with PEDV DR13 for 1 h at 37°C. After 1 h, the medium
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containing the virus was removed, and differentiation medium was added.
The basal-out organoids were separated from the Matrigel and infected with PEDV DR13 in
ultra-low attachment 24-well plates for 1 h at 37°C. After 1 h, these organoids were re-embedded

in Matrigel, and differentiation medium was added. Sampling was conducted 24 h after inoculation.

RNA extraction and qRT-PCR analysis

The cultured apical-out organoids were harvested, and total RNA was extracted using Trizol
reagent (Invitrogen). From each sample, 2 pg of RNA was taken and converted into cDNA using
M-MLYV reverse transcriptase (Promega). Real-time quantitative PCR was conducted as previously
described [21] on a CFX Duet (Bio-Rad) with SYBR green master mix (Applied Biosystems).
Porcine GAPDH was used to normalize gene expression. The sequences of the primers used in this
study are listed in Table 1.

Organoid immunofluorescence analysis

Organoids separated from the Matrigel were fixed in 4% paraformaldehyde for 20 min. For cryo-
sectioning, the fixed organoids were embedded first in 30% sucrose and subsequently in a gelatin/
sucrose solution. Immunocytochemistry staining was conducted on 12-pum sections of the gelatin-
embedded organoids. These sections were incubated in blocking/permeabilization buffer (1.5
mL of FBS, 0.5 g of bovine serum albumin (BSA, LPS solution) 250 pL of Triton X-100, 250
pL of Tween 20, and 500 pL of 1% (wt/vol) sodium deoxycholate solution in 47.5 mL of PBS
[22]) for 1 h at room temperature. Primary antibodies were then applied overnight at 4C. After
the samples were washed, secondary antibodies were applied for 2 h at room temperature. Then,
the samples were counterstained with DAPI (Sigma-Aldrich) and mounted with fluorescence
mounting medium (Dako). Fluorescent images were obtained using a Leica TCS SP8 X (Leica
Microsystems). The antibodies used in this study are listed in Table 2.

Table 1. List of primers used in this study

Porcine

Gene Forward Reverse
GAPDH CTGCCCAGAACATCATCCC CAGTGAGCTTCCCGTTGAG
CYBRD1 ACAGCTTCAAGAAGTCGACGC GCCAGGAAACCCCTGTAACC
SLC40A1 GCCTTAACCGTTCATGCACTT GTGGGGAATGCAATTCAGGA
LCT GCTGATCATGCTTGAAATTTTGC CTGCACAAGTTTCTGACGGT
SLC10A2 CCAGAGTGCCTGGATCATCG GTTTCCAGAGCAACCGTTCG
OSTB AGTCCTTTGTCCTATGCTGGC CAGAACCTTCGCTGTCCCT
Muc2 GGACGCCTACAAGGAGTTCG ACCAGCTGCTGAGTGAGGTA
LYz CCCGGCTTCTCAGACAACAT CCTATAGCCGTCCATGCCAG
VL1 CCTCCCCTAGACAGGCTCATC ACCATCTGCATGGCCTCTATC
CHGA GTCATTGCCCTCCCTGTGAA TCAAAACACTCCTGGCTGACA
PEDV M GGTTCTATTCCCGTTGATGAGGT AACACAAGAGGCCAAAGTATCCAT
CXCL9 TAAACAATTCGCCCCAAGCC CATGGTCCCTCATGTCATCTTC
cXxceL10 CCCACATGTTGAGATCATTGC CATCCTTATCAGTAGTGCCG
IL17 CTCGTGAAGGCGGGAATCAT GGTGTGCTCCGGTTCAAGAT
ISG15 CTATGAGGTCTGGCTGACGC ACGGTGCACATAGGCTTGAG
1ISG58 ATTTGCCTACACGGACCTGG GCGACCATAGTGGTAGTGGA
IFNL3 GGATGCCTTTGAAGAGTCCCT GCTGTGCAGGGATGAGTTCG
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Table 2. Antibodies

