
290 https://www.ejast.org

Journal of Animal Science and Technology

RESEARCH ARTICLE
J Anim Sci Technol 2026;68(1):290-305
https://doi.org/10.5187/jast.2024.e110 pISSN 2672-0191  eISSN 2055-0391

Non-destructive evaluation of microbial 
quality of beef (M. longissimus 
thoracis muscle) using visible/NIR 
hyperspectral imaging and machine 
learning methods
Seongmin Park1,2, Suk-Ju Hong3, Chang-Hyup Lee1,2, EungChan Kim1,4, 
Sang-Yeon Kim1,2, Cheorun Jo2,5, Ghiseok Kim1,2,4*
1Department of Biosystems Engineering, College of Agriculture and Life Sciences, Seoul National University, 
Seoul 08826, Korea
2Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
3Department of Smart Bio-industrial Mechanical Engineering, Kyungpook National University, Daegu 
41566, Korea
4Global Smart Farm Convergence Major, College of Agriculture and Life Sciences, Seoul National University, 
Seoul 08826, Korea
5Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National 
University, Seoul 08826, Korea

Abstract
Machine learning models were developed to predict the degree of microbial quality of beef by a 
non-destructive method using a near-infrared hyperspectral imaging system. Beef was stored 
under aerobic conditions at different temperature scenarios (refrigerated, thawed after freezing, 
or left at room temperature) for a period of 15 days to induce freshness change and microbial 
growth. Hyperspectral data cubes were obtained from a data acquisition system in a darkroom 
environment. The total aerobic bacteria (TAB) experiment was performed in the established 
meat science manner to provide reference values for the microbial contamination level of the 
sample. The region of interest designated as the red meat region was selected for spectral 
extraction. Regression models were developed to predict the TAB value from the extracted 
data. Partial least squares regression, support vector machine, artificial neural network, and 
one-dimensional convolutional neural network methods were employed to construct TAB 
prediction models. Chemical maps were also created for each developed model to visualize 
the performance of the model. The model development process concluded with the iteration 
of all previous steps at completely different times and with different beef samples, generating 
the data for verification and applying it to the developed model to evaluate its versatility. As a 
result of the development, it was confirmed that the microbial quality of beef can be predicted 
by models generated from hyperspectral data (Best validation R2 = 0.8593, RMSE = 0.6947). 
Accurate quality prediction helps livestock breeders develop and apply better husbandry 
practices, which ultimately leads to higher quality beef production.
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INTRODUCTION
The freshness of meat, which is a key factor that influences the purchasing decisions of consumers 
[1], depends on the temperature and humidity conditions under which the product is stored, and its 
level of microbial contamination. Fresh meat is rich in nutritional components, such as protein, fat, 
and minerals, and has high water activity, all factors of which provide a favorable environment for 
microbial growth. Under such conditions, various types of microorganisms can cause meat spoilage 
[2]. Therefore, addressing these microbial issues is important for food preservation. Strategies 
include chemical treatment, vacuum treatment, heat treatment, and drying, among which cold 
treatment by freezing and refrigeration is the most used method [3]. However, sudden temperature 
changes under poor cold-chain conditions in sanitary facilities or during product transport can 
cause microbial contamination. Given that microbial reactions can adversely affect the food product, 
the potential for metabolic activity by microorganisms should be identified in advance to ensure 
stable food preservation [4].

