Evaluation of conical 9 well dish on bovine oocyte maturation and subsequent embryonic development
Abstract
The Conical 9 well dish (C9 well dish) is characterized by a decreasing cross-sectional area towards the base. This design was hypothesized to enhance embryonic development by emulating the <italic>in vivo</italic> physical environment through density modulation. Comparative analyses revealed no significant difference in nuclear maturation rates between the C9 well dish and the 5-well dish. Reactive oxygen species (ROS) generation was lower in the C9 well dish compared to the 5-well dish; however, this difference was not statistically significant. On the second day of <italic>in vitro</italic> culture, the cleavage rate in the C9 well dish was 4.66% higher, although not statistically significant, and the rates of blastocyst development were similar across both dishes. No significant differences were observed in the intracellular levels of glutathione (GSH) and ROS, as well as in the total cell number within the blastocysts between the dish types. The expression of mitogen-related factors, TGFα and IGF-1, in the blastocysts was consistent between the dishes. However, PDGFβ expression was significantly lower in the C9 well dish compared to the 35mm petri dish. Similarly, the expression of the apoptosis factor Bax/Bcl2l2 showed no significant differences between the two dishes. Despite the marked difference in PDGFβ expression, its impact on blastocyst formation appeared negligible. The study also confirmed the feasibility of culturing a small number of oocytes per donor, collected via Ovum Pick-Up (OPU), with reduced volumes of culture medium and mineral oil, thus offering economic advantages. In conclusion, the present study indicates that the C9 well dish is effective for <italic>in vitro</italic> development of a small quantity of oocytes and embryos, presenting it as a viable alternative to traditional cell culture dishes.