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Abstract
Selected feed additives (probiotics, prebiotics, synbiotics, postbiotics, phytogenics, feed 
enzymes, and organic acids) are reviewed for reported biological responses, and some 
recent developments when incorporated into laying hen diets. Several feed enzymes (phytase, 
carbohydrase, protease, and multi-enzymes) have been adopted to improve the nutritive 
quality of feedstuffs by mitigating inherent digestive function inefficiencies, complementing 
endogenous enzyme activity, and cleaving anti-nutritional factors abundant in vegetable-
based poultry diets. Phytase use is targeted at hydrolyzing phytate to liberate phosphorus 
and possibly other encapsulated nutrients, with widely reported environmental and economic 
benefits. Proteases often improve the hydrolysis of amino acids and protein complexes to 
improve dietary protein digestibility and utilization, potentially restoring performance losses 
and maintaining the egg quality of hens fed low-protein diets whose CP level has been 
further reduced. The digestibility-enhancing effects of fiber-degrading carbohydrases are 
associated with the reduction of intestinal viscosity and improved energy utilization through 
depolymerization of soluble non-starch polysaccharides. Considering that nutrients exist in a 
complex matrix involving starch and non-starch polysaccharides, protein, lipids, minerals, and 
vitamins, laying hens could also benefit from potential additive and synergistic effects accrued 
from adopting defined feed enzyme combinations. The incorporation of gut-health-promoting 
feed additives (pre, pro, syn- and postbiotics, phytogenics, organic acids) optimizes feed 
nutrient utilization by inducing immuno-stimulatory, antimicrobial, and antioxidant activities, 
modulating gut immune function, and microbial balance and population. Hen responses to feed 
additives are context-dependent and highly variable due to various factors, including rearing 
system, age, breed, health status, environmental factors, feed composition and quality, and 
management. However, on balance, feed additive products with proven efficacy and financial 
value are recommended for inclusion in laying hen diets; and could potentiate optimized 
performance and egg quality, reduced feed costs, improved animal welfare and skeletal 
health, and reduced environmental stress due to nutrient excretion, thereby improving the 
economic and environmental sustainability of hen egg production. Strategic application of 
feed additive combinations could potentiate additive and synergistic responses. 
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INTRODUCTION
Increasing human food production is essential in line with the global population increase and food 
demand. As the fastest-growing animal-based food sector, the poultry industry is well-positioned to 
address rising consumer expectations and sustainability concerns [1]. The avian egg, beyond being 
the reproductive unit for the domestic fowl, is an encapsulated nutrient-dense, highly digestible, and 
reasonably priced food, packing proteins, vitamins, micronutrients, and bioactive substances [2,3]. 
Accordingly, global egg production has increased significantly by more than 69% from 2000 to 
2021 [3], coinciding with improvements in egg demand and hen productivity. Asia is showing the 
greatest production growth, followed by the Americas, Europe, Africa, and Oceania [4]. With a 34 
percent share, China retained its position as the largest hen egg producer; the other main producers 
(India, the United States of America, Indonesia, Brazil, Mexico, Japan, and Russia) each accounted 
for 3 to 8 percent of the global production [4]. The combined share of the main producers 
accounted for more than 69% of the global production by 2021.

The entire layer industry is dependent on the productive efficiency of the hen to lay approximately 
one sound egg within 24–26 hours, making consistent productivity and egg quality the cornerstone of 
any successful commercial laying hen enterprise. Modern laying hens exhibit enhanced reproductive 
performance and could sustain egg laying further beyond 68–70 weeks of age to reach approximately 
100 weeks of age and yield almost 500 eggs of acceptable quality [5,6]. Achieving and sustaining 
this high productivity expectation relies heavily on strategic hen nutrition aimed at maximizing the 
genetic potential of modern hens, supporting consistent egg production, maintaining egg quality, 
and ensuring overall health and welfare. Early-life nutrition to achieve optimal body weight and 
composition at sexual maturity mitigates potential delays in the onset of lay, and optimizing pullet 
diets potentiates laying persistency [7]. At the same time, the layer industry faces pressure to optimize 
limited feed resources and phase out antibiotic growth promoters (AGPs) [8]. Since feed constitutes 
the largest input cost, optimizing nutrient utilization and digestive efficiency is paramount with 
potential beneficial outcomes on animal performance, health, and welfare, as well as economic and 
environmental sustainability. 

The poultry industry has had to adapt in line with growing pressures revolving around AGP use 
and public health, environmental pollution, animal welfare, changing consumer expectations, and 
rising food and feed costs. Notable advances in hen nutrition and modern biotechnology have made 
it possible to implement several nutritional approaches aimed at reducing feed costs; maintaining 
hen health, modulating gut microbiome population and balance; improving performance; and 
optimizing feed nutrient utilization. Improved nutrient utilization reduces nutrient excretion and 
alleviates environmental stress, promoting sustainable poultry production [9]. Improved nutrient 
utilization could additionally improve egg quality characteristics for functional value in human 
nutrition. These nutritional strategies often target gut health, which is defined as the dynamic 
balance between the diet, commensal microbiome, intestinal mucosa, and immune system essential 
for maintaining physiological functions, homeostasis, and resilience against stressors [8]. 