Currently, the determination of freshness is based on chemical-base indicators, such as pH, 
volatile basic nitrogen (VBN) content, and 2-thiobarbituric acid-reactive substance (TBARS) 
value, or microbial contamination indicators, such as the total viable count (TVC) and total aerobic 
bacterial (TAB) count [5–7]. DeGeer measured and compared various quality parameters (pH, 
moisture, and lipid contents, TBARS value, microbial contamination level, and shearing force) 
of heat-cooked meat to identify the optimal conditions for dry aging beef [8]. Cheng et al. tried 
hyperspectral imaging to accurately predict the total volatile basic nitrogen (TVB-N) content of 
grass carp fillets during frozen storage, demonstrating its potential for rapid and non-destructive fish 
freshness assessment [9]. Leonard et al. explored the effect of lupin flour on sausage attributes by 
preparing sausages with different contents and analyzing cooking loss, TBARS, texture profile, etc 
[10]. Lee proposed a system for monitoring changes in the quality of vacuum-packaged dry-aged 
beef during storage and predicting the shelf-life of the product based on its current state. The pH, 
CIE colors, TBARS value, VBN content, microbial contamination level, and sensory characteristics 
of the cooked meat were evaluated [11]. Chen proposed a novel approach for real-time prediction 
and analysis of food safety risks using the one-step kinetic integrated Wiener process (OS-WP). 
This approach achieved high accuracy in modeling microbial growth and provided valuable early 
warning information for risk management and decision-making [12]. Although these studies 
reported highly accurate results, the measurement of freshness using traditional analytical methods 
is difficult to apply in the field because the techniques can be time consuming and expensive [13].

To facilitate efficient food quality certification, vendors or evaluation agencies require highly 
reproducible and accurate technologies to rapidly identify the conditions of fresh and processed 
meats. One technology that can meet this need is near-infrared spectroscopy (NIRS), a non-
destructive technique that offers the advantages of rapid measurement of a single sample and 
ease of data collection [14–16]. However, NIRS provides only one spectrum for a single round 
of data collection and yields no spatial information about the sample. Hyperspectral imaging 
(HSI) was developed to overcome the disadvantages of NIRS and has demonstrated the potential 
to provide both spatial and spectral information simultaneously [17]. As a non-destructive and 
contactless technique, HSI involves the integration of both spectral and imaging technologies for 
the examination of various components in samples. The system generates three-dimensional data in 
the form of a so-called hyperspectral data cube composed of a two-dimensional spatial image and a 
one-dimensional spectrum [18]. These data cubes can be used to analyze physical and geometrical 
characteristics (including morphology, color, and size) of an image, and the chemical composition 
of the sample can be predicted with an artificial intelligence model constructed using spectral 
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information [19].
Various studies have employed hyperspectral imaging technology for non-destructive quality 

evaluation of livestock and seafood products. These studies have ranged from non-destructive 
analysis of omega-3 fatty acids in eggs to predicting fat content in pork and analyzing the frozen 
state of fish fillets and pork loins [20–22]. Kamruzzaman showed that hyperspectral imaging 
and multivariate analysis can be used to identify red meat species (pork, beef, lamb) with 98.67% 
accuracy, demonstrating the potential for rapid and objective meat authentication [23]. Wold 
developed a near-infrared (NIR) spectroscopy method for online and non-contact monitoring of 
core temperature in heat-treated fish cakes during industrial processing, achieving a root mean 
square error of prediction of 2.3℃ [24]. Yang used HSI to predict the level of protein deterioration 
during pork drying, whereas Aheto et al. used the method for predicting the TBARS value of 
dry-cured pork [25,26]. Lohumi et al. applied analysis of variance (ANOVA), spectral similarity 
analysis, and HSI in the 400–1,000 nm range to develop a system for predicting and visualizing the 
intramuscular fat content in beef samples. Advances in HSI technology have also led to studies on 
portable hyperspectral devices [27].

Consumer behavior towards meat and meat products is exhibiting increasing complexity and less 
predictability. And environmental impact has become significant driver of consumer perception [28]. 
Obviously, there is great scientific value in precisely determining the parameters that determine 
meat quality in the lab, whether by chemical methods or by directly observing microbial growth. 
However, these traditional tests are sometimes time-consuming and procedurally complex [29], 
therefore, several types of spectral analysis methods were employed and showed some promising 
solutions. However, a single point spectrum may not adequately represent the condition of the 
entire meat sample, which remains a drawback [30]. Accordingly, the aim of the present study is 
to use various machine learning techniques to develop a high-quality predictive model that can 
match hyperspectral imaging data with TAB counts for beef stored under different temperature 
conditions. It is to achieve precise identification of the contamination state of meat by combining 
microbiological factors and hyperspectral data. As a result, the study provided clues to optically 
visualize the distribution of microbial contamination in beef that could not be obtained by previous 
destructive chemical methods.