Company Application Dilution
Z0-1 Santa Cruz (sc-33725) ICC 1:100
Villin Santa Cruz (sc-58897) ICC 1:100
Chromogranin A Abcam (ab15160) ICC 1:100
Ki67 DAKO (M7240) ICC 1:100
PEDV N AntibodySystem (PVV28802) ICC 1:100
Anti-mouse IgG (H+L), F(ab’) 2 Fragment (Alexa Fluor (R) 488 Conjugate) Cell Signaling (4408S) ICC 1:500
Anti-rabbit IgG(H+L), F(ab’) 2 Fragment (Alexa Fluor (R) 488 Conjugate) Cell Signaling (4412S) ICC 1:500
Anti-mouse IgG (H+L), F(ab’) 2 Fragment (Alexa Fluor (R) 594 Conjugate) Cell Signaling (8890S) ICC 1:500
Goat Anti-rat IgG H&L (Alexa Fluor 594) Abcam (ab150160) ICC 1:500
DAPI Sigma-Aldrich (D9542) ICC 1:1000

262 | https://www.ejast.org

RNA-seq and analysis

Sequencing of the extracted RNA was performed at Macrogen Incorporated using the manufacturer’s
reagents and protocol. mRNA sequencing libraries were prepared from the extracted RNA by using
an [llumina TruSeq stranded mRNA sample prep kit (Illumina). Indexed libraries of the samples
were submitted to paired-end read sequencing on an Illumina NovaSeqX (Illumina). The sequenced
data were processed and analyzed with minor modifications to a previously described procedure [23].
Adapter sequences were removed and low-quality reads were filtered using Cutadapt (v4.9). The
trimmed sequences were aligned to the Sus scrofa reference genome (susScr2) using HISAT? (v2.2.1)
and counted by featureCounts (v2.0.3). Gene expression was quantified by EdgeR (v3.36.0), and
differentially expressed genes (DEGs) were further analyzed. We identified DEGs using absolute
Log2 fold change>1 and p-values<0.05 as the threshold. For the Gene Ontology (GO) analysis of
DEGs, PANTHER19.0 [24] was used to categorize the genes into Panther GO terms. The DEGs
were also annotated into KEGG database pathways using ShinyGO 0.81 (http://bioinformatics.
sdstate.edu/go/) [25,26]. Volcano plots of the DEGs were generated with ggplot 2 in R. A principal
component analysis (PCA) plot and heatmaps were generated using an in-house script in R. For the
heatmaps, the samples were clustered according to Euclidean distance. Proportional Venn diagrams of
up- and downregulated genes were created using BioVenn [27]. The RNA-seq data presented in this
study have been deposited in the NCBI GEO database under accession number GSE 280630.

Statistical analysis

All experiments were performed in at least triplicate. Depending on the number of groups to be
compared, t-tests and one-way ANOVA were used to analyze the data. The values are represented
as the mean + SEM. A p-value of less than 0.05 were considered statistically significant. All
statistical analyses were performed using GraphPad Prism software (v8.0.1).

RESULTS

Establishment and characterization of porcine duodenal, jejunal, and ileal organoids
To develop an in vitro model of the porcine intestine, we established organoids derived from the
duodenum, jejunum, and ileum. A microscopy morphological analysis revealed distinct structural
features in the organoids from each region, with duodenal organoids resembling the structure
of gastric organoids and showing morphological differences from the jejunal and ileal organoids

(Fig. 1A). The proliferation analysis showed significantly lower proliferation rates in the duodenal
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Heo et al.

A Duodenum
Ol R
TEAMEE N

I:!_‘_" =a Q

W
(@]

*k * kK

. ® Duodenum *k Xk EN Duodenum

1.0 H Jejunum
B lleum

3 iﬁ_ T A Jejunum

4 "= B lleum

0.5

=4
o

Relative growth
(Area D4/area D0)
™
Relative mRNA expression

CYBRD1 SLC40A1 LCT SLC10A2 OSTB

O

Jejunum Duodenum

lleum

Fig. 1. Establishment and characterization of mature porcine intestinal organoids. (A) Morphology of porcine duodenal, jejunal, and ileal organoids (Scale
bar: 500 ym). (B) Quantification of organoid proliferation in the duodenal, jejunal, and ileal regions, measured by the ratio of the area on day 4 to that on day 0. (C)
Gene expression of region-specific markers in duodenal (CYBRD1 and SLC40A1), jejunal (LCT), and ileal (SLC10A2 and OSTB) organoids was measured by
gRT-PCR. The results are represented as the mean + SEM. " p < 0.05, " p < 0.01, " p < 0.001. (D) Protein expression of the enterocyte marker Villin and the
enteroendocrine cell marker chromogranin A (CHGA) in duodenal, jejunal, and ileal organoids was detected with a confocal immunofluorescence analysis (Scale
bar: 150 ym).