One such strategy is the incorporation of feed additives into hen feeding regimens. Feed 
additives are typically defined as compounds added to a diet in low amounts (usually 50–500 g/
tonne) to elicit targeted responses, independent of the hen’s nutritional requirements [10,11]. 
Several feed additives have been mainstreamed in hen diets to improve feed ingredient quality, 
performance, and gut health. Feed additive choice depends on regulatory authorization, availability, 
and most importantly, economic justification [12]. Selected feed additives (probiotics, prebiotics, 
synbiotics, postbiotics, phytogenics, feed enzymes, and organic acids) are reviewed for their 
reported effects and recent developments when incorporated into hen diets. Notably, large 
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amounts of research have been generated on the biological responses of laying hens to feed additive 
incorporation, and it is beyond our scope to summarize the amount of information in this field. This 
review explores selected feed additives and their role in modulating productivity, egg quality, and 
gut health of laying hens while emphasizing key concepts and suggesting critical areas warranting 
further exploration. 

SELECTED FEED ADDITIVES
Exogenous enzymes as feed additives 
The availability of exogenous feed enzymes with affordable pricing and established efficacy has 
given nutritionists a viable tool to improve feed ingredient quality [11]. Increased knowledge on 
target feed constituents and modern biotechnology have made it possible for exogenous feed 
enzymes to be the one of the most extensively researched and widely adopted feed additive and 
could arguably be the most impactful development in modern poultry nutrition. The growth in 
the feed enzyme industry is driven by the ban on AGP use to enhance performance and feed 
utilization efficiency; increased cost and erratic supply of conventional feed ingredients, reinforcing 
the need to maximize nutrient extraction and reduce wastage through excretion. Feed enzymes 
targeting various substrates (Table 1) have been mainstreamed in poultry diets to correct the 
inherent nutrient utilization inefficiency and mitigate antinutritional factors [13]. Feed enzymes 
work through multiple mechanisms to improve nutrient digestibility, including disruption of cell 
wall integrity, shifting digestion sites, reducing endogenous secretions, modulating gut microbiota, 
and the degradation of specific bonds and antinutritional factors, as illustrated in Fig. 1 [11,14,15]. 
Enhanced nutrient utilization deprives harmful bacteria of nutrients in the lower gut (mainly ceca) 
and is likely to result in improved performance, health status, and environmental sustainability. 
Enzymes are either i) added “over the top” to adequately formulated rations for additional 
improvements or ii) incorporated into nutrient-reduced formulations to restore the nutritional value 
and compensate for any potentially reduced performance responses. 

Phytase
Phosphorus is the third most expensive nutrient in poultry diets, following energy and protein. 
However, more than 65% of phosphorus in common plant-based feed ingredients is bound to 
phytate (myo-inositol hexa-phosphate; IP6), rendering it biologically unavailable without enzyme-

Table 1. Enzyme types and target substrates
Enzyme type Target substrate Target feedstuff

Phytases Phytate All plant-derived ingredients

Proteases Proteins All plant protein sources

Carbohydrases

Xylanase Arabinoxylan Wheat, rye, triticale, barley, fibrous plant materials

Pectinase Pectin Plant-derived ingredients 

β-Glucanase β-Glucan Barley, oats, and rye

α-Galactosidase Oligosaccharides Oilseed meals and grain legumes

Amylase Amylose Cereal grains, grain legumes

Mannanase, cellulase, hemicellulase Mannan, cellulose, hemicellulose Plant-derived ingredients, fibrous plant materials

Lipase Lipids Lipids in feed ingredients 
Data from Kiarie et al. [10], Perera and Ravindran [11], Ravindran [15].
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induced dephosphorylation. Phytase inclusion has become a common strategy to catalyze phytate 
and release phosphorus, with well-documented environmental and economic benefits [14]. 
Particularly, supplemental phytase improves phytate P utilization and reduces P excretion, thereby 
mitigating environmental pollution. Phytase supplementation in diets low in available phosphorus 
(avP) could save on feed costs by decreasing the need for inorganic P supplementation [16]. Beyond 
phosphorus release, phytase could exert ‘extra-phosphoric effects’ by improving the bioavailability of 
other encapsulated nutrients, including minerals, energy, and amino acids [17]. 

Supplemental phytase in hen diets is associated with improved production performance and 
egg quality, including enhanced shell quality attributed to improved mineral digestibility [18,19]. 
Beyond production, phytase-mediated improvements in nutrient utilization are linked to improved 
tibia quality in terms of higher breaking strength and Mg contents [20]. Furthermore, heat stress, 
known to disrupt the physiological function and reduce mineral absorption and retention [21,22], 
exacerbates performance losses, compromises immune response and welfare, and could even result 
in mortalities, causing unnecessary economic losses [23]. Phytase supplementation under heat stress 
conditions may alleviate these negative responses in laying hens, potentially improving performance 
and egg quality [24]. Moreover, phytase has been reported to mitigate the stress response induced 
by low avP diets, as evidenced by reductions in circulating stress hormone levels [20]. 