MATERIALS AND METHODS
Materials and microbial analysis 
Experimental samples were obtained from the M. longissimus thoracis muscle chunks of three 
Korean Holstein cows. The average weight of the muscle chunks was 5.57 ± 0.61 kg. The beef 
chunks were purchased shortly after slaughter. Immediately following their acquisition, the three 
beef chunks were placed in a refrigeration box that was maintained at a temperature of 3 ± 1℃ 
and transported to the laboratory. The meat samples were stored in the laboratory for 7 d at 4℃ to 
achieve stabilization prior to the commencement of the experiment. After the stabilization period, 
the meat was removed from the vacuum package and the fascia and fat were excised. The resultant 
lean meat was cut along the direction of the myofiber into portions of approximately 250 g, which 
were then packed in shape to allow air flow. This was designated as the experimental start date. 
The experiment was conducted for 15 d and comprised the following three groups. The samples of 
control group were stored in a 4℃ refrigerated environment throughout the experiment. Samples 
of Treatment group 1 were frozen at –20 ± 2℃ for 6 d and thawed at 23 ± 1℃ for 24 h to affect 
the microbial quality of the samples, and the rest of the period was refrigerated under the same 
conditions as the control group. And the last samples of treatment group 2 were initially left at 
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23℃ for 6 h to induce microbial growth and the subsequent process is the same as treatment group 
1. The experimental protocols are shown in Fig. 1.

The traditional plate count method was performed to obtain the reference of TAB count 
value. The measurement was performed in the following order, with some adjustments based 
on previous research [31–33]. First, 10 g of samples were immersed in 90 mL of 0.1% peptone 
water and homogenized with a mixer (BagMixer, Interscience) to properly disperse and dilute the 
microorganisms. 10-fold serial dilutions of the homogenate were prepared using sterilized peptone 
water. Then, 1 mL of the dilution was inoculated into liquefied agar medium melted at 45℃ (plate 
count agar, Becton Dickinson), and the suspension was carefully shaken to mix the microorganisms 
evenly. The suspension was cultured in a 37℃ incubator for 48 h, following which the number of 
resultant colonies was counted and expressed in units of Log CFU/g. The experiment was repeated 
three times.

Hyperspectral imaging and spectrum extraction
To acquire hyperspectral images, a darkroom environment was employed to block external light and 
an image acquisition system was installed inside. No special temperature control was installed in the 
darkroom. At that time, the room temperature was observed as 23℃–24℃. As shown in Fig. 2, the 
system consisted of a hyperspectral imaging camera (Pika L, Resonon) with an attached lens. The 
camera was mounted on a stepper motor to allow its movement along a line while taking images. 
Four tungsten halogen lamps were installed to secure a stable light source. A black matte dish was 
used as the sample background. A total of 99 beef samples were used. For each experiment, nine 
samples from the same group were photographed at the same time and subjected to microbiological 
analysis. To ensure the stability of the light source and obtain high-quality hyperspectral data, a 20 
min stabilization period was implemented before data acquisition.