organoids than in the jejunal and ileal organoids (Fig. 1B). Consistent with previous findings,
these structural and functional differences across regions could contribute to differential responses
to PEDV infection [14,15]. The qRT-PCR analysis of region-specific markers confirmed the
establishment of region-specific organoids: the duodenal organoids expressed high levels of
CYBRDI and SLC40A1, jejunal organoids showed elevated levels of LCT, and ileal organoids
had increased expression of SLC1042 and OSTB (Fig. 1C). Immunofluorescence staining
revealed consistent expression of the enterocyte marker Villin and the enteroendocrine marker
chromogranin A (CHGA) across all three region-derived organoids (Fig. 1D). Notably, enterocytes,
the primary target of PEDV, were present in all organoids, indicating that the developed organoids

closely replicate the iz vivo porcine intestine environment.
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Porcine intestinal organoids show regional differences in porcine epidemic diar-
rhea virus replication and host response

To investigate PEDV replication and host responses, we cultured apical-out and basal-out
organoids derived from the duodenum, jejunum, and ileum. Immunofluorescence staining was
performed to assess polarity, and it showed the apical marker ZO-1 on the outer membrane in the
apical-out organoids and the inner membrane in the basal-out organoids, confirming the correct
polarity. Additionally, the proliferation marker Ki67 was more prominent in the jejunal and ileal
organoids, aligning with the proliferation patterns observed in Fig. 1B (Fig. 2A). To characterize
the cell composition, we analyzed the expression of cell-specific markers by qRT-PCR and found
no significant differences between the basal-out and apical-out organoids. Goblet cell (MUC2),
Paneth cell (ZYZ), enterocyte (VILI), and enteroendocrine cell (CHGA) markers were all detected,
indicating the presence of diverse cell types across organoids of both polarities in each intestinal
region (Fig 2B). The PEDV genomic RNA analysis showed more robust PEDV replication in
the apical-out organoids, particularly the jejunal and ileal organoids, than in the basal-out and
duodenal organoids (Fig. 2C). To assess host responses to PEDV infection, the expression levels of
inflammation-related markers (CXCL9, CXCL10,and IL17) and interferon pathway genes (ISGI5,
I8G58, and IFNL3) were measured. These markers were less expressed in the duodenal organoids
than in the jejunal and ileal organoids (Supplementary Fig. S1A), suggesting that the jejunal and

ileal organoids were more responsive to PEDV infection.
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Fig. 2. Replication of porcine epidemic diarrhea virus (PEDV) in apical-out porcine organoids. (A) Basal-out and apical-out duodenal, jejunal, and ileal
organoids were stained for the apical protein marker ZO-1 and the proliferation marker Ki67 and visualized by confocal immunofluorescence (Scale bar: 150
um). (B) Gene expression of the goblet cell marker (MUC?2), Paneth cell marker (LYZ), enterocyte marker (VIL1), and enteroendocrine cell marker (CHGA) in
basal-out and apical-out organoids was measured by qRT-PCR. (C) Genomic level of replicated PEDV in PEDV-infected basal-out and apical-out organoids
was measured by gRT-PCR. The results are represented as the mean + SEM. “p<0.01," p<0.001. (D) PEDV-infected apical-out porcine duodenal, jejunal,
and ileal organoids were detected in a confocal immunofluorescence analysis (Scale bar: 150 ym).
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Duodenum

RNA sequencing reveals regional differences in transcriptomic responses to por-
cine epidemic diarrhea virus in porcine intestinal organoids

To further investigate regional responses to PEDV at the transcriptomic level, we performed
RNA sequencing on apical-out organoids from each region (Fig. 3A). The PCA demonstrated
distinct transcriptomic profiles by region and infection status, indicating unique regional responses
to PEDV infection (Fig. 3B and Supplementary Fig. S2A, S2B, and S2C). Heatmap clustering
indicated close gene expression profiles between jejunal and ileal organoids, with duodenal
organoids forming a separate cluster, even in the absence of infection (Fig. 3C). Notably, key
receptors and entry-related genes (ANPEP, ACE2, and DPP4) were more highly expressed in
jejunal and ileal organoids than in duodenal organoids in mock conditions, as were the proteases
TMPRSS4 and TMPRSS11F, which facilitate viral entry (Fig.3D). These findings suggest region-
specific baseline gene expression profiles and receptor availability that might influence PEDV
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Fig. 3. RNA sequencing analysis of duodenal, jejunal, and ileal organoids. (A) Diagrammatic representation of the experimental design. (B) Principal
component analysis (PCA) of the gene expression profiles in duodenal, jejunal, and ileal organoids, based on bulk RNA sequencing data. (C) Heatmap of
gene expression in duodenal, jejunal, and ileal organoids in the mock-infected and porcine epidemic diarrhea virus (PEDV) groups. (D) Heatmap showing the
expression of coronavirus receptor and infection-related genes in mock-infected duodenal, jejunal, and ileal organoids.
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susceptibility.