The widespread adoption of phytase has generated potential interest in its super-dosing effects 
at higher than recommended levels [25]. Super-dosing is aimed at greater phytate hydrolysis and 
liberating as much phosphorus as possible by generating lower esters of IP6. It was previously 
reported that supplemental phytase at 1,500 FTU/kg resulted in increased inositol phosphate 
breakdown and bone quality; however, performance and egg quality were unaffected from 40 to 60 

Fig. 1. Mode of action, beneficial activities and impacts of incorporating exogenous enzymes in laying hen diets.
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weeks of age [17]. Furthermore, Lima et al. [19] reported that optimal performance and egg quality 
were observed at 1,500 FTU/kg, and further supplementation at 3,000 FTU/kg did not result 
in extra improvements from 44 to 64 weeks of age. Notably, lower phytase levels (500 and 1,000 
FTU/kg) were sufficient to maintain the hens’ physical and physiological status [19]. Despite the 
promising findings, it is the authors’ observation that phytase super-dosing in laying hens remains 
largely unexplored. The next step would be to conduct further research on phytase super-dosing to 
determine the optimal inclusion levels that will save on feed cost while optimizing performance, egg 
quality, gut health, and bone function, without adversely affecting the hens’ physiological balance. 

Protease 
The supply of protein (amino acids) occupies the second most expensive component of poultry 
diets after energy. Strikingly, significant quantities of feed protein (around 18%–20%) are known 
to escape complete digestion in the avian gastrointestinal tract [26], leading to undesirable hindgut 
fermentation and elevated nitrogen excretion, with associated negative effects on bird health and 
environmental sustainability [27]. Exogenous protease supplementation has emerged as a promising 
strategy to optimize protein digestibility and utilization, particularly in low denotes crude protein 
and amino acids (CP/AA) diets [28]. The rationale behind this approach is to provide enough 
room for protease-mediated improvements in amino acid metabolism that could restore potential 
performance deficits with reduced CP/AA diets [29]. By improving protein digestibility and 
utilization, protease adoption also allows for partial displacement of expensive protein ingredients, 
thereby supporting hen performance at relatively reduced costs. 

When incorporated into laying hen diets, protease has been reported to supplement endogenous 
protease activity and enhance the digestibility of protein and amino acids [29–31] These improvements 
are attributed to potential additive effects on gut function, including shifting the site of digestion to 
more proximal segments [32], reducing endogenous losses [33], and enhancing amino acid availability 
for mucin synthesis [34]. Additionally, supplemental protease has been associated with enhanced gut 
morphology [29]; stabilized gut pH [26]; upregulated expression of intestinal amino acid transporters 
[35]; suppression of pathogenic microorganisms [36]; and mitigation of anti-nutritional factors 
in plant-based diets [37]. The benefits of protease extend beyond amino acid utilization, thereby 
improving the digestibility of metabolizable energy (ME), net energy, fat, and starch [33]. 

The digestibility-enhancing effect of protease is linked to improved performance metrics, 
including egg mass, weights, and feed conversion ratios [29–31], effectively restoring reported 
performance losses from feeding low-protein diets [28]. We previously investigated the effects 
of supplementing a multiprotease combining acid (pepsin-type protease), neutral (metallo-
endopeptidase), and alkaline (serine endopeptidase) proteases, produced by Aspergillus niger, Bacillus 
subtilis, and Bacillus licheniformis, respectively [29]. Multiprotease supplementation led to improved 
productive performance (feed conversion efficiency, egg weights, egg mass), and egg quality 
(Haugh units and egg-breaking strength [29]. Improved internal egg quality, especially elevated 
Haugh units, indicating enhanced egg freshness and protein content [31]. Improved eggshell 
breaking strength suggests an “extra-proteinaceous” influence on mineral absorption and utilization, 
potentially reducing egg breakage during transport and handling [29,38]. 

Furthermore, reducing dietary protein often increases the dietary energy-protein ratio, 
potentially leading to higher fat deposition, particularly abdominal fat [39]. Although short-term 
increases in carcass fat may indicate sufficient energy status [40], excessive fat accumulation, as could 
be the case with longer laying cycles, could decrease egg production and quality [41]. Interestingly, 
supplemental protease in low CP/AA diets may potentially counteract these effects. For instance, Yi 
et al. [42] reported that broilers that were fed alkaline protease extracted from Bacillus licheniformis 



https://doi.org/10.5187/jast.2500369 https://www.ejast.org  |  55

Oketch and Heo

exhibited decreased fat accumulation, likely mediated by a shift in gut microbiota, specifically 
increased Bacteroidetes and reduced Firmicutes. These findings warrant further investigation in 
laying hens to elucidate potential interactions between protease, microbiome composition, and fat 
metabolism. 