Next, the region of interest (ROI) was defined as the red meat region within the meat data, 
and spectrum of only this region was extracted for analysis. The processes for determining the area 
of red lean meat in the hyperspectral data cube are presented in Fig. 3. Fig. 3A was reconstructed 
using only the visible light region (400–700 nm), whereas Fig. 3B was extracted from spectral 
images in the 630–650 nm range as an average value corresponding to the red region. Fig. 3C is 
an extraction of only images having a wavelength of 540–560 nm, corresponding to the green area. 
By comparing Fig. 3B and 3C and generating their difference set, the red region can be extracted 
by selecting only the pixels that belong to the red region and neither to the black region nor to the 
white region. To achieve this, Fig. 3B and 3C were first converted into binary images, resulting in 
Fig. 3D and 3E, respectively. As the result, Fig. 3F shows the difference between the two binary 
images. Consequently, by selecting and extracting only the spectra from the activated region in Fig. 
3F, the spectra of red meat can be exclusively obtained.

Fig. 1. Experimental protocols based on the number of days for each experimental group.
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Development of the predictive model
The extracted spectrum data for the area of red lean meat were used to develop TAB prediction 
model. And four machine learning methods were employed including partial least squares 
regression (PLSR), support vector machine (SVM), artificial neural network (ANN), and one-
dimensional convolutional neural network (1D-CNN). Also, four preprocessing techniques such as 
multiplicative scatter correction (MSC), standard normal variate (SNV) transformation, Savitzky–
Golay 1st-order filtering, and min–max normalization were used. In addition, models named ‘raw’ 

Fig. 2. Configuration of devices for obtaining hyperspectral data.

Fig. 3. Images for determining the red lean meat regions (the ROI) in the hyperspectral images. (A) 
Reconstructed RGB image, (B) 630–650 nm average image, (C) 540–560 nm average image, (D) Binary image 
for the 630–650 nm reconstruction, (E) binary image for the 540–560 nm reconstruction, (F) red lean meat 
regions extracted from the difference.
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were developed and these models used raw spectrum which are not preprocessed. In this study, 
80% of the experimental data was used as the training set, and the remaining 20% was used as the 
test set to verify the model’s performance. The randomly selected training set was 10-fold cross-
validated to validate performance and develop optimal models.

PLSR is known as a widely used technique for the quantitative analysis of spectra [34]. As 
a method that complements the shortcomings of principal component analysis, PLSR is used 
mainly for component prediction in the measurement field. It performs the least squares method 
by compressing data down to several latent variables containing the most information in a data set, 
including both the input variable X and the output variable Y. To develop the PLSR model, one 
data set—including both the X matrix obtained from the spectral data and the Y vector obtained 
from the TAB counts—was first generated. Then, the number of components with the lowest root-
mean-square error (RMSE) value was selected while changing the number of components from 1 
to 40. The model was finally constructed using the number of components. Through this procedure, 
it can be seen that both the calibration and validation processes can be performed at once.

The SVM technique was originally developed for classification purposes, but it can be applied 
for support vector regression (SVR) problems through the use of a loss function. In this study, 
ε-insensitive loss function was used as following Equation (1):

	 L(yk) = max(0, │yk – fk(x)│– ε)	 (1)

where yk is the kth element of the y vector, and fk(x) is the value predicted by the model.
To develop the ANN model, a structure with an appropriate layer had to be designed. In the 

ANN, the connection structure between neurons, such as the number of hidden layers and the 
number of nodes of each layer, is collectively referred to as a topology, the optimal determination of 
which generally requires a large number of trial-and-error runs [35]. In this study, performance was 
tested by varying the number of hidden layers and the number of nodes in the model. The hidden 
layers were either one or two, and the number of nodes in each layer started at 25 and increased 
by one to 35. The optimal topology was found to be two hidden layers with 32 nodes each. The 
rectified linear unit (ReLU) was used as the hidden layer activation function, and adaptive moment 
estimation was used as the optimizer in the compilation process.