Porcine epidemic diarrhea virus infection induces region-specific gene expression
changes in porcine intestinal organoids

To investigate region-specific transcriptional responses to PEDV infection, we analyzed DEGs
in the duodenal, jejunal, and ileal organoids. A total of 20,428 genes were profiled, and DEGs
with significant changes between the PEDV-infected and mock groups were identified using a
threshold of p<0.05 and |Log2 fold change| 21. A volcano plot shows significant upregulation
and downregulation of genes across regions (Fig. 4A). Specifically, the duodenum exhibited 58
upregulated and 40 downregulated genes, the jejunum had 101 upregulated and 261 downregulated
genes, and the ileum had 67 upregulated and 131 downregulated genes (Fig. 4B). The GO
enrichment analysis revealed region-specific functional categories among the DEGs. The jejunal
and ileal organoids showed enrichment in GO terms related to cellular processes, biological
regulation, metabolic activity, and membrane components, and the duodenal organoids had fewer
gene counts in those enriched terms (Fig. 4C).

The KEGG pathway analysis further highlighted these region-specific responses. In the
duodenum, the upregulated genes were associated with metabolic pathways and the renin-
angiotensin system, and the downregulated genes were linked to PPAR signaling (Fig. 4D). In
the jejunum, the upregulated genes were enriched in cytokine—cytokine receptor interactions
and PI3K-Akt signaling, and the downregulated genes were involved in metabolic pathways and
protein digestion and absorption (Fig. 4E). In the ileum, the upregulated genes were associated with
metabolic pathways and the glucagon signaling pathway, and the downregulated genes were linked
to the MAPK signaling pathway and cytokine—cytokine receptor interactions (Fig. 4F). These
findings demonstrate distinct transcriptional responses to PEDV infection across intestinal regions,

with each segment activating unique pathways.

Regional gene expression patterns reveal key immune and cellular responses to
porcine epidemic diarrhea virus in the jejunal and ileal organoids

To further investigate the regional differences in gene expression responses to PEDV infection,
we identified the top 20 genes upregulated and downregulated in the duodenal, jejunal, and ileal
organoids, compared with the mock groups. A heatmap analysis revealed distinct expression
patterns across regions (Fig. SA). In PEDV-infected duodenal organoids, upregulated genes such
as SNORA30 (viral processes), TRIM72 (viral restriction), WNT3 (Wnt/B-catenin signaling), and
PDE4B (inflammatory response) suggest an immune response, and downregulated genes such as
PFKFB3 (carbohydrate metabolism) and MMP1 (extracellular matrix remodeling) indicate reduced
metabolic and cellular activity. In the jejunal organoids, genes such as ILZ2R (immune response),
GSDMA (cell death), and SPHK1 (sphingolipid metabolism) were upregulated, reflecting active
immune and inflammatory responses, and the downregulated genes, such as NLRC3 (PI3K-mTOR
inhibition) and MERTXK (viral entry), point to modulated immune signaling. In the ileal organoids,
upregulated genes such as STEAP4 (antiviral response), PABPC4L (coronavirus inhibition),
PLCp2 (inflammation regulation), and CTSW (viral escape mechanisms) indicate robust immune
activation, and the downregulated genes, such as NCFI and §10048 (inflammation modulation),
show an adjusted inflammatory response. Venn diagrams of the DEGs reveal regional specificity,
with three genes (SLIT2, MMD?2, and PKHDI) commonly upregulated in the jejunal and ileal
organoids (Fig. 5B). SLIT2 reduces inflammation and tissue damage, and PKHDI supports
epithelial barrier integrity, reflecting a coordinated response to maintain immune balance and tissue

resilience in these regions. Among the 8 genes most commonly downregulated in the jejunal and
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Fig. 4. Different responses to porcine epidemic diarrhea virus (PEDV) infection among the intestinal organoids. (A) Volcano plots showing differential
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analysis, FDR<0.05 was used as cutoff threshold.

ileal organoids (Fig. 5C), IL-14, MMP13, and GNA15 are involved in immune regulation and viral
response, indicating inflammation and an antiviral response to PEDV infection. These commonly
altered genes likely play key roles in the jejunum and ileum, where PEDV infection is prominent.
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DISCUSSION

This study provides critical insights into the region-specific responses of porcine intestinal
organoids derived from the duodenum, jejunum, and ileum to PEDV infection. Using an apical-
out organoid model, we observed distinct functional responses to PEDV across these intestinal
regions, suggesting that the jejunum and ileum might be especially critical for PEDV pathogenesis
in neonatal piglets. These findings indicate that regional susceptibility to PEDV is influenced not
only by anatomical differences but also by the unique transcriptomic profiles of each segment.