Varied results have also been reported [43] and could be explained by differences in diet (protein 
quality, feed ingredient type) and bird-related factors (age and genotype). Furthermore, excessive 
CP reduction can compromise performance due to inadequate non-essential amino acids, disrupted 
electrolyte balance, and lowered potassium levels [44]. Protease products with proven efficacy in 
improving amino acid digestibility should be considered for inclusion in low-CP diets to restore 
performance losses, eliciting both economic and environmental benefits. Mineral digestibility and 
utilization are integral to laying hen performance. It is the author’s observation that not much 
has been done to understand the effects of protease on mineral digestibility and utilization, bone 
mineralization, and egg quality. Future studies should address these gaps to improve the current 
understanding of the broader impacts of protease inclusion in laying hen diets. 

Carbohydrases
Energy, a property derived from nutrient metabolism, is known to be the most expensive dietary 
requirement in feed formulations. As monogastrics, poultry inherently lack the endogenous 
enzymes to degrade the complex structures of plant cell walls, especially non-starch polysaccharides 
(NSPs) present in common feedstuffs [45,46]. NSPs are a diverse group of complex carbohydrates 
that differ in structure, size, and water solubility. They include cellulose, hemicelluloses such as 
arabinoxylans, β-glucans, and fructans [47,48]. In common grain-based poultry diets, cellulose, 
arabinoxylans, and β-glucans make up the bulk of the fiber content [49]. NSPs impair nutrient 
utilization by increasing digesta viscosity, inhibiting intestinal peristalsis, prolonging digesta 
passage rate, disrupting microbiota balance, and reducing endogenous enzyme activity [47–49]. 
It is becoming increasingly important to consider the role of NSPs, particularly β-mannans, in 
triggering what is known as a feed-induced immune response [50]. This response causes birds 
to expend additional energy to sustain an unnecessary immune activation, ultimately diverting 
resources away from growth and productive purposes [51]. Collectively, these digestive disturbances 
reduce nutrient digestibility and performance [48,49]. To address the rising energy supply cost 
and improve energy utilization, exogenous carbohydrases such as xylanases, β-mannanases, and 
β-glucanases are increasingly being adopted to catalyze specific substrates, as illustrated in Table 1 
[15,49,52]. Increased energy utilization efficiency may partially compensate energy requirements 
and allow the inclusion of relatively inexpensive and mostly fibrous ingredients, reducing feed costs 
without compromising performance [53].

Today, nearly all diets that are wheat or barley-based incorporate xylanase and β-glucanase 
enzymes to improve nutrient digestion and feed efficiency. Increasing evidence shows that 
carbohydrases improve nutrient digestibility by depolymerizing soluble NSPs, reducing intestinal 
viscosity, and enhancing nutrient availability [46,47,54]. Supplemental beta 1–4, endo-xylanase was 
reported to modulate gut viscosity, caecal pH, digesta transit, NSP degradation, and microbiota 
composition, leading to improved energy utilization and lower excreta moisture [55]. Lowered 
excreta moisture is correlated with reduced incidence of dirty eggs [56], even though conflicting 
results have also been reported [53,57]. Xylanase supplementation has also been associated with 
improved feed conversion ratio, egg mass, egg production, and egg quality traits such as yolk color, 
shell thickness, albumen height, and Haugh unit [45,53,58]. Similarly, supplemental β-mannanase 
restored the performance losses of energy-reduced diets by modulating gut morphology, reducing 
inflammation, improving energy utilization, and promoting beneficial cecal microbiota [47]. 
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Supplemental carbohydrase effects on hen performance and egg quality are variable and 
inconsistent. For instance, Cufadar et al. [59] reported that the laying performance of White 
Leghorn Lohmann Selected Leghorn (LSL) laying hens was unaffected by a bacterial endo 
1,4-β-xylanase supplemented from 52 to 64 weeks of age. These observations suggest the high 
degree of complexity in the development and application of carbohydrases in laying hen diets, 
presenting both challenges and opportunities for optimizing carbohydrase enzyme utilization. 
Variability in response is primarily attributed to differences in NSP type and concentration [48], 
alongside other factors such as hen age and strain, enzyme source and dose, and feed ingredient 
composition and batch variation [45,57]. Carbohydrase products with proven efficacy in nutrient 
digestibility should be considered for inclusion in laying hen diets and could potentiate improved 
productive performance and egg quality.

Multienzymes
Poultry diets constitute multiple ingredients (corn, wheat, soybean meal, by-products) that are 
structurally complex and could each contain different antinutritional factors (NSPs, phytates, and 
protease inhibitors). Supplemental multienzymes have been investigated as a strategy to enhance 
complementary and additive effects across various feed components and are postulated to be more 
effective than single enzyme approaches in greater substrate hydrolysis and reducing the antinutritive 
effects on overall nutrient utilization [52]. Gunawardana et al. [60] demonstrated that a multienzyme 
blend containing xylanases, β-glucanases, mannanases, pectinases, and proteases improved energy 
and protein utilization, effectively improving egg production, body weight, egg mass, feed conversion, 
and albumen and yolk solids. Concomitantly, Scheideler et al. [61] reported that a multi-enzyme 
combining xylanase, protease, and amylase influenced protein and mineral (calcium and phosphorus) 
retention without affecting feed intake, feed conversion efficiency, egg production, egg weight, or 
egg mass. Furthermore, a non-starch polysaccharide-targeting enzyme blend containing xylanase, 
β-glucanase, galactosidase, and galactomannanase increased nitrogen digestibility and reduced excreta 
ammonia emissions with no adverse effects on egg quality or productive performance [62]. Further 
evidence reported synergistic effects on laying performance and egg quality of hens, which are 
attributed to the modulation of gut health [63,64]. These findings support the strategic adoption of 
multienzymes as a promising approach to optimize nutrient utilization, enhance production efficiency, 
and improve environmental sustainability for laying hens.