A CNN-based model, which is a class of ANN, is the most widely used architecture in deep 
learning approaches. Of the various CNN techniques, 1D-CNN was used in our study because 
the extracted spectrum was one-dimensional signal. Generally, the structure of a CNN-based 
model consists of an input layer, multiple hidden layers (convolutional layers, pooling layers, fully 
connected layers), and an output layer [36]. A structure of 1D-CNN based model also comprises a 
convolutional layer and a 1D filter suitable for spectral data. As was carried out for the ANN, the 
layer structure for the 1D-CNN was determined through trial-and-error repetitions, and the one 
with the highest performance was selected. Additionally, a dense layer consisting of 100 nodes was 
added before the result was reached. The ReLU function was used for all hidden layers. Fig. 4 shows 
the structure of the 1D-CNN used in this study. Since the models were created using four different 
techniques, evaluation indicators were needed for the comparison of their performances. This was 
achieved through three commonly used indicators for the evaluation of predictive model: R2, mean 
absolute error (MAE), and RMSE, calculated using Equatios (2), (3), and (4), respectively:

	
( )

( )

2
2 1

2

1

=

=

−
=

−

∑
∑

n
i ii

n
ii

A P
R

A A
	 (2)



Spectral spectrum analysis according to storage conditions of beef

296  |  https://www.ejast.org https://doi.org/10.5187/jast.2024.e110

	 1

1MAE
n

i ii
A P

n =
−= ∑ 	 (3)

		

	 ( )2
1

1RMSE
n

i ii
A P

n =
−= ∑ 	 (4)

where n is the total number of data points, Ai is the actual output values, Pi is the predicted output 
values, and A- is average.

Verification of the predictive model
To ensure the generalizability of the developed model, a rigorous verification process was 
implemented. While the training and test sets were strictly separated during model development, 
both used samples from the same carcass. This potential limitation in variability prompted an 
additional verification step. At a different time, completely different beef samples were purchased 
and stored under identical conditions to those used for model development. All procedures used for 
the training and test sets were meticulously replicated with these new samples to create a dedicated 
verification set. This verification set was then applied to the previously developed models to assess 
their versatility.

RESULTS AND DISCUSSION
Total aerobic bacterial measurements
Fig. 5 shows the TAB values for different treatments of the beef samples. Similar to the results 
reported by other research, the TAB increased by approximately 3 folds with each passing week [37]. 
And no specific packaging or air conditioning treatments were applied to the samples, resulting in 
higher microbial counts compared to previous study [38]. Statistical differences among the results 
were evaluated using Scheffe’s post hoc test, with a significance level set at 5%. For this analysis, 
SPSS 26.0 statistical software package (IBM) was utilized. As anticipated, the five experimental 
dates clustered into three distinct groups based on their proximity. Furthermore, the analysis 
revealed that storage duration had a more pronounced effect on the proliferation of TAB.

Spectrum extraction and performance of the regression models
A total of 5,285 spectra were extracted from the hyperspectral images of red meat area. The entire 

Fig. 4. Layer structure of the one-dimensional convolutional neural network used in this study.
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data set (n = 5,285) was then divided into a training set (n = 4,228) and a test set (n = 1,057). 
Table 1 shows the performance of the PLSR models in predicting TAB for different preprocessing 
methods. All models developed using the five data types achieved a coefficient of determination (R2) 
of 0.8 or higher, indicating successful training without significant issues. Evaluation on the five test 
data subsets likewise resulted in R2 values of 0.8 or greater. If the R2 values of the training and test 

Fig. 5. Counts of total aerobic bacteria (TAB) according to sample treatments and days of storage. The 
values represented by the bars are the mean of three replicates of the experiment, and the error bars represent 
the standard deviation. Denoted by +, ++ when Scheffe’s post hoc test shows statistical significance.