Our quantitative analysis revealed significantly higher PEDV replication in jejunal and ileal
organoids than in duodenal organoids, supporting our hypothesis that susceptibility is modulated by
region-specific gene expression patterns. Bulk RNA sequencing confirmed a more robust activation
of immune and antiviral pathways in the jejunum and ileum, implying an elevated capacity for
viral response in these regions. This finding aligns with other studies that show differential immune
responses across intestinal segments, which could inform more effective intervention strategies

[14,28,29].
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Recent studies indicate that aminopeptidase N (APN) alone does not fully account for PEDV
entry because infection persists in APN-knockout cells and pigs [30-32]. Our findings corroborate
that, showing that the jejunal and ileal organoids had significantly higher baseline expression of
viral entry receptor genes, including ANPEP, ACE2, and DPP#, and suggesting that, beyond APN,
other known coronavirus receptors such as DPP4 and ACE2 might contribute to heightened
intestinal infection. These findings are consistent with previous studies showing that DPP4 and
ANPEP expression is elevated in the jejunum compared with other regions [16,33]. Additionally,
the increased expression of proteases such as 7VMPRSS4 and TMPRSS11F in these segments likely
contributes to their increased susceptibility to PEDV, highlighting the importance of receptor
availability in determining viral tropism [34,35].

In response to PEDV infection, we observed significant regulation of genes involved in immune
modulation and tissue integrity. Notably, SLIT2, MMD?2, and PKHDI were upregulated in the
jejunal and ileal organoids, suggesting a coordinated response to control inflammation and maintain
tissue structure. SLI72 has been recognized for its anti-inflammatory properties, suggesting that
its upregulation could play a critical role in balancing immune activation with tissue preservation
during PEDV infection [36]. The downregulation of pro-inflammatory genes such as IL-14
and MMP13 further indicates a protective mechanism that limits tissue damage [37-40]. This
expression pattern supports a finely tuned immune response that promotes effective antiviral activity
while preserving tissue integrity, positioning the jejunal and ileal regions as crucial sites of balanced,
protective immune responses during PEDV infection.

'This study highlights the utility of 3D organoid models in representing region-specific PEDV
infection dynamics more accurately than traditional 2D models. While our focus was on porcine
intestinal organoids, comparing our findings with human and other animal models offers broader
insights. For example, receptors like ACE2 and DPP4 are not only involved in PEDV entry in
pigs but also play a significant role in the entry of coronaviruses such as SARS-CoV-2 in humans.
Similar upregulation patterns of these receptors have been observed in both species, indicating
conserved mechanisms of viral entry. Understanding these cross-species similarities and differences
may refine therapeutic strategies and broaden our comprehension of coronavirus-host interactions.
Our findings suggest that therapeutic strategies might be optimized by tailoring them to target
specific intestinal regions, particularly the jejunum and ileum, where PEDV susceptibility is high.
However, our current organoid model lacks immune cells, which are essential for simulating in vivo
immune responses. Interactions between the intestinal epithelium and immune cells such as T cells,
macrophages, and dendritic cells are crucial for mediating host responses to viral infections [41,42].
"The absence of these components may limit the models ability to fully replicate immune-mediated
aspects of PEDV pathogenesis. Future studies could enhance these models by incorporating
immune cells to better reflect in vivo conditions. Additionally, co-culturing with other tissue
organoids may provide a more comprehensive system to investigate the systemic eftects of PEDV
across multiple tissues.

In conclusion, this study elucidates the region-specific responses of porcine intestinal organoids
to PEDV infection, demonstrating increased susceptibility and antiviral activation in jejunal and
ileal organoids. These region-specific responses, driven by differential expression of viral entry
receptors and immune-regulatory genes, advance our understanding of PEDV pathogenesis and

suggest potential therapeutic targets for protecting neonatal piglets from PEDV.

SUPPLEMENTARY MATERIALS
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