Biotics as feed additives
Chicken gut harbors a highly complex and dynamic microbial ecosystem that constitutes an 
integral part of the gut health nexus with definitive impacts on the overall health and productivity 
[65–67]. Several feed-related approaches targeted at modulating the gut microbiome are available, 
including probiotics, prebiotics, synbiotics, and postbiotics. Probiotics are defined as single or mixed 
cultures of non-pathogenic, live microbes that could exert health and productive benefits to the 
host when supplied in adequate amounts. For optimal efficacy, probiotic microbes must be non-
pathogenic, improve gut function and health, adhere to the intestinal epithelium, survive and thrive 
in the prevailing acidic environment in the gut, and retain viability during storage, processing, and 
transportation [68]. Some commonly used probiotic bacteria species include Bacillus, Streptococcus, 
Lactobacillus, Lactococcus, Saccharomyces, Aspergillus, and Enterococcus [69]. Probiotic bacteria could 
be delivered as single or multi-strain formulations via feed or water in the form of either granules, 
powder, liquid, paste, or gel [69]. 

Even though the probiotic mode of action is complex (Fig. 2), probiotics are suggested to be 
most effective following a disturbance. The beneficial effects of live microbial feed supplements 
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are mediated through multiple pathways including the microbiota–gut–brain, microbiota–gut–
immune, and the microbiota–gut–bone axes. Probiotic bacteria enhance microbial communities 
through competitive exclusion and antagonism towards pathogenic bacteria [70,71]. By improving 
and/or maintaining intestinal microbial diversity and balance, probiotics are reported to enhance 
colonization resistance against stressors; catalyze immune responses; promote gut integrity; 
and improve laying hen performance [71]. Probiotic-mediated improvements in laying hen 
performance, egg quality, and physiological responses are often linked to metabolites such as short-
chain fatty acids (SCFAs) and bile acids [66]. 

We previously reported that multi-strain probiotic supplementation of Bacillus subtilis PB6, B. 
subtilis FXA, and B. licheniformis G3 at 3×108 CFU/kg of feed improved egg quality, several 
tibia traits, and populations of beneficial cecal bacteria while reducing egg yolk cholesterol [67]. 
Suggesting the impact of the microbiota-gut-liver axis in bile acid enterohepatic circulation, the 
capacity of probiotics to lower yolk cholesterol has been corroborated by Li et al. [72] using a 
dried Bacillus subtilis culture. Reduced yolk cholesterol levels are attributed to several mechanisms, 
including bile salt hydrolase-mediated deconjugation of conjugated bile acids into free bile 
acids, which are less efficiently reabsorbed in the ileum and more readily excreted via the feces 
[67]. Additionally, probiotic bacteria can directly assimilate cholesterol for their metabolism. 
Furthermore, SCFAs, particularly propionate, may inhibit hepatic cholesterol synthesis by 
downregulating 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase), the rate-
limiting enzyme in the mevalonate pathway [73]. These probiotic-mediated processes in reducing 
yolk cholesterol align with health-conscious consumer demands.

As breeding targets are increasingly focused on extended laying cycles, bone health becomes 
increasingly critical for maintaining performance and egg quality [74]. Laying hens possess three 

Fig. 2. Classification, mode of action and some beneficial activities associated with biotic feed additives in laying hen diets.
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primary bone types- cortical, trabecular, and medullary. The medullary bone, which develops at the 
onset of sexual maturity, acts as a labile calcium reservoir buffering against dietary calcium insufficiency 
during eggshell formation [6]. In contrast, cortical bone provides structural support for the skeleton 
and is produced through osteoblastic activity till the onset of sexual maturity and egg production. 
Long-term laying behavior leads to supplemental calcium extraction from structural bone (cortical 
and trabecular), occasioning net loss of mineral mass, and may lead to osteoporosis (cage fatigue 
syndrome) and reduced egg quality over time [75]. Improvement of tibia traits is linked to probiotic 
modulation of mineral absorption and bone mineralization through various mechanisms, including 
stimulating intestinal epithelial cell proliferation and differentiation [66], and lowering gut pH [67], 
potentially mitigating age-related skeletal deterioration and eggshell defects. 