Table 1. Performance of the PLSR models in predicting total aerobic bacterial counts for different 
preprocessing methods

Preprocessing n1) Data set R2 MAE RMSE
Raw 19 Training 0.8766 0.6624 0.8512

Test 0.8630 0.7043 0.8823
MSC 21 Training 0.8816 0.6482 0.8358

Test 0.8622 0.6811 0.8755
SNV 19 Training 0.8891 0.6220 0.8073

Test 0.8650 0.6775 0.8734
Savitzky-Golay 1st Filter 23 Training 0.8761 0.6645 0.8546

Test 0.8588 0.6891 0.8893
Min–Max Normalization 19 Training 0.8764 0.6555 0.8440

Test 0.8637 0.7270 0.9130
1)Number of components.
PLSR, partial least squares regression; MSC, multiplicative scatter correction; SNV, standard normal variate.
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sets were significantly different, it would suggest overfitting [39], but since this is not the case, it was 
determined that overfitting did not occur during the modelling process. The number of components 
in the PLSR models was in the range of 19–23.

The performance of the SVM, ANN, and 1D-CNN models is shown in Table 2. These models 
consistently outperformed the PLSR model in terms of prediction accuracy. When evaluated 
on the training set, almost all preprocessed data types achieved R2 values of 0.9 or higher, except 
1D-CNN with some preprocessing methods. When testing SVM models, using data preprocessed 
by MSC achieved the best performance, with an R2 value of 0.9617 and an RMSE of 0.4659. And 
this result suggests that data preprocessing methods with scatter correction, such as MSC and SNV, 
are advantageous compared to other techniques. This finding is consistent with the SVM’s reliance 

Table 2. Performance of the support vector machine, artificial neural network, and one-dimensional 
convolutional neural network model in predicting total aerobic bacterial counts for different 
preprocessing methods

Machine learning Preprocessing Data set R2 MAE RMSE
SVM Raw Training 0.9364 0.3844 0.6093

Test 0.9166 0.4594 0.6962

MSC Training 0.9706 0.2038 0.4156

Test1) 0.96171) 0.26721) 0.46591)

SNV Training 0.9731 0.1907 0.3982

Test 0.9560 0.2808 0.4950

Savitzky–Golay 1st Filter Training 0.9353 0.3941 0.6155

Test 0.9171 0.4620 0.6914

Min–Max Normalization Training 0.9343 0.3850 0.6169

Test 0.9210 0.4701 0.6891

ANN Raw Training 0.9960 0.1172 0.1519

Test 0.9841 0.1490 0.3084

MSC Training 0.9987 0.0695 0.0884

Test 0.9764 0.1483 0.3741

SNV Training 0.9991 0.0546 0.0716

Test 0.9901 0.1479 0.2372

Savitzky–Golay 1st Filter Training 0.9976 0.0948 0.1191

Test 0.9876 0.1214 0.2718

Min–Max Normalization Training 0.9967 0.1006 0.1376

Test1) 0.99261) 0.12471) 0.21141)

1D-CNN Raw Training 0.8654 0.6720 0.8876

Test 0.8557 0.6854 0.9118

MSC Training 0.9291 0.5252 0.6426

Test 0.8767 0.6658 0.8510

SNV Training 0.9886 0.2150 0.2571

Test 0.9580 0.3080 0.4976

Savitzky–Golay 1st Filter Training 0.7677 0.9097 1.1510

Test 0.7673 0.9391 1.1684

Min–Max Normalization Training 0.9942 0.1415 0.1848

Test1) 0.97191) 0.27811) 0.39901)

1)Indicates the optimal prediction performance achieved in each category.
MAE, mean absolute error; RMSE, root-mean-square error; SVM, support vector machine; ANN, artificial neural network; 
1D-CNN, one-dimensional convolutional neural network; MSC, multiplicative scatter correction; SNV, standard normal variate.
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on hyperplanes for class separation, as outlier removal through scatter correction can contribute to 
improved model performance.

As presented in Table 2, the predictive performance of the ANN model was superior to that 
of the other models. The training set yielded R2 values of 0.99 or higher, whereas the test set 
yielded R2 values of 0.97 or higher, which indicated a fit of the model with the experiment data. 
The best performance during test was exhibited by the ANN model constructed using min–
max normalization data, which yielded an R2 value of 0.9926 and RMSE value of 0.2114. This is 
comparable to or slightly better than previous study [16]. The 1D-CNN models were the only ones 
that showed significant deviations in performance according to the data preprocessing technique 
used. Since the 1D-CNN does not follow the basic structure of a CNN that extracts morphological 
characteristics, the development of a segmental structure through the extraction of only the red 
meat region from the original hyperspectral data cube did not affect the interpretation of the results.

Fig. 6 presents the best test result for four models. Among these models, the ANN model with 
min-max normalization achieved the superior predictive performance. As can be observed in Fig. 

Fig. 6. Graphs depicting the best prediction of total aerobic bacterial count by each model. (A) Partial least squares regression model, (B) Support 
vector machine model, (C) Artificial neural network model, (D) One-dimensional convolutional neural network model.
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6A and 6B, the PLSR and SVM based models exhibited lower performance compared to ANN 
and 1D-CNN based models shown in Fig. 6C and 6D, respectively. This is well illustrated by the 
wider distribution of predictions for samples sharing the same reference value in Fig. 6A and 6B. 
Consequently, it is reasonable to posit that prediction using neural network architecture offers a 
more viable modeling approach.

Construction of chemical map and model verification
Fig. 7 shows the chemical map of predicted TAB count generated by inputting the hyperspectral 
data extracted from the red meat into the ANN model, which was identified to have the best 
predictive performance. Since only the spectral data extracted from the red meat area were used, 
all regions other than the red meat appeared as black spaces. This method allowed for direct visual 
observation of the differences in microbial quality of beef samples from each experimental group. 
Compared to previous studies [40], we demonstrate that the time-dependent microbial quality 
changes of beef samples were more clearly discernible due to the enhanced resolution and contrast 
provided by our study. The control group samples that were kept in refrigerated storage showed a 
generally uniform color distribution. The result suggests that an inappropriate storage method could 
cause deterioration of the meat quality that may be undetectable by visual inspection.

Fig. 7. Chemical map of total aerobic bacteria in red meat samples, constructed using the ANN model of 
highest performance. Each pixel represents a location where a spectrum was actually acquired, with non-lean 
fat areas appearing blank because no spectrum was acquired. TAB values are in units of Log CFU/g.



https://doi.org/10.5187/jast.2024.e110 https://www.ejast.org  |  301

Park et al.

As a final step, additional experiments were conducted to verify the practical performance of 
the TAB prediction models which were presented in Tables 1 and 2. For this purpose, the TAB 
prediction performance of developed models was re-evaluated on a completely separate new beef 
samples from the beef samples used in the development of TAB prediction models. Table 3 shows 
the test performance of the best models for predicting TAB during the first model development 
process and the final verification step. As a result of verification test, it was observed that the R2 of 
the PLSR model decreased by 42.78% compared to the test results specified in Table 1. However, 
the R2 values of the other three models, SVR, ANN, and 1D-CNN based prediction models, were 
confirmed to be 0.7988, 0.8593, and 0.8479, respectively. These results are 16.94%, 13.43%, and 
12.76% lower than the R2 values of the SVR, ANN, and 1D-CNN based prediction models shown 
in Table 2, respectively.

Although it was confirmed that the TAB prediction performance for completely new beef 
samples was reduced, the RMSE of the ANN and 1D-CNN based models acquired during 
verification test were 0.6947 and 0.681, respectively. These RMSE results can be analyzed as having 
a prediction error of about 7%, considering that the TAB destructively measured in actual beef 
samples were distributed in the range of 2.5 to 10. Through the verification test results, it was also 
observed that models based on artificial neural network methods such as ANN and 1D-CNN 
show better prediction performance than other machine learning-based models. Also, these results 
show the same trend as the model evaluation results shown in Table 2. If learning data for more 
diverse beef samples is acquired and additional, periodic learning processes are performed, the 
performance of machine learning models that can predict specific ingredients can be expected 
to improve to a certain level. Although this study cannot be said to have developed a sufficiently 
satisfactory prediction model that can be applied to all beef samples, it confirmed the possibility of 
predicting the TAB of beef non-destructively and non-invasively using machine learning methods 
and hyperspectral imaging technique. Further empirical research applying the methods and 
models presented in this study could lead to the development of commercially viable beef quality 
evaluation technology applicable in real-life settings. Accurate quality prediction helps livestock 
breeders develop and apply better husbandry practices, which ultimately leads to higher quality 
beef production. These technologies also enable faster response to consumer demand, enabling 
product development to meet market trends. Collaboration between industry and academia will 
play an important role in integrating these advanced technologies into existing quality management 
systems.