Prebiotics, on the other hand, are selectively fermented feed ingredients that stimulate the 
growth and activity of beneficial gut bacteria, indirectly exerting beneficial effects on host health 
[71]. Prebiotics could fuel the growth of beneficial gut microbes while limiting the establishment 
of foodborne pathogens, thereby improving host microbial balance [76]. Prebiotic fermentation 
could also inhibit hindgut protein fermentation, effectively decreasing toxic secondary nitrogen 
metabolites, improving nitrogen balance, and promoting gut health function [77]. Common 
prebiotic compounds include oligosaccharides such as inulin, lactulose, fructooligosaccharides (FOS), 
mannan-oligosaccharides (MOS), galactooligosaccharides (GOS), and xylo-oligosaccharides [70]. 
Prebiotics may exert effects similar to probiotics by enhancing gut health, modulating immune 
responses, and improving host performance (Fig. 2). For instance, dietary inclusion of MOS has 
been reported to enhance productive performance and reproductive function in laying hens [78]. 
Conversely, productive performance, immune response, and blood parameters of laying hens were 
unaffected by FOS [79]. 

Furthermore, it is also reasoned that synergistic effects could be drawn from both prebiotics and 
probiotics in a combined form as synbiotics. The justification for synbiotics is that a fermentable 
prebiotic substrate could increase the number, survival, and establishment of beneficial probiotic 
bacteria [71]. In laying hens, synbiotics are increasingly explored as nutritional strategies to 
optimize gut health, nutrient digestibility, productive performance, egg quality, immune modulation, 
and pathogen suppression [71]. However, it has been noted that consistent additive or synergistic 
impacts are rare. In many cases, either prebiotics or probiotics could effectively improve laying 
performance, egg quality, nutrient absorption, and host physiological responses [80]. 

Recently, attention has been drawn to postbiotics, which are soluble and non-viable metabolites 
from microorganisms that have biological activity when supplied in adequate amounts. These 
include cell wall fragments, extracellular vesicles, short-chain fatty acids, enzymes, bacteriocins, 
vitamins, and other metabolic by-products with the potential to suppress pathogens, strengthen 
gut barrier function, and modulate immunity and gut microbiome [81]. Several other names have 
been used for postbiotics, including pseudo-probiotics, ghost probiotics, paraprobiotics, metabiotics, 
abiotics, cell-free supernatants, and biogenics [82]. Postbiotics are reported to overcome some 
problems associated with probiotics, including viability during storage, the temporary nature of 
colonization, and the possible transfer of virulent genes to pathogenic bacteria. Postbiotics are 
ascribed to be stable and safe with reduced impact on feed nutrient components [82]. Choe et al. 
[83] reported that metabolite combinations of the Lactobacillus plantarum RI11, RG14, and RG11 
improved egg production, modulated fecal microbiota and pH, triggered intestinal morphological 
changes, and reduced plasma and yolk cholesterol concentrations.

Collectively, dietary approaches targeting gut microbiota can regulate the delicate balance 
between microbiota, diet, mucosa, and immune function, with definite influences on hen health and 
overall productivity [8,84]. Nevertheless, variabilities in responses remain a challenge, suggesting 
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the complex nature of the development and application of these microbiota-modulating approaches 
in laying hen diets. For instance, Mahdavi et al. [85] found no significant effects of a multi-
strain probiotic containing B. subtilis and B. licheniformis on laying performance or egg quality. 
The observed variabilities stress the species and/or strain specificity of probiotic bacteria and are 
attributed to the differences in microbial strains, dosages of administration, administration methods, 
environmental stress, and diet composition [67]. These variabilities present an exciting opportunity 
for the continued evaluation of probiotics, prebiotics, synbiotics, and postbiotics, when used singly 
or in combination, to determine their specific efficacy when incorporated into laying hen diets. 

Organic acids as feed additives
Organic acids (OAs) are original constituents of plant and animal tissues and include a variety of 
acids such as lactate, acetate, propionate, butyrate, and tannic acids, among others [70,86]. They are 
also produced via microbial fermentation of carbohydrates in the ceca. According to Pham et al. 
[87], OAs are chemically classified according to their carbon chain length into SCFAs (1–6 carbon 
atoms), medium-chain fatty acids (MCFAs; 7–12 carbon atoms), or long-chain fatty acids (LCFAs; 
13–21 carbon atoms). Singular or combined forms of OAs are supplied in water, sprayed in litter, 
or mixed in feed to exert several beneficial activities related to energy metabolism, antimicrobial 
control, and feed quality preservation [88]. Regarding energy metabolism, acetate is utilized as an 
energy substrate for muscle tissue, propionate supports the gluconeogenic pathway to generate 
glucose, and butyrate fuels ceco-colonic epithelial cells [86].

Beyond metabolic functions, OAs exert antimicrobial effects against pH-sensitive bacteria; lower 
gut pH; promote gut development, maturation, and integrity; and enhance nutrient utilization, 
health, and productivity as illustrated in Fig. 3 [71,88]. Their ability to lower chyme pH increases 
pepsin activity and calcium uptake, promoting protein degradation and mineral uptake [86]. These 
improvements can translate to improved internal egg and eggshell quality [89–91]. Improved 
eggshell qualities are attributed to improved integrity of reproductive organs, particularly the shell 
gland [92]. Improvements in egg production and weight have also been reported [90,93], though a 
lack of significant effects on both egg production and quality has also been observed [94]. 

The variability in responses is attributed to differences in OA type, dosage used, hen age, 
and diet composition. The effectiveness of OAs depends on their ability to change from the un-
dissociated to the dissociated form, their pKa value, and hydrophobicity. Of interest, the activity 
and concentration of OAs could be reduced in the distal gut segments unless they are protected by 
encapsulation [10,95]. Furthermore, blending different OAs is recommended to cater to variations 
in membrane permeability [70]. Notably, excessive supplementation can be detrimental, leading 
to reduced villus height and width, and crypt depth [96]. Administration of low dosages [70] or 
adherence to proper dosage [86] is crucial to maintain overall gut health as previously defined [8]. 
Continuous testing to determine the optimal dosage that supports performance and gut health 
function without adversely affecting the hens’ physiological and metabolic balance is recommended.

Phytogenics as feed additives
Phytogenic feed additives (PFAs) are a wide variety of natural bioactive compounds derived from 
plants. They include complex secondary constituents, such as terpenoids (linalool, menthol, borneol, 
geraniol, α-terpineol), phenolics (tannins), and low molecular weight aliphatic hydrocarbons 
(thymol, eugenol, carvacrol, cinnamaldehyde) [97]. PFAs are broadly classified based on their 
biological origin, formulation, chemical description, and purity into herbs, botanicals, essential oils, 
and oleoresins [98]. Phytogenics are thought to be natural, less toxic, and residue-free, and thus 
have been widely applied in both human and animal industries in the form of oregano, green tea, 
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peppermint, aloe vera, moringa, cinnamon, garlic, thyme, turmeric, rosemary, and coriander, among 
many others [13,99]. Phytogenics are widely reported to possess strong antimicrobial, immune-
enhancing, anti-inflammatory, and antioxidant activities [13]. 

Although the phytogenic mechanism of action is complex and not completely elucidated, it is 
suggested that PFAs activate the aryl hydrocarbon receptor (AhR) and nuclear factor-erythroid-
derived 2-like 2 (Nrf2) signaling pathways, which induce cytoprotective, homeostatic, and immune-
protective effects, as illustrated in Fig. 4 [100,101]. Specifically, AhR regulates the expression of 
genes responsible for the detoxification and elimination of xenobiotic compounds, while Rrf2 
regulates antioxidant response and inflammatory modulation [100]. Additionally, PFAs may induce 
antipathogenic effects by damaging bacterial membranes, promoting the colonization of beneficial 
gut microbiota, or modulating immune responses [13]. Strikingly, essential oils (steam-distilled 
extracts of volatile plant compounds) are ascribed to be of higher biological activity and have been 
widely tested in poultry diets [102,103]. 

The beneficial phytogenic-mediated effects on production performance and egg quality have 
been widely reported [103,104]. Reported improvements include enhanced eggshell thickness, 
higher egg weight and mass, improved tibia traits, and protein digestibility [105–107]. Additionally, 
supplemental PFA-induced modulation of cecal microbiota and gut morphology (longer villus 
heights and higher villus heights to crypt depth ratio) could translate to improved internal egg 
nutrient content (riboflavin, thiamine, selenium, and phosphorus) and thicker eggshells [108]. 
Dietary PFAs were reported to down-regulate AhR-associated gene expression while up-regulating 
the Nrf2-related genes, leading to improved gut cytoprotection and performance [100]. Notably, 

Fig. 3. Different forms of application and possible mode of action of organic acids.
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inconsistent results regarding supplemental phytogenics have also been documented [105]. 
A wide variety of PFAs are available for dietary utilization across different geographical areas 

of the world, but the efficacy of PFA supplementation is debatable due to their complexity, 
instability, lack of full understanding of their modes of action, and hence, the commonly reported 
variabilities in laying hen responses to PFAs. Variability in phytogenic efficacy is attributed to 
the differences in source and composition of the active components, method of preparation and 
storage, feed inclusion levels, bird genetics and age (laying phase), and overall diet composition 
[70,101,109]. When incorporating PFAs into diets, consideration should be paid to accreditation, 
potential contamination, mode of action, experimental testing, quality, feed matrix interactions, 
and economic value [12]. Strikingly, a negative effect of higher essential oil dosages was observed 
on biomechanical properties and mineral contents of the tibia [106], highlighting the importance 
of appropriate dosing used to avoid undesired physiological responses. More effort is still needed 
to determine the appropriate inclusion levels of phytogenic feed additives and to fully expound 
their mode of action on gut microbiota, function, and immunology, and bird performance when 
incorporated into laying hen diets. 