Table 3. Test performance of the best models for predicting total aerobic bacterial counts during the 
first model development process and the final verification step

Model type Method Preprocessing R2 MAE RMSE
Developed using the 
first beef samples

PLSR SNV 0.8650 0.6775 0.8734

SVR MSC 0.9617 0.2672 0.4659

ANN Min–Max 0.9926 0.1247 0.2114

1D-CNN Min–Max 0.9719 0.2781 0.3990

Tested using new 
beef samples for 
verification

PLSR MSC 0.4949 1.4984 1.8281

SVR SNV 0.7988 0.6570 0.8152

ANN MSC 0.8593 0.5245 0.6947

1D-CNN SNV 0.8479 0.5093 0.6810
MAE, mean absolute error; RMSE, root-mean-square error; PLSR, partial least squares regression; SVR, support vector 
regression; ANN, artificial neural network; 1D-CNN, one-dimensional convolutional neural network. 
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CONCLUSIONS
In this study, models for the non-destructive prediction of TAB in beef samples using NIR 
hyperspectral data were developed. Beef samples were exposed to various temperature conditions 
for 15 d to induce microbial growth and changes in meat freshness. For each meat sample, spectral 
data were obtained using a hyperspectral imaging system, and the TAB values were evaluated using 
the conventional plate count method to derive the reference counts for microbial contamination 
levels. In total, 5,285 spectra were extracted for the raw spectrum data and divided into a training 
set (80%) and a test set (20%). Then, models were developed using the PLSR, SVR, ANN, 
and 1D-CNN techniques. The predictive performance of each model was evaluated using the 
performance indicators R2, MAE, and RMSE. The ANN model was found to have the best 
predictive performance when the data was preprocessed using the min-max normalization method. 
In addition, even in a verification experiment performed with completely different beef samples at 
a separate time, the ANN based TAB prediction models showed somehow acceptable performance 
(R2: 0.85).

Recently, machine learning or deep learning-based ANN, CNN techniques have shown good 
performance in various fields. This study also successfully demonstrated the potential of ANN 
and 1D-CNN models for predicting TAB in beef using NIR hyperspectral data. These results are 
consistent with the growing body of research demonstrating the effectiveness of deep learning 
architectures in various analytical tasks. In our study, while both 1D-CNN and ANN models 
achieved high predictive performance, the ANN structure consistently outperformed for all 
data preprocessing methods. Interestingly, 1D-CNN performance showed greater sensitivity to 
preprocessing techniques, suggesting the potential for further optimization in this area.

In our study, there were some difficulties or limitations associated with the experiment and data 
acquisition. The number of sample groups was set to only three, and the observed microbial values 
were grouped by experimental day, resulting in a less diverse microbial population compared to real-
world situations. Also, the experimental period was considered insufficient to represent all actual 
situations in the field. These experimental conditions have limitations in securing the diversity that 
can occur in actual distribution situations. To improve the generalizability of the models, future 
research should include data with a wider range of TAB that reflects the natural variability of 
microbial quality in beef. In addition, exploring the integration of other relevant data sources, such 
as temperature or storage conditions, alongside NIR spectral data could potentially refine model 
accuracy. Nonetheless, the approaches suggested in this study have the potential to provide more 
feasible and efficient tools for non-destructive microbial quality assessment in the meat industry.
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