Combination of feed additives
Nutrients exist in a complex matrix involving starch and non-starch polysaccharides, protein, lipids, 
minerals, and vitamins [33]. It is reasoned that feed additive combinations may yield synergistic 
and additive effects, especially in AGP-free systems [9,110]. Organic acids may synergize with 

Fig. 4. Overview of phytogenic feed additives, including classifications and potential modes of action.
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probiotics (by lowering pH favoring Lactobacilli) and with enzymes (improving digestibility). 
While antinutritional factors in PFAs could limit their utility, co-supplementation with 
exogenous enzymes could improve their bioavailability and effectiveness [99]. Furthermore, NSP 
depolymerization by carbohydrases generates oligosaccharides that may exert a prebiotic effect, 
supporting live in-feed microbials [57,111]. Supplemental β-mannanase derived from Paenibacillus 
lentus bacteria combined with a multi-strain probiotic (Lactobacillus acidophilus, Lactobacillus 
bulgaricus, Lactobacillus plantarum, Lactobacillus rhamnosus, Bifidobacterium bifidum, Enterococcus 
faecium, and Streptococcus thermophilus) improved the laying rate, egg weight, and egg mass while 
modulating intestinal morphology [112]. 

Recently, attention has been drawn to stimbiotics, defined as non-digestible but fermentable 
additives that accelerate fiber-degrading microbiome establishment in the gastrointestinal tract 
(GIT) [113]. Stimbiotic dosages are usually low and enhance the fermentation of dietary fiber 
already present in the feed, rather than serving as a direct fermentable substrate as in the case of 
prebiotics [113]. While stimulating probiotic bacteria without providing adequate substrates can 
induce detrimental effects on microbiota balance, xylanase inclusion when feeding high levels of 
prebiotic xylo-oligosaccharides exerted stimbiotic effects, optimizing probiotic bacteria diversity 
[114]. Furthermore, combined incorporation of compound acidifiers (fumaric, sorbic, citric, and 
malic acids at 1.5 g/kg) and plant essential oils (cinnamaldehyde, carvacrol, and thymol at 100 
mg/kg) improved egg quality, alleviated inflammatory responses, increased digestive enzyme 
activities, and enhanced serum antioxidant capacity [97]. However, excessive supplementation of 
the compound acidifiers increased serum Malonyldialdehyde (MDA) levels in the Wang et al. [97] 
study, indicating enhanced oxidative stress. The need to determine the optimal dosage and ratio 
of combined feed additives that will maximize benefits without compromising the physiological 
functions of the birds is stressed. Future development of feed additives should consider 
combinations to determine potential synergistic and additive effects in laying hen responses. 

FUTURE DIRECTIONS AND SUMMARY
Given the considerable advances in the understanding of laying hen nutrition and modern 
biotechnology, several feed additives are routinely incorporated into the feeding program of laying 
hens. Despite being used in low amounts (usually 50–500 g/tonne), the selected feed additives 
(probiotics, prebiotics, synbiotics, postbiotics, phytogenics, feed enzymes, and organic acids) 
showed immense potential to maintain productive performance and egg quality and could also 
improve gut and musculoskeletal health and function. The strategic application of feed additive 
combinations could also potentiate several additive and synergistic responses. Optimized nutrient 
utilization through feed additives is aimed at reducing feed costs, maintaining animal health and 
welfare, improving productivity, and reducing nutrient excretion to the environment. Reduced 
nutrient excretion could alleviate environmental stress and contribute to the sustainability of poultry 
production. Furthermore, improved nutrient utilization could enrich egg quality characteristics 
for their functional value in human nutrition. Feed additive products with proven efficacy 
are recommended for inclusion in laying hen diets and could potentiate several responses, as 
summarised in Fig. 5. A pragmatic future for layer nutrition lies in strategies that could integrate 
enzymes to unlock maximal feed nutrient value; biotics to stabilize microbiota; organic acids to 
exert antimicrobial effects against pH-sensitive bacteria and optimize gut function; and phytogenics 
to enhance antioxidant status, immune function and gut resilience. However, while many effects 
are described, deeper understanding of gut microbiome shifts, mucosal immunity pathways, and 
systemic metabolic effects in layers is incomplete. It is also evident that laying hen responses seem to 
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be largely dependent on breed, hen age, health status, feed composition and quality, environmental 
factors, and management. These variabilities in laying hen responses are not uncommon, suggesting 
that it may not always be economically beneficial to supplement feed additive compounds, 
especially under commercial conditions. The reported variabilities present an opportunity for further 
research on the specific efficacy of these feed additives on the performance, egg quality, and gut 
health of laying hens under varied experimental conditions that could favorably mimic commercial 
conditions with larger flock sizes and extended laying cycles. Practical implementation will require 
problem diagnosis (poor shell strength, inconsistent egg weight, pathogen load); defining expected 
outcomes; evidence-based product selection; careful formulation (matrix adjustments for enzymes); 
consideration of additive compatibility when combinations are adopted; accounting for strain- and 
product-specific variation (particularly for probiotics and phytogenics); monitoring performance; 
and economic assessment to gauge if the returns justify the expense. Ultimately, we wish to 
maintain egg quality and safety; achieve breeding objectives of longer laying cycles and persistence 
in laying performance; and improve skeletal, immune, and gut health under commercial conditions.